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Leptin/obR signaling exacerbates 
obesity‑related neutrophilic airway 
inflammation through inflammatory M1 
macrophages
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Abstract 

Background  Obesity-related asthma is a kind of nonallergic asthma with excessive neutrophil infiltration in the air-
ways. However, the underlying mechanisms have been poorly elucidated. Among the adipokines related to obesity, 
leptin is related to the inflammatory response. However, little is understood about how leptin acts on the leptin 
receptor (obR) in neutrophilic airway inflammation in obesity-associated asthma. We explored the inflammatory 
effects of leptin/obR signaling in an obesity-related neutrophilic airway inflammation mouse model.

Methods  We established a neutrophilic airway inflammation mouse model using lipopolysaccharide (LPS)/ovalbu-
min (OVA) sensitization and OVA challenge (LPS + OVA/OVA) in lean, obese, or db/db (obR deficiency) female mice. 
Histopathological, bronchoalveolar lavage fluid (BALF) inflammatory cell, and lung inflammatory cytokine analyses 
were used to analyze airway inflammation severity. Western blotting, flow cytometry, reverse transcription‐polymer-
ase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the underlying 
mechanisms. In vitro bone marrow‐derived macrophage (BMDM) and bone marrow-derived neutrophil experiments 
were performed.

Results  We found that the serum leptin level was higher in obese than in lean female mice. Compared to LPS/
OVA + OVA-treated lean female mice, LPS/OVA + OVA-treated obese female mice had higher peribronchial inflam-
mation levels, neutrophil counts, Th1/Th17-related inflammatory cytokine levels, M1 macrophage polarization 
levels, and long isoform obR activation, which could be decreased by the obR blockade (Allo-Aca) or obR deficiency, 
suggesting a critical role of leptin/obR signaling in the pathogenesis of obesity-related neutrophilic airway inflam-
mation in female mice. In in vitro experiments, leptin synergized with LPS/IFN-γ to promote the phosphorylation 
of the long isoform obR and JNK/STAT3/AKT signaling pathway members to increase M1 macrophage polarization, 
which was reversed by Allo-Aca. Moreover, leptin/obR-mediated M1 macrophage activity significantly elevated CXCL2 
production and neutrophil recruitment by regulating the JNK/STAT3/AKT pathways. In clinical studies, obese patients 
with asthma had higher serum leptin levels and M1 macrophage polarization levels in induced sputum than non-
obese patients with asthma. Serum leptin levels were positively correlated with M1 macrophage polarization levels 
in patients with asthma.

Conclusions  Our results demonstrate leptin/obR signaling plays an important role in the pathogenesis of obesity-
related neutrophilic airway inflammation in females by promoting M1 macrophage polarization.
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Graphical abstract

Background
Asthma is a respiratory disease characterized by chronic 
and heterogeneous airway inflammation, airway hyper-
responsiveness, and airflow restriction, the pathogenesis 
of which is closely related to T helper 1 (Th1)/T helper 
2 (Th2) immune response imbalance (Kim et  al. 2017a; 
Ye et al. 2017; Wenzel 2012). The Th1 immune response 
includes a specific cytokine secretion profile and immune 
functions and is defined by IL-12 and IFN-γ produc-
tion and cell-mediated responses (Macatonia et al. 1993, 
1950), while the Th2 immune response is defined by 
the production of IL-4, IL-10, and antibody responses 
(Romagnani 1994). Th2 cells play vital roles in eosino-
philic asthma (Robinson et al. 1992), while Th1 cells play 
an important role in neutrophilic asthma (Newcomb 
and Peebles 2013). The incidence of obesity is increasing 
worldwide, leading to a series of social problems, such 
as productivity loss, a high rate of chronic diseases, and 
increased use of sick days (Valsamakis et al. 2017). Obe-
sity has been reported to be a prevalent risk factor for 

asthma severity (Wenzel 2012; Kim et al. 2014). Obesity-
related asthma is a type of nonallergic asthma involving 
increased levels of airway neutrophils and few levels of 
airway eosinophils, which can lead to a poor response 
to conventional therapies (Peters et  al. 2018; Thompson 
et  al. 2021; Chen et  al. 2006). However, the underlying 
mechanisms of obesity-related asthma pathophysiol-
ogy are not completely understood. It was reported that 
the prominent features of obesity-related asthma were 
increased systemic/airway inflammation and severe 
symptoms (Liu et  al. 2018). Weight loss can reduce the 
level of proinflammatory molecules and increase the 
level of anti-inflammatory molecules (Baltieri et al. 2018). 
However, it is difficult for most obese patients to change 
their weight within a short time. Even after a low-calorie 
diet, only 25% of obese patients could maintain long-
term weight control (Flore et al. 2022). Therefore, thera-
pies for obesity-related neutrophilic airway inflammation 
will need to not only control weight but also target pro-
inflammatory molecules. Compared with nonobese 
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asthmatic patients, asthmatic patients with obesity 
showed increased neutrophilic airway inflammation and 
increased levels of inflammatory chemicals derived from 
adipocytes (Moore et  al. 2014; Scott et  al. 2011).  How-
ever, the mechanisms by which pathogenic neutrophils 
infiltrate into the obesity-related airway in the context of 
obesity-associated asthma remain largely unclear.

Leptin, encoded by an obesity-related gene, is mainly 
secreted by adipocytes (Chan et  al. 2003; Jutant et  al. 
2021). Circulating levels of leptin are proportional to 
body fat mass (Chrysafi et  al. 2020). Leptin was previ-
ously studied in immune and inflammatory responses 
(Cava and Matarese 2004; Abella et al. 2017). Binding of 
leptin to its receptor (leptin receptor, obR) could con-
tribute to downstream intracellular signaling activation 
(Jutant et al. 2021). The leptin receptor has been reported 
to be distributed in many immune cells (Abella et  al. 
2017; Huertas et  al. 2012) and can be divided into six 
subtypes based on cytoplasmic domains: obR-a, obR-b, 
obR-c, obR-d, obR-f, and obR-e (Houseknecht et al. 1998; 
Wang et al. 1996). The long isoform (obR-b) of the sub-
types is the key receptor for transmitting leptin signaling 
(Chen et al. 1996). Although the long isoform obR (obR-
b) has 300 amino acid sites without enzymatic activity 
in the cytoplasm (Lee et  al. 1996; Huising et  al. 2006), 
leptin binding to obR-b can signal by activating tyrosine 
phosphorylation of molecules in downstream pathways 
such as SHP2, STAT5, ERK, JAK2, and STAT3 (Björn-
holm et  al. 2007). Leptin has been reported to increase 
airway inflammation in an allergic asthma mouse model 
without obesity (Zheng et al. 2018; Kurokawa et al. 2021). 
However, little is known about how leptin/obR signaling 
participates in the pathogenesis of obesity-related neu-
trophilic airway inflammation.

Macrophages are regarded as the predominant 
immune cells in lung diseases (Abdelaziz et  al. 2020; 
Fehervari 2015). Alterations in macrophage function, 
especially macrophage phenotypes, were reported to 
contribute to asthma severity (Melgert et al. 2010; Drai-
jer et  al. 2017). Macrophages are classified as classically 
activated macrophages (M1) or alternatively activated 
macrophages (M2) (Fricker and Gibson 2017). Although 
M2-phenotype macrophages play an important role in 
allergic asthma, increasing evidence has indicated that 
M1-phenotype macrophages play an inflammatory role 
that affects the severity of nonallergic asthma (Kim et al. 
2007). Obesity was reported to alter the function of 
immune cells (Mathis and Shoelson 2011). It was shown 
that M2-phenotype macrophages could be switched 
to pro-inflammatory M1-phenotype macrophages 
in adipose tissues (Chawla et  al. 2011). We speculate 
that M1 macrophages may play an inflammatory role 
in the neutrophilic airways of obesity-related asthma. 

Therefore, it is very important to investigate the role of 
M1 macrophages in obesity-associated neutrophil airway 
inflammation.

To our knowledge, few studies have studied the inflam-
matory effects of leptin/obR signaling  on the upregula-
tion of M1 macrophage polarization in obesity-related 
neutrophilic airway inflammation. Immune-related 
airway inflammation is a characteristic feature of obe-
sity-related asthma (Hammad and Lambrecht 2021). 
We explored the interaction between leptin/obR  signal-
ing and M1 macrophage polarization in obesity-related 
neutrophilic airway inflammation using a lipopolysac-
charide (LPS)/ovalbumin (OVA) + OVA-treated obese 
mouse model, which has features similar to those of 
obesity-related asthma. The effects of leptin/obR signal-
ing on obesity-related neutrophilic airway inflammation 
were reversed upon treatment with an obR antagonist 
(Allo-Aca) or absent in db/db mice (obR-b deficiency). 
Furthermore, our study indicated that JNK/STAT3/
AKT signaling and CXCL2 production were significantly 
involved in the cellular activation of M1 macrophage 
induced by leptin/obR. We suggest that obesity-related 
elevation of leptin/obR signaling has pathogenic effects 
by increasing M1 macrophage polarization in obesity-
related neutrophilic airway inflammation, and we provide 
a promising drug target for obesity-related asthma.

Materials and methods
Animal experiments
The animal experimental protocols followed the ARRIVE 
guidelines. The Medical Ethics Committee of Xiangya 
Hospital Central South University approved the study 
with approval number 201803692. Female C57BL/6 mice 
(6–8 weeks of age; 19–20 g, Laboratory Animal Center of 
Central South University (Changsha, China)) were kept 
under a 12:12-h light/dark cycle and fed water and food. 
A group of female mice received a high-fat diet (HFD) 
(60 Kca% as fat, Medicience Ltd., JS, CN) for 16  weeks 
before neutrophilic airway inflammation mouse model 
establishment according to previous protocols with 
minor modifications (Fang et al. 2018; Wilson et al. 2009; 
Kim et  al. 2020). Briefly, female mice received 0.1  μg of 
LPS (InvivoGen, Estonia, France) and 100  μg of OVA 
(Grade V, Sigma, Missouri, USA) in 50 μl of PBS intratra-
cheally under pentobarbital anesthesia on day 0 and day 
7. On day 14, female mice were challenged with 5% OVA 
(Grade III, Sigma, Missouri, USA) aerosol for 40 min. On 
day 15, female mice were sacrificed for histological analy-
sis and bronchoalveolar lavage fluid (BALF) collection. 
BALF was collected by lavage from the lungs with 0.6 ml 
of sterile PBS in a 1-ml syringe 10 times, and BALF cells 
were obtained after centrifuging the BALF at 400×g and 
4 °C for 5 min.
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Another group of female mice received a normal diet 
(lean mice) for 16 weeks, and then a neutrophilic airway 
inflammation mouse model was established. Another 
group of female mice was sensitized and challenged with 
an equal dosage of PBS as a control. Allo-Aca (GenScript, 
China) is a  selective ObR antagonist peptide without 
agonistic activity (Otvos et al. 2011). In a separate set of 
experiments, female mice with diet-induced obesity were 
treated with Allo-Aca (0.1 mg/kg/day, dissolved in 100 μl 
of PBS) or PBS vehicle control (vehicle) by intraperito-
neal injection, starting from the first day of LPS/OVA 
exposure until 2 h before OVA challenge on day 14. The 
potential role of obR was also examined in female obR-
b-deficient (db/db) obese mice (Hunan SJA Laboratory 
Animal CO., LTD, Changsha, China).

Mouse airway inflammation analysis
Neutrophilic airway inflammation was evaluated by lung 
tissue histology analysis using hematoxylin and eosin 
(H&E) (Lee et al. 2009), BALF inflammatory cell counts, 
and inflammatory cytokine levels in lung homogenates as 
previously described (Tan et al. 2019; Ke et al. 2019; Qu 
et al. 2017). Periodic acid-Schiff (PAS) staining was used 
to evaluate mucus hypersecretion in the airway (McMil-
lan et al. 2002), which indicated airway obstruction.

Experiments with primary bone marrow‑derived 
macrophages (BMDMs)
Primary bone marrow-derived macrophages (BMDMs) 
were isolated and cultured as previously reported (Bai 
et  al. 2021). Mature BMDMs were exposed to 20 ng/ml 
IFN-γ plus 50  ng/ml LPS in the presence or absence of 
leptin (2  µg/ml, Peprotech, New Jersey, USA) for 24  h 
before the assessment of M1 macrophage polarization. 
Mature BMDMs were exposed to 20  ng/ml IL-4 (Pep-
rotech, New Jersey, USA) in the presence or absence of 
leptin (2  µg/ml) for 24  h before the assessment of M2 
macrophage polarization. In some experiments, the lep-
tin receptor antagonist Allo-Aca (1 mM) was included to 
verify the effects of the leptin receptor. In some experi-
ments, synthetic inhibitors of STAT3 (Stattic, 100  nM, 
Selleck, Texas, USA), JNK (Sp600, 10 μM, Selleck, Texas, 
USA), or AKT (MK-2206, 10  μM, Selleck, Texas, USA) 
were used to verify the effects on M1 macrophages.

Inflammatory cytokine detection
The levels of Th1/T helper 17 (Th17)-associated inflam-
matory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and IL-
17A) were detected in lung homogenates and cell-free 
supernatants using a bead-based multiplex LEGEND-
plexTM Kit (BioLegend, San Diego, CA, US).

Western blotting and lung immunofluorescence
Western blotting and lung immunofluorescence were 
performed as previously described (Zhang et al. 2021a). 
The first antibody (F4/80, obR, or iNOS) was used for 
probing in the lung section. The primary antibodies are 
listed in Additional file 1: Table S1.

Enzyme‑linked immunosorbent assay (ELISA)
The leptin concentration in serum was measured using 
a Mouse Leptin ELISA Kit (RayBiotech, Norcross, 
GA, USA) or a Human Leptin ELISA Kit (NeoBiosci-
ence  Technology Co., Ltd, China). The CXCL2 concen-
tration in the cell supernatant was measured using a 
Mouse CXCL2 ELISA Kit (RENJIEBIO Co, Ltd, China). 
The assays were carried out according to the manufac-
turer’s instructions.

Reverse transcription‐polymerase chain reaction (RT‑PCR)
RT‒PCR was performed using ChamQ Universal SYBR 
qPCR Master Mix (Vazyme, Nanjing, China). The prim-
ers for each target gene (Tsingke Biotechnology Co., 
Ltd., Beijing, China) are displayed in Additional file  3: 
Table S3.

Cell viability assay
The CCK-8 assay was performed according to previously 
described methods (Zhao et al. 2016; Liu et al. 2016).

Murine neutrophil isolation
Murine neutrophils were collected from murine bone 
marrow using centrifugation with discontinuous den-
sity solutions (Histopaque-1077 and Histopaque-1119) 
(Solarbio) according to previous studies (Zhang et  al. 
2022; Jiao et al. 2021).

Neutrophil migration assay
Neutrophil migration was carried out in a Transwell sys-
tem with a 5-μm polycarbonate membrane (Corning). 
The conditioned medium was centrifuged to remove cells 
and then placed at the bottom of the Transwell system. 
Neutrophils (2 × 105 cells/100 μl) suspended in complete 
RPMI 1640 were added to the top of the Transwell sys-
tem. The transwell system was incubated in 5% CO2 and 
at 37 °C for 2 h. Migrated neutrophils were counted using 
the chemotactic index according to previously described 
methods (Zhang et al. 2022; Czepielewski et al. 2012).

Human samples
The diagnosis of asthma was established based on typical 
respiratory symptoms, a doctor’s diagnosis, and spirom-
etry findings following the Global Initiative for Asthma 
(GINA) recommendations (Bousquet 2000). The exclu-
sion criteria were defined as follows: (1) patients who 



Page 5 of 21Wang et al. Molecular Medicine          (2023) 29:100 	

had other immune system diseases; (2) patients who had 
other respiratory system diseases; (3) patients who had 
malignant tumors; and (4) patients who used antibiotics 
or systemic corticosteroids within 1 week. Adults includ-
ing obese patients with asthma (OA, n = 14) and non-
obese patients with asthma (NOA, n = 25) were recruited 
for our study. All participants provided informed writ-
ten consent to participate in the study. The OA group 
(≥ 28  kg/m2) and the NOA group (< 24  kg/m2) were 
defined according to the BMI criteria for Chinese adults 
(Wang et  al. 2021). Serum and induced sputum were 
obtained from patients with asthma. Informed consent 
was obtained from all patients. Cells were isolated from 
human-induced sputum as previously described (Kim 
et al. 2019). The study was approved by the Medical Eth-
ics Committee of Xiangya Hospital with approval num-
ber 201803691, following the Code of Ethics of the World 
Medical Association.

Flow cytometry
Cells from bone marrow, lung suspension, BALF, and 
human-induced sputum were prepared as previously 
described for flow cytometry (Zhang et  al. 2021b). For 
cell surface staining, cells were stained with the antibody 
for 30  min at 4  °C. A list of the antibodies used in our 
study is displayed in Additional file 2: Table S2. Staining 
quantification was performed using a Cytek Dxp Athena 
flow cytometer. FlowJo software (version 10, Treestar, 
Ashland,USA) was used for analysis.

Statistical analysis
Statistical analysis was performed using SPSS software 
(version 19, Chicago, IL, USA), and results were graphed 
using GraphPad Prism 9 (La Jolla, Calif ). Continuous 
variables following a normal distribution are presented as 
the mean ± standard deviation (SD). Continuous variables 
with non-normal distribution are presented as median 
and quartile. If 2 groups were involved, a t test was used 
for analysis. If multiple groups were involved, one-way 
ANOVA was used for parametric analysis; otherwise, 
Bonferroni’s  post hoc  test  was used for nonparamet-
ric analysis. For correlation analysis, Pearson correla-
tion tests were used for parametric data; otherwise, the 

Spearman r correlation test was performed for nonpara-
metric data. P  values were considered significant when 
P < 0.05.

Results
Increased airway inflammation in a female obesity‑related 
neutrophilic airway inflammation mouse model
Female mice fed a high-fed diet (HFD) gained body 
weight over the observed period and were classified as 
the obese group. Female mice fed a normal control diet 
slightly gained body weight over the observed period and 
were classified as the lean group. The body weight of the 
obese group was remarkably increased compared with 
that of the lean group (Fig. 1a). We used LPS/OVA sensi-
tization and OVA challenge (LPS/OVA + OVA) to estab-
lish a neutrophilic airway inflammation mouse model in 
female obese or lean mice, as described in Fig. 1b. Female 
obese mice (253.6 ± 73.67  pg/ml) had higher serum 
leptin levels than female lean mice (67.19 ± 27.56  pg/
ml) (Fig.  1c), indicating that obesity is related to hyper-
leptinemia. Additionally, serum leptin levels in female 
mice after LPS/OVA + OVA treatment were significantly 
higher than those in female mice before LPS/OVA + OVA 
treatment, especially in female obese mice (Fig. 1c). The 
plasma insulin level was significantly higher in obese 
mice than that in lean mice, indicating insulin resistance 
in obese mice (Additional file  5). Besides, obese or lean 
mice slightly reduced weight after LPS/OVA+OVA treat-
ment, but the difference was not significant (Additional 
file  6a–b). H&E staining showed peribronchial infiltra-
tion of inflammatory cells. PAS staining showed mucus 
secreted by goblet cells, which was related to airway 
obstruction. LPS/OVA sensitization plus OVA challenge 
induced obvious peribronchial inflammation (H&E) and 
goblet cell hyperplasia (PAS). In the LPS/OVA + OVA-
treated mouse model, female obese mice had higher 
levels of peribronchial inflammation (H&E) and goblet 
cell hyperplasia (PAS) than female lean mice (Fig. 1d-e). 
Furthermore, flow cytometry analysis revealed high neu-
trophil percentages and low percentages of eosinophils 
in the BALF of LPS/OVA + OVA-treated female mice, 
suggesting the successful establishment of neutrophilic 
airway inflammation, as previously reported (Tan et  al. 
2019). In the LPS/OVA + OVA-treated mouse model, 

Fig. 1  Increased airway inflammation in a female obesity-related neutrophilic airway inflammation mouse model. a Comparison of body 
weight changes between lean and obese female mice. b Flow chart for the generation of the neutrophilic airway inflammation mouse model. 
c Comparison of serum leptin levels between female mice. d Representative H&E-stained histological lung sections and a bar graph showing 
the inflammation scores. Scale bar = 50 μm. e Representative PAS-stained histological lung sections and a bar graph showing the PAS scores. Scale 
bar = 20 μm. f Neutrophil, eosinophil, macrophage, and lymphocyte percentages in BALF were measured by flow cytometry. g Western blot analysis 
of obR-b phosphorylation in lung tissues. The displayed protein expression value is the ratio of phosphorylated protein to total protein. h Levels 
of inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and IL-17A) in lung homogenate. The data are expressed as the means ± SDs. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. i.t., intratracheal; i.p., intraperitoneal. For a-e, n = 6 female mice per group; for g, n = 3 female mice per group; for h, 
n = 4–6 female mice per group

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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female obese mice had higher levels of neutrophils in 
BALF than female lean mice (Fig.  1f ). Moreover, the 
phosphorylation levels of the long isoform obR (obR-b) 
were higher in LPS/OVA + OVA-treated female obese 
mice than in LPS/OVA + OVA-treated female lean mice 
(Fig.  1g), indicating activation of obR-b in the female 
obese mouse model. Furthermore, the levels of Th1/17 
inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and 
IL-17A) were elevated in lung tissues in response to LPS/
OVA + OVA stimulation and markedly increased in the 
LPS/OVA + OVA-treated female obese mice (Fig.  1h). 
Thus, our results indicated that neutrophilic airway 
inflammation was significantly increased in the LPS/
OVA + OVA-treated female obese murine model, and the 
leptin/obR axis may be associated with the pathogenesis 
of obesity-related neutrophilic airway inflammation in 
females.

Increased M1‑phenotype macrophages in a female 
obesity‑related neutrophilic airway inflammation mouse 
model
We detected M1 phenotype surface markers (CD11c, 
CD86) and an M2 phenotype surface marker (CD206) 
(Lu et al. 2018; Gambaro et al. 2018) in BALF to explore 
macrophage polarization in the female mouse model. 
LPS/OVA + OVA treatment significantly increased 
the production of CD11c (Fig.  2a), CD86 (Fig.  2b), and 
CD206 (Fig. 2c) in BALF. Furthermore, there was a sig-
nificant increase in the production of CD11c (Fig.  2a) 
and CD86 (Fig.  2b) in LPS/OVA + OVA-treated female 
obese mice as compared with LPS/OVA + OVA-treated 
female lean mice, while LPS/OVA + OVA-treated female 
obese and lean mice did not differ significantly in the 
production of CD206 (Fig. 2c), indicating that M1 mac-
rophage polarization was elevated in BALF from female 
mice with obesity-related neutrophilic airway inflamma-
tion. In addition, the qRT‒PCR results showed that the 
LPS/OVA + OVA-treated obese group showed the high-
est levels of M1 macrophage-associated genes (iNOS 
and CD86) (Fig. 2d). Furthermore, there was a significant 
increase in the number of M1 (CD11c+CD86+) mac-
rophages in lung single-cell suspensions from female 

obese mice compared with those form female lean mice 
after LPS/OVA + OVA treatment (Fig.  2e). Coimmu-
nostaining of lung sections demonstrated that iNOS 
was predominantly expressed in F4/80+ cells (infiltrated 
macrophages) in LPS/OVA + OVA-treated female obese 
mice compared to LPS/OVA + OVA-treated female lean 
mice (Fig.  2f ). In addition, coimmunostaining of lung 
sections showed that the number of obR+iNOS+ cells 
in the lungs was higher in LPS/OVA + OVA-treated 
female obese mice than in LPS/OVA + OVA-treated 
female lean mice (Fig.  2g), suggesting that obR+ cells 
in the LPS/OVA + OVA-treated female obese murine 
model exhibited a more M1-like phenotype. In addi-
tion, iNOS exhibited the most protein activation in the 
LPS/OVA + OVA-treated female obese mice (Fig.  2h). 
Collectively, our results suggested that M1 macrophage 
polarization was enhanced in the female mice with obe-
sity-related neutrophilic airway inflammation, and lep-
tin/obR signaling may affect M1 macrophages.

Allo‑Aca inhibited M1 macrophage polarization 
and obesity‑related murine neutrophilic airway 
inflammation in a female obese mouse model
We next explored the role of obR in a female obesity-
related neutrophilic airway inflammation mouse model 
using an obR antagonist (Allo-Aca), as illustrated in 
Fig.  3a. The plasma insulin level was slightly higher in 
LPS/OVA+OVA-treated obese mice compared to LPS/
OVA+OVA+Allo-Aca-treated obese mice, but the dif-
ferences were not significant (Additional file 5). Allo-Aca 
treatment reduced the numbers of neutrophils in BALF 
(Fig.  3b), peribronchial inflammation (H&E) (Fig.  3c), 
goblet cell hyperplasia (PAS) (Fig.  3d), and the levels of 
Th1/17-related inflammatory cytokines (Fig. 3e) in LPS/
OVA + OVA-treated female obese mice, indicating that 
Allo-Aca inhibited the obese-related neutrophilic airway 
inflammation. The levels of CD11c (Fig.  3f ) and CD86 
(Fig.  3g) in BALF and the number of M1-phenotype 
macrophages (CD11c+CD86+) (Fig.  3h) in lung single-
cell suspensions were also reduced in LPS/OVA + OVA-
treated female obese mice after Allo-Aca treatment, 

(See figure on next page.)
Fig. 2  Increased M1-phenotype macrophages in a female obesity-related murine neutrophilic airway inflammation mouse model. a Representative 
histogram of CD11c (M1) expression (left) and a bar graph showing the quantitative analysis of CD11c (right) in BALF. b Representative histogram 
of CD86 (M1) expression (left) and a bar graph showing the quantitative analysis of CD86 (right) in BALF. c Representative histogram of CD206 
(M2) expression (left) and a bar graph showing the quantitative analysis of CD206 (right) in BALF. d Real-time PCR assessment of M1-associated 
gene (iNOS and CD86) mRNA levels normalized to those of GAPDH. e Representative flow cytometry analysis of M1 macrophages (CD11c+CD86+) 
(gating in macrophages) (left) and quantitative analysis of the M1 macrophage number (right) in lung single-cell suspensions. f Representative 
immunofluorescence staining of iNOS (green) and F4/80+ (red) in lung sections (×100). DAPI (blue) was used for nuclear visualization. Scale 
bar = 100 μm. g Representative immunofluorescence staining of iNOS (green) and obR (red) in lung sections (×200). DAPI (blue) was used 
for nuclear visualization. Scale bar = 50 μm. h Western blot analysis of iNOS in lung tissues. The displayed protein expression value is the ratio of iNOS 
protein to total protein. Data are expressed as the means ± SDs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. For a and e, n = 6 female mice 
per group; for b, n = 5 female mice per group; for c, d, n = 4–6 female mice per group; for f–h, n = 3 female mice per group
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Fig. 2  (See legend on previous page.)
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suggesting that Allo-Aca inhibited M1 macrophage polar-
ization in the female obese murine model. As expected, 
administration of Allo-Aca to LPS/OVA + OVA-treated 
female obese mice resulted in reduced phosphorylation 
levels of obR-b and protein levels of iNOS (Fig. 3i). Taken 
together, these results suggested that the obR inhibi-
tor reduced M1 macrophage polarization and further 
alleviated neutrophilic airway inflammation in a female 
obesity-related neutrophilic airway inflammation murine 
model.

M1 macrophage polarization and obesity‑related 
neutrophilic airway inflammation were reduced in a female 
db/db murine model
To explore whether obR-b mediates the function of lep-
tin, female db/db mice, which were considerably obese 
and lacked the long obR isoform (obR-b) (Lu et al. 2006), 
were used to generate a neutrophilic airway inflam-
mation mouse model, as shown in Fig.  4a. After LPS/
OVA + OVA treatment, female db/db obese mice showed 
fewer neutrophils in BALF (Fig.  4b), less peribronchial 
inflammation (H&E) (Fig. 4c), less goblet cell hyperplasia 
(PAS) (Fig. 4d), and decreased levels of Th1/17 cytokines 
(Fig. 4e) than female HFD-fed obese mice, indicating that 
there was less neutrophilic airway inflammation in the 
female db/db mice. In addition, the production of CD11c 
(Fig. 4f ) and CD86 (Fig. 4g) in BALF and the number of 
M1 (CD11c+CD86+) macrophages in lung single-cell 
suspensions (Fig.  4h) were also decreased in female db/
db obese mice compared to female HFD-fed obese mice 
after LPS/OVA + OVA treatment, indicating that female 
db/db mice had less M1 macrophage polarization. The 
changes in M1 macrophage polarization were further 
supported by Western blot analyses (Fig. 4i). Collectively, 
our study showed that obR-b is the critical receptor that 
participates in leptin/obR-mediated M1 macrophage 
polarization and obesity-related neutrophilic airway 
inflammation in females.

The mechanisms by which leptin affects M1 macrophage 
polarization
BMDMs were used to explore the mechanism by which 
the leptin/obR axis regulates M1 macrophage polariza-
tion. LPS/IFN-γ serve as potent stimulators of M1 mac-
rophage polarization (Murray 2017). The production of 
CD86 in LPS/IFN-γ-induced BMDMs (M1 macrophages) 
was greater than that in unstimulated BMDMs (Fig. 5a), 
suggesting the successful induction of M1 macrophages. 
Leptin alone did not show a significant ability to induce 
M1 macrophage polarization. Moreover, compared to 
LPS/IFN-γ-induced BMDMs, BMDMs costimulated with 
leptin and LPS/IFN-γ showed higher production of CD86 
(Fig.  5a), suggesting that leptin synergized with LPS/
IFN-γ to increase the levels of M1 macrophage polari-
zation. However, the production of CD206 showed no 
significant difference between IL-4-induced BMDMs 
(M2 macrophages) with and without leptin stimulation 
(Fig. 5b), indicating that the effect of leptin on M2 mac-
rophage polarization was not obvious. In addition, the 
cell viability of LPS/IFN-γ-induced BMDMs was greater 
than that of BMDMs without stimulation or with leptin 
stimulation alone (Fig. 5c), but there was no obvious dif-
ference between LPS/IFN-γ-induced BMDMs with and 
without leptin stimulation (Fig.  5c). The concentrations 
of inflammatory cytokines (TNF-α and IL-6) in cell-free 
supernatants were higher for BMDMs costimulated with 
LPS/IFN-γ and leptin than for BMDMs stimulated with 
LPS/IFN-γ (Fig.  5d, e), reflecting the inflammatory role 
of leptin on M1 macrophages. Similarly, Western blot 
analysis revealed that leptin synergized with LPS/IFN-γ 
to significantly increase the levels of iNOS (Fig.  5f ) in 
BMDMs. In addition, leptin synergized with LPS/IFN-γ 
to significantly increase the phosphorylation levels of 
obR-b (Fig.  5g) in BMDMs, showing that obR-b was 
activated in M1 macrophages after leptin stimulation. 
Regarding downstream pathways, leptin synergized with 
LPS/IFN-γ to significantly increase the phosphorylation 
of STAT3, JNK, and AKT in BMDMs (Fig.  5g). Alto-
gether, our results indicated that leptin synergized with 
LPS/IFN-γ to increase M1 macrophage polarization and 

Fig. 3  Allo-Aca inhibited M1 macrophage polarization and obesity-related murine neutrophilic airway inflammation in a female obese mouse 
model. a Flow chart for Allo-Aca or vehicle administration in a female obesity-related neutrophilic airway inflammation mouse model. b Neutrophil, 
eosinophil, macrophage, and lymphocyte percentages in BALF. c Representative H&E-stained histological lung sections and a bar graph showing 
the inflammation scores. Scale bar = 50 μm. d Representative PAS-stained histological lung sections and a bar graph showing the PAS scores. Scale 
bar = 20 μm. e The levels of inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and IL-17A) in lung homogenates. f Representative histogram of CD11c 
(M1) expression (left) and quantitative analysis of CD11c (right) expression in BALF. g Representative histogram of CD86 (M1) expression (left) 
and quantitative analysis of CD86 (right) expression in BALF. h Representative flow cytometry analysis to detect M1 macrophages (CD11c+CD86+) 
(gating in macrophages) (left) and quantification of M1 macrophage number (right) in lung single-cell suspensions. i Western blot analysis 
of obR-b phosphorylation and iNOS expression in lung tissues. The relative expression of protein displayed the ratio of phosphorylated protein 
or iNOS protein to total protein. The data are expressed as the means ± SDs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. i.t., intratracheal; i.p., 
intraperitoneal. For a–d, n = 4–6 female mice per group; for e, n = 4 female mice per group; for f, n = 6 female mice per group; for g, h, n = 5 female 
mice per group; for i, n = 3 female mice per group

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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the phosphorylation levels of obR-b and members of the 
JNK/STAT3/AKT pathways in BMDMs.

obR and pathway inhibitors reversed the effects of leptin 
on LPS/IFN‑γ‑induced M1 macrophages
We further examined whether the effects of leptin 
on LPS/IFN-γ-induced M1 macrophage polarization 
occurred in an obR -mediated manner. Western blot 
analysis revealed that the obR inhibitor Allo-Aca mark-
edly decreased the levels of phosphorylated obR-b and 
iNOS in BMDMs costimulated with leptin and LPS/
IFN-γ (Fig. 6a, b). The phosphorylation levels of STAT3, 
JNK, and AKT in BMDMs costimulated with leptin and 
LPS/IFN-γ were also decreased after Allo-Aca treat-
ment (Fig.  6a). Allo-Aca also decreased the production 
of CD86 in BMDMs costimulated with leptin and LPS/
IFN-γ (Fig.  6c). Considering the changes in cell signal-
ing, synthetic inhibitors of STAT3 (Stattic), JNK (Sp600), 
or AKT (MK-2206) were administered, resulting in 
decreased production of CD86 in BMDMs costimulated 
with leptin and LPS/IFN-γ (Fig.  6d). Next, flow cytom-
etry revealed that there was no obvious difference in the 
production of CD86 between LPS/IFN-γ-stimulated db/
db mouse-derived BMDMs with and without leptin stim-
ulation (Fig. 6e). These results indicated that the effects of 
leptin on M1 macrophages relied on the activation of the 
obR and JNK/STAT3/AKT pathways.

The effects of leptin/obR signaling on neutrophil 
chemotaxis
Previous studies indicated that neutrophils are chem-
oattracted and penetrated by macrophages in a CXCL2-
dependent manner (Tsutsui et  al. 2018; Filippo et  al. 
2013). In our present study, the qRT‒PCR showed 
that leptin significantly upregulated the mRNA lev-
els of CXCL2 in LPS/IFN-γ-induced M1 macrophages 
(Fig. 7a). Similarly, ELISA showed that leptin significantly 
increased the protein expression of CXCL2 in the culture 
supernatants of LPS/IFN-γ-induced M1 macrophages 
(Fig.  7b). CXCL2 production in leptin-treated M1 mac-
rophages was significantly abrogated after treatment with 
the obR antagonist Allo-Aca (Fig. 7a, b). In addition, the 

inhibition of STAT3, JNK or AKT significantly decreased 
the mRNA levels of CXCL2 and the expression of CXCL2 
in the culture supernatants of M1 macrophages induced 
by leptin and LPS/IFN-γ (Fig. 7c, d). To explore the effect 
of leptin on the stimulation of LPS/IFN-γ-induced M1 
macrophage recruitment of bone marrow-derived neu-
trophils, neutrophils were cocultured with conditioned 
medium for transwell analysis for 2  h. The cell culture 
supernatant in the leptin-treated M1 macrophage group 
significantly promoted neutrophil migration, whereas 
the effect was reversed in the Allo-Aca group (Fig. 7e, f ), 
suggesting that extracellular effects of the leptin/obR axis 
on M1 macrophages promoted neutrophil recruitment. 
In addition, the extracellular effects of leptin on M1 
macrophage-induced neutrophil recruitment were also 
reduced by inhibition of STAT3, JNK or AKT (Fig. 7g, h). 
These results showed that the leptin/obR axis increased 
the production of CXCL2 in M1 macrophages and played 
a crucial role in neutrophil recruitment through the JNK/
STAT3/AKT pathways.

Leptin concentration and M1 macrophage polarization 
in obese and nonobese patients with asthma
The clinical features of the study subjects are displayed 
in Table  1. The body mass index (BMI) (P < 0.0001) and 
neutrophil counts in induced sputum (P = 0.0048) of the 
OA group were significantly higher than those of the 
NOA group (Table 1), suggesting that more neutrophils 
had infiltrated in the group with obesity-related air-
way inflammation. We detected the level of leptin in the 
serum of patients with asthma by ELISA. As expected, 
the serum leptin concentration was significantly higher 
in the OA group than in the NOA group (Fig.  8a). Fur-
thermore, we detected macrophage phenotypes in the 
induced sputum of asthma patients by flow cytometry. 
The gating strategies are displayed in Fig. 8b. There was 
a significant increase in the number of M1 macrophages 
(CD11c+CD86+) in the induced sputum of the OA group 
compared to the NOA group (Fig.  8c). However, the 
two groups did not differ significantly in the number of 
M2 macrophages (CD68+CD163+) in induced sputum 
(Fig.  8d). Moreover, the number of M1 macrophages in 

(See figure on next page.)
Fig. 4  M1 macrophage polarization and obesity-related neutrophilic airway inflammation were reduced in a female db/db murine model. a 
Flow chart for the generation of a female obesity-related neutrophilic airway inflammation mouse model. b Neutrophil, eosinophil, macrophage, 
and lymphocyte percentages in BALF. c Representative H&E-stained histological lung sections and a bar graph showing the inflammation scores. 
Scale bar = 50 μm. d Representative PAS-stained histological lung sections and a bar graph showing the PAS scores. Scale bar = 20 μm. e The levels 
of inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and IL-17A) in lung homogenates. f Representative histogram of CD11c (M1) expression (left) 
and quantitative analysis of CD11c (right) expression in BALF. g Representative histogram of CD86 (M1) expression (left) and the quantitative 
analysis of CD86 (right) expression in BALF. h Representative flow cytometry analysis of M1 macrophages (CD11c+CD86+) (gating on macrophages) 
(left) and quantitative analysis of the M1 macrophage number (right) in lung single-cell suspensions. i Western blot analysis of iNOS in lung tissues; 
GAPDH was used as a loading control. The displayed protein expression value is the ratio of iNOS protein to total protein. The data are expressed 
as the means ± SDs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. i.t., intratracheal; i.p., intraperitoneal. For b–d and f, g, n = 5 female mice 
per group; for e, n = 4–5 female mice per group; for h, n = 4 female mice per group; for i, n = 3 female mice per group



Page 12 of 21Wang et al. Molecular Medicine          (2023) 29:100 

Fig. 4  (See legend on previous page.)
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induced sputum was positively correlated with the level 
of serum leptin (R = 0.3209, P = 0.0464, Fig.  8e). All the 
results suggested that the correlation between leptin and 
M1 macrophages may be related to neutrophil airway 
inflammation in obesity-associated asthma.

Discussion
Asthma is a chronic inflammatory disorder of the air-
ways driven by several immune cells (Zasłona et  al. 
2014). Glucocorticoids are the cornerstone of asthma 

treatment, while obesity-related asthma exhibits poor 
responsiveness to glucocorticoids, and thus, treatment is 
still very challenging (Peters et al. 2018). Airway inflam-
mation in allergic asthma is predominantly driven by a 
Th2-dependent response, which is required for eosino-
phil infiltration (Bosnjak et  al. 2011; Caminati et  al. 
2018). Obesity-related asthma, also known as “none-
osinophilic asthma”, has been suggested to be related to 
non-Th2 responses (Moore et al. 2014; Scott et al. 2011; 
Leiria et  al. 2015). Non-Th2 responses, including Th1/

Fig. 5  The mechanisms by which leptin affects M1 macrophage polarization. a Representative histogram of CD86 expression (left) and quantitative 
analysis of CD86 (right) expression in BMDMs. b Quantitative analysis of CD206 expression in BMDMs. c Cell viability. d, e Levels of inflammatory 
cytokines (TNF-α and IL-6) in cell-free supernatants of BMDMs. f Western blot analysis of iNOS in BMDMs and β-tubulin was used as a loading 
control. The displayed protein expression value is the ratio of iNOS protein to total protein. g Western blot analysis of the phosphorylation 
levels of obR-b and members of the downstream JNK/STAT3/AKT pathways in BMDMs. The displayed protein expression value is the ratio 
of phosphorylated protein to total protein. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, each experiment was performed three times
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Fig. 6  Signal inhibitors reversed the effects of leptin on LPS/IFN-γ-induced M1 macrophages. a Western blot analysis of iNOS and phosphorylation 
levels of obR-b and members of the downstream JNK/STAT3/AKT pathways in BMDMs. b The displayed protein expression value is the ratio 
of phosphorylated quantitative protein or iNOS protein to total protein. c Quantitative analysis of CD86 in BMDMs treated with or without Allo-Aca. 
d Quantitative analysis of CD86 in BMDMs treated with or without different synthetic inhibitors. e Representative histogram of CD86 expression 
(left) and quantitative analysis of CD86 (right) expression in female db/db mouse-derived BMDMs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
each experiment was performed three times
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Th17 responses (related to the cytokines IFN-γ, TNF-α, 
IL-1β, IL-6, and IL-17A), have been implicated in neutro-
philic airway inflammation in neutrophilic asthma (Sze 
et al. 2020). Compared with nonobese asthmatic patients, 
obesity-associated asthmatic patients had a higher level 
of neutrophils in sputum (Telenga et al. 2012). Leptin is 
a 167-amino-acid protein that is mainly produced by adi-
pocytes in adipose tissue (Luis et al. 2009). Obesity fea-
tures high serum levels of leptin and is related to chronic 
low-grade inflammation (Bantulà et al. 2021; Choi et al. 
2020). Studies have indicated that high levels of leptin 
are associated with many immune and inflammatory dis-
eases (Abella et al. 2017; Cava 2017). It was revealed that 
leptin could increase the production of Th17 cytokines, 

which was related to the severity of asthma (Vollmer 
et  al. 2022). Studies have shown that obesity-related 
asthma is more prevalent in women than in men, and 
the correlation between leptin and asthma is stronger 
in women than in men (Sood et  al. 2006). Female asth-
matic patients are more likely to have increased numbers 
of neutrophils in induced sputum (Telenga et  al. 2012). 
To our knowledge, few studies have evaluated immune 
responses in the lungs of female mouse models with con-
comitant diet‐induced obesity and LPS/OVA + OVA-
induced neutrophilic airway inflammation in females. 
Here, female mice were used to establish a neutrophilic 
airway inflammation mouse model. Our research aimed 
to investigate the role of leptin/obR signaling in a female 

Fig. 7  The effects of leptin/obR signaling on neutrophil chemotaxis. a Real-time PCR of CXCL2 mRNA levels normalized to those of GAPDH. b 
CXCL2 protein levels were analyzed by ELISA. c Real-time PCR of CXCL2 mRNA levels normalized to those of GAPDH. d CXCL2 protein levels were 
analyzed by ELISA. e Transwell assay to detect neutrophil chemotaxis (×100). f Chemotactic index of neutrophils. g Transwell assay to detect 
neutrophil chemotaxis (×100). h Chemotactic index of neutrophils. Each experiment was performed three times. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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obesity-related neutrophilic airway inflammation murine 
model to provide possibilities for the development of 
drugs for obesity-related asthma.

Intriguingly, our results indicated that serum leptin lev-
els were increased in female obese mice compared with 
female lean mice. Previous studies indicated that OVA-
sensitized and challenged obese mice showed higher 
serum levels of leptin (Shore et al. 2005; Han et al. 2017). 
Reportedly, inflammatory cytokines, including IL-1β 
and TNF-α, can induce leptin secretion from adipocytes 
(Grunfeld et al. 1996). Consistent with previous studies, 
our results showed that serum leptin levels were sig-
nificantly upregulated after LPS/OVA + OVA treatment, 
suggesting that inflammatory responses may upregulate 
leptin secretion. Moreover, our results showed that in 
female obese mice with neutrophilic airway inflamma-
tion had more severe neutrophilic airway inflammation 
and higher levels of Th1/Th17 cytokines than female 
lean mice with neutrophilic airway inflammation. Previ-
ous studies have shown that leptin interacting with obR 
leads to inflammatory and immune responses in various 
immune diseases (Sánchez-Margalet et al. 2002; Cordero-
Barreal et al. 2021). It was reported that phosphorylation 
of obR-b is crucial for obR activation and the initiation 
of leptin-mediated downstream signaling (Björnholm 
et  al. 2007). We found that increased obesity-related 

neutrophilic airway inflammation was associated with 
high phosphorylation levels of obR-b.

Macrophages account for approximately 70% of lung 
immune cells and play an important role in various 
chronic lung diseases (Cai et  al. 2014). Obesity-related 
inflammation has been suggested to be accompanied by 
an increase in M1 macrophage infiltration in adipose tis-
sues (Bantulà et al. 2021). The majority of effector mac-
rophages in nonallergic asthma were M1 macrophages, 
while the majority of macrophages in allergic asthma 
were M2 macrophages (Saradna et  al. 2018). Moreo-
ver, M1 macrophages have been suggested to be associ-
ated with asthma severity (Oriss et  al. 2017. Therefore, 
M1-phenotype macrophages can be used to evaluate 
obesity-related neutrophilic airway inflammation. In the 
current study, female obese mice with neutrophilic air-
way inflammation had a higher level of M1-polarized 
macrophages than female lean mice with neutrophilic 
airway inflammation. These results confirmed that proin-
flammatory M1 macrophage polarization is enhanced in 
obesity-related neutrophilic airway inflammation. Thus, 
molecular intervention to regulate M1 macrophages has 
the potential to treat obesity-related neutrophilic airway 
inflammation.

The effects of leptin on immune cell activation have 
been reported in various immune diseases (Kim et  al. 
2019). A previous study indicated that exogenous infu-
sion of leptin could aggravate periodontitis by activating 
macrophages (Han et al. 2022). Another study indicated 
that hyperleptinemia induced by diet-induced obe-
sity could increase the inflammatory response of mac-
rophages (Monteiro et  al. 2022). In the current study, 
we observed that M1-like phenotype macrophages were 
predominant in obR+ cells from an obesity-related neu-
trophilic airway inflammation mouse model. However, 
the interaction between leptin/obR signaling and M1 
macrophages in the obesity-related neutrophilic airway 
inflammation mouse model needs to be further explored. 
We found that the Allo-Aca (an obR inhibitor) or obR-b 
deficiency significantly ameliorated M1 macrophage 
polarization in a murine model of obesity-associated 
neutrophilic airway inflammation. Significantly, we 
revealed an indispensable role of leptin/obR signaling in 
regulating M1 macrophage polarization in obesity-asso-
ciated neutrophilic airway inflammation.

The mechanisms by which leptin/obR signaling affects 
M1 macrophage polarization have not yet been fully 
elucidated. Interestingly, leptin synergized with LPS/
IFN-γ to induce remarkable M1 macrophage polariza-
tion by elevating obR-b phosphorylation, which could be 
reversed by Allo-Aca. Leptin alone did not exhibit sig-
nificant effects on inducing M1 macrophage polarization. 
Previous studies have suggested that phosphorylation of 

Table 1  Clinical characteristics of the subjects

Categorical variables are represented as n (%), and continuous variables 
following a normal distribution are represented as the mean ± SD, and 
continuous variables with non-normal distribution are represented as median 
and quartile. NOA: nonobese asthma; OA: obese asthma; BMI: body mass index; 
FEV1: forced exhaled volume at 1 s; FVC: forced vital capacity; ACT: asthma 
control test; Neu: neutrophils; Eos: eosinophils

NOA OA P value

No. of patients (n) 25 14

Age (y) 49 ± 10.5 54.43 ± 10.77 0.133

Female sex (%) 64 64.3 0.224

BMI 21.43 ± 1.71 30.35 ± 1.83  < 0.0001

Atopy (%) 36 28.58 0.289

FEV1 (%) 80.84 ± 20.7 73.76 ± 18.7 0.299

FEV1/FVC 81.72 ± 15.92 79.77 ± 15.58 0.715

Smoking history 
(never/smoker), no. 
(%)

76/24 71.4/28.6 0.522

ACT​ 16.92 ± 3.89 18.14 ± 4.66 0.386

Sputum Neu (%) 29.27 ± 20.91 56.55 ± 28.58 0.0048

Sputum Eso (%) 16.20 [5.97, 31.35] 16.4 ± 14.29 0.418

Peripheral blood

 WBC (× 10^9/L) 6.16 ± 1.51 6.48 ± 2.34 0.603

 Neutrophils (%) 48.87 ± 16.25 50.49 ± 14.31 0.759

 Eosinophils (%) 4.5 ± 4.78 3.79 ± 2.57 0.607
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STAT3 is activated in the M1 phenotype macrophages 
(Shi et al. 2020; Li et al. 2021). Moreover, it has been dem-
onstrated that the JNK and AKT signaling pathways are 
activated by various stimulators during the process of M1 
macrophage polarization (Liu et al. 2020; Cui et al. 2020; 
Chen et  al. 2020). Leptin was also reported to activate 
the STAT3, AKT, and JNK pathways in breast cancer and 
ovarian cancer (Ghasemi et  al. 2018; Kim et  al. 2017b). 
In addition, leptin was reported to promote immune cells 
in obese tissues to produce inflammatory cytokines via 
the JNK/AKT pathway (Engin 2017). To date, few stud-
ies have suggested a role of the JNK/STAT3/AKT sign-
aling pathway in leptin/obR-induced M1 macrophage 
polarization.  We found that the JNK/STAT3/AKT sign-
aling pathway might be involved in the proinflammatory 
effects of leptin/obR signaling via M1 macrophage polari-
zation. In our present study, we identified that leptin 
synergized with LPS/IFN-γ to significantly increase the 
phosphorylation levels of members of the JNK/STAT3/
AKT pathways in BMDMs, which was further reversed 

by Allo-Aca. To further explore whether the function 
of leptin/obR signaling in M1 macrophage polarization 
was dependent on the downstream of JNK/STAT3/AKT 
pathways, BMDMs were stimulated with Stattic (STAT3 
inhibitor), Sp600 (JNK inhibitor), or MK-2206 (AKT 
inhibitor). Specifically, Stattic, Sp600, and MK-2206 
effectively decreased the promoting effect of leptin on 
M1 macrophage polarization. Furthermore, leptin did 
not significantly upregulate LPS/IFN-γ-induced M1 mac-
rophage polarization in db/db mouse-derived BMDMs, 
indicating the indispensable role of obR-b in leptin-medi-
ated M1 macrophage polarization. All the results support 
the theory that leptin/obR signaling enhances M1 mac-
rophage polarization via upregulating the phosphoryla-
tion of JNK/STAT3/AKT in vitro.

Macrophages and neutrophils are critical effectors in 
immune responses and inflammatory diseases (Siouti 
and Andreakos 2019; Mohr et  al. 1981). Here, we dem-
onstrated that the leptin/obR axis increased neutrophil 
infiltration in the airway, contributing to neutrophilic 

Fig. 8  Leptin concentration and M1 macrophage polarization in obese and nonobese patients with asthma. a The level of leptin in the serum 
of OA patients (n = 14) and NOA patients (n = 25). b Representative macrophage gating strategy for the induced sputum of OA and NOA subjects. 
c Bar graph showing the number of M1 macrophages (CD11c+CD86+) in the induced sputum of OA and NOA subjects. d Bar graph showing 
the number of M2 macrophages (CD68+CD163+) in the induced sputum of OA and NOA subjects. e Correlation between serum leptin and M1 
macrophage levels in induced sputum. The data are expressed as the means ± SDs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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airway inflammation in an obese mouse model. CXCL2 is 
a chemokine secreted by macrophages that can promote 
neutrophil migration (Filippo et  al. 2013; Zhang et  al. 
2019). In this study, we demonstrated that the leptin/
obR axis signaling caused M1 macrophages to promote 
CXCL2 production through the JNK/STAT3/AKT path-
ways, which further increased neutrophil recruitment. 
Thus, we revealed that the leptin/obR axis play an impor-
tant role in modulating neutrophil recruitment by acti-
vating M1 macrophages.

The pathogenic effects of leptin and M1 macrophages 
can be verified in asthmatic patients. Obese asthmatic 
patients with higher serum leptin levels and BMI are 
more likely to have severe clinical symptoms than non-
obese asthmatic patients (Nadif et al. 2020; Chang et al. 
2022; Zhang et  al. 2017). Patients with obesity-related 
asthma are mostly characterized by low serum IgE lev-
els and low numbers of eosinophils in sputum (Telenga 
et al. 2012; Gibeon et al. 2013). An increasing number of 
studies have shown that obesity-related asthma is related 
to neutrophil airway inflammation (Scott et al. 2011; Tel-
enga et al. 2012). Consistent with the above studies, our 
study revealed that patients with obese asthma had sig-
nificantly higher numbers of neutrophils in induced spu-
tum and a higher level of serum leptin than patients with 
nonobese asthma. M1 macrophage-associated cytokines 
(IL-6 and TNF-α) were elevated in the sputum of patients 
with neutrophilic asthma (Shi et  al. 2022). Leptin was 
found to participate in the inflammatory response by 
targeting macrophages (Mancuso et al. 2004; Raso et al. 
2002). In our study, patients with obesity-related asthma 
had higher levels of M1 macrophages in induced sputum 
than patients with nonobese asthma. Moreover, the num-
ber of M1 macrophages in induced sputum was positively 
correlated with the level of serum leptin. The stratified 
analyses of serum leptin levels and the number of M1 
macrophages between female and male patients have not 
displayed significant results (Additional file  4a–f). Col-
lectively, these results suggest that leptin may be involved 
in neutrophil airway inflammation in obesity-associated 
asthma by affecting M1 macrophages, providing a novel 
direction for studying the pathogenesis of obesity-related 
asthma.

Conclusions
In conclusion, we have demonstrated that leptin syn-
ergizes with LPS/IFN-γ to activate obR, thus promot-
ing M1 macrophage polarization by activating the JNK/
STAT3/AKT signaling pathways. Leptin/obR signaling 
promotes secretion of the neutrophil chemokine CXCL2 
by M1 macrophages through the JNK/STAT3/AKT path-
ways, thereby promoting the chemotaxis of neutrophils. 
The leptin/obR axis participates in the pathogenesis of 

obesity-related neutrophilic airway inflammation in 
females by promoting M1 macrophage polarization, 
suggesting that targeting leptin/obR signaling may be 
an attractive strategy for treating neutrophilic airway 
inflammation in women with obesity-related asthma.
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