Skip to main content
. 2023 Jul 24;21:270. doi: 10.1186/s12916-023-02964-x

Table 3.

Performance of AutoML in the validation cohort, Changhai prospective cohorts, and Zhongda prospective cohorts at 95% sensitivity

Cohort Biopsy result Total Performance, %
csPCa Benign+nsPCa
Validation internal cohort, cut-off value= 23.8%
 AutoML probability > cut point 195 353 548 Sensitivity= 95.1
 AutoML probability <= cut point 10 250 260 Specificity= 41.5
 Total 205 603 808 PPV= 35.6, NPV= 96.2
 csPCa biopsy prevalence % 25.4 Fraction predicted negative 32.2 Missing= 4.9
Changhai prospective cohort, cut-off value= 21.5%
 AutoML probability > cut point 168 203 371 Sensitivity= 95.5
 AutoML probability <= cut point 8 71 79 Specificity= 25.9
 Total 176 274 450 PPV=45.3, NPV=89.9
 csPCa biopsy prevalence % 39.1 Fraction predicted negative 17.6 Missing=4.5
Zhongda prospective cohort, cut-off value= 24.3%
 AutoML probability > cut point 93 98 191 Sensitivity=95.9
 AutoML probability <= cut point 4 64 68 Specificity=39.5
 Total 97 162 259 PPV=48.7, NPV=94.1
 csPCa biopsy prevalence % 37.5 Fraction predicted negative 26.3 Missing=4.1

nsPCa Non-significant prostate cancer, csPCa Clinically significant prostate cancer, AutoML Automated machine learning, LR Logistic regression, NLR Negative likelihood ratio, NPV Negative predictive value, PLR Positive likelihood ratio, PPV Positive predictive value