Table 4.
Net reclassification improvement (NRI) in the test set
| Ref | PCE | China-PAR | RePCE | ReChina-PAR |
|---|---|---|---|---|
| ANN |
0.089 * (0.0104–0.1667) |
0.355 *** (0.249–0.462) |
0.098 ** (0.033–0.162) |
0.088 * (0.017–0.158) |
| RF |
0.005 (-0.094–0.104) |
0.332 *** (0.225–0.440) |
0.036 * (-0.07–0.138) |
0.005 (-0.095 0.106) |
| GBM |
0.003 (-0.083–0.089) |
0.299 *** (0.195–0.404) |
0.093 * (0.010–0.176) |
0.042 (-0.048–0.133) |
| KNN |
-0.150 ** (-0.259–0.041) |
0.085 * (0.008–0.162) |
0.034 * (-0.067–0.134) |
-0.003 (-0.105–0.098) |
| Adaboost |
-0.312 *** (-0.414–0.211) |
0.160 *** (0.103–0.217) |
-0.333 *** (-0.395–0.271) |
-0.327 *** (-0.396–0.258) |
| SVM |
-0.110 (-0.232–0.0120) |
0.189 *** (0.086–0.293) |
-0.087 (-0.180–0.006) |
-0.066 (-0.172–0.041) |
| Catboost |
0.017 (-0.069–0.105) |
0.264 *** (0.159–0.369) |
0.072 (-0.003–0.147) |
0.072 (-0.012–0.157) |
Abbreviations: PCE Pooled Cohort Equations, China-PAR Prediction for ASCVD Risk in China, RePCE Recalibrated PCE, ReChina-PAR Recalibrated China-PAR, ANN Artificial Neural Network, RF Random Forest, GBM Gradient Boosting Machine, KNN K Nearest Neighbor, Adaboost Adaptive Boosting, SVM Support Vector Machine, Catboost Categorical Boosting; *P < 0.05; **P < 0.01; ***P < 0.001