
The Best of Both Worlds—Streptomyces coelicolor and
Streptomyces venezuelae as Model Species for Studying
Antibiotic Production and Bacterial Multicellular Development

Susan Schlimpert,a Marie A. Elliotb

aDepartment of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
bDepartment of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

ABSTRACT Streptomyces bacteria have been studied for more than 80 years thanks to
their ability to produce an incredible array of antibiotics and other specialized metabolites
and their unusual fungal-like development. Their antibiotic production capabilities have
ensured continual interest from both academic and industrial sectors, while their develop-
mental life cycle has provided investigators with unique opportunities to address funda-
mental questions relating to bacterial multicellular growth. Much of our understanding of
the biology and metabolism of these fascinating bacteria, and many of the tools we use
to manipulate these organisms, have stemmed from investigations using the model spe-
cies Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering
work in S. coelicolor that established foundational genetic principles relating to specialized
metabolism and development, alongside the genomic and cell biology developments
that led to the emergence of S. venezuelae as a new model system. We highlight key dis-
coveries that have stemmed from studies of these two systems and discuss opportunities
for future investigations that leverage the power and understanding provided by S. coeli-
color and S. venezuelae.
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HISTORY OF STREPTOMYCES

Streptomyces bacteria are estimated to have been inhabiting the Earth for ;400
million years (1). It has, however, only been within the last century that these re-

markable organisms have been getting the attention they richly deserve. In the
Journal of Bacteriology in 1943, the Streptomyces designation was bestowed by
Selman Waksman and Arthur Henrici to describe these aerobic, filamentous, and
spore-forming bacteria. This name derives from the Latin for “twisted” (Strepto) “fun-
gus” (myces), but, despite the fungal reference, these microbes and their relatives
have been recognized as bacteria since at least the 1940s (2). There are currently
.1,100 named Streptomyces species (lpsn.dsmz.de), making it one of the largest bac-
terial genera.

Streptomyces bacteria are abundant in the environment and can be readily cultured.
They are best known as soil bacteria; however, they have also been found in marine sedi-
ments (3) and freshwater ecosystems (4). While the vast majority of Streptomyces species
studied to date are free living, these microbes are increasingly being found in association
with other organisms, living as symbionts with insects and sponges and existing as plant
endophytes. Notably, there are only a few pathogenic Streptomyces species that have been
identified, which infect specific but diverse hosts spanning plants (e.g., Streptomyces scabies
[5]) to humans (e.g., Streptomyces somaliensis [6]).

Editor George O’Toole, Geisel School of
Medicine at Dartmouth

Copyright © 2023 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Susan Schlimpert,
susan.schlimpert@jic.ac.uk, or Marie A. Elliot,
melliot@mcmaster.ca.

The authors declare no conflict of interest.

We dedicate this review to Sir David Hopwood
and Mark Buttner, who through their vision
and generosity in sharing material, data, and
advice have been instrumental in establishing
S. coelicolor and S. venezuelae as model species.

Published 22 June 2023

July 2023 Volume 205 Issue 7 10.1128/jb.00153-23 1

MINIREVIEW

https://orcid.org/0000-0001-6364-8056
https://orcid.org/0000-0001-6546-5835
https://lpsn.dsmz.de
https://doi.org/10.1128/ASMCopyrightv2
https://doi.org/10.1128/jb.00153-23
https://crossmark.crossref.org/dialog/?doi=10.1128/jb.00153-23&domain=pdf&date_stamp=2023-6-22


Beyond their ubiquitous distribution in the environment, there are a multitude of
features that have made Streptomyces fascinating organisms to study. These include
atypical genomic characteristics, an unusual fungal-like growth mode, and impressive
metabolic capabilities, including the ability to produce diverse antibiotics and other
bioactive natural products.

As befits many free-living environmental bacteria, Streptomyces species possess large
chromosomes, ranging in size from;6 Mbp to;13 Mbp (7, 8) and averaging 8 to 9 Mbp.
In addition to their notable size, Streptomyces chromosomes also have a highly skewed ge-
nomic composition, with greater than 70% of residues being G/C. Unusually for bacteria,
they have linear, not circular, chromosomes (9). This raises unique challenges for chromo-
some replication, particularly in duplicating the chromosome ends (10, 11). The chromo-
some itself is intriguingly organized; most of the genes essential for viability are centered
around the origin of replication within the “core” region of the chromosome (12). Flanking
this core region are the chromosome “arms,” within which many species-specific genes are
located, including the majority of natural product biosynthetic gene clusters. The distinc-
tive genomic characteristics of the streptomycetes also extend to their transcriptional units,
where greater than 20% of genes are transcribed as leaderless messages (i.e., lacking a con-
ventional ribosome binding site) (13).

Within the 5,000 to 10,000 proteins encoded by any given Streptomyces species are
an extraordinary number of regulatory factors. For example, the Streptomyces coelicolor
chromosome encodes 66 sigma factors, the majority of which fall into the compact
“extracytoplasmic function” (ECF) family of transcription initiators. In comparison,
Bacillus subtilis encodes 7 ECF sigma factors (and 18 sigma factors in total), while
Escherichia coli has 2 ECF sigma factors (and 7 in total). S. coelicolor is also a rich source
of transcription factors and encodes an abundance of two-component regulatory sys-
tems, including 69 kinase/regulator pairs, plus additional orphaned (unpaired) kinases
and response regulators (14), 34 serine/threonine kinases (15), and many so-called
one-component regulators, including 153 TetR-family regulators alone (16). This strong
emphasis on regulation is likely due to many factors, including the need to rapidly
sense and respond to dynamic environmental conditions, the sheer number of genes
that require control in these organisms, and the complex developmental and meta-
bolic programs that need to be coordinated.

Streptomyces species have a multitude of strategies that enable them to survive—
and thrive—in their environmental niches. Their classical life cycle (Fig. 1), which
closely resembles that of the filamentous fungi and appears to have arisen by conver-
gent evolution (17), is defined by a period of filamentous hyphal growth, followed by
reproductive sporulation. Hyphal growth occurs at the tips of the filamentous cells
where it is directed by a biosynthetic complex known as the polarisome (Fig. 1) (18).
Hyphal branching is also frequently observed in vegetative cells. By contrast, cell divi-
sion leading to crosswall formation within the hyphae (where a septum is laid down to
subdivide hyphal compartments but where cell separation does not occur) is far less
common, and, consequently, the resulting vegetative hyphal compartments contain
multiple chromosomes. Reproductive growth initiates with the emergence of spatially
and physically distinct nonbranching hyphae that extend into the air and are encased
within a coat of hydrophobic proteins (19–22). Within these aerial filaments, the chro-
mosomes are segregated at regular intervals, and the hyphae undergo a synchronous
round of cell division to generate chains of unigenomic prespore compartments. These
cellular compartments ultimately mature to form dormant spores that effectively resist
many environmental stresses.

Streptomyces spp. lack conventional motility organelles (e.g., flagella, pili, and focal
adhesion complexes), and to move within their environment they have historically
relied on the release and dispersal of individual spores via water, wind, or other organ-
isms. A fascinating strategy to encourage dispersal involves the coupling of sporulation
with the release of the earthy-scented volatile compound geosmin (and its counterpart
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2-methylisoborneol). Geosmin is a potent attractant for arthropods, with these animal
vectors serving as effective spore dispersal agents (23).

Geosmin is one of the few specialized metabolites that is produced by virtually all strep-
tomycetes. Indeed, most streptomycetes have unique metabolic repertoires, with any one
species encoding the genes specific for the production of 20 to 50 distinct bioactive natu-
ral products. These molecules are collectively known as secondary or specialized metabo-
lites, and many of these have been coopted for use in medicine and agriculture thanks to
their antimicrobial, antifungal, antiparasitic, anticancer, and immunosuppressive properties.
As is the case with geosmin, the production of many of these compounds coincides with
the onset of reproductive growth, although their production is usually spatially segregated
from the sporulating compartments (24).

MODEL SYSTEMS: STREPTOMYCES COELICOLOR AND STREPTOMYCES VENEZUELAE

Initial genetic and molecular studies in the streptomycetes centered on multiple
genera, including Streptomyces avermitilis (producer of avermectin, a molecule that led
to a Nobel Prize for Satoshi Ōmura) and Streptomyces griseus (led by Sueharu
Horinouchi). While beautiful work has continued in these (and other) streptomycetes,
much of our understanding of Streptomyces biology stems from work done with two
different model systems: S. coelicolor and S. venezuelae. Here, we highlight how study-
ing S. coelicolor and S. venezuelae has contributed to our knowledge of the biosynthe-
sis and regulation of specialized metabolites and bacterial multicellular development.

STREPTOMYCES COELICOLOR GENETICS OPENED THE DOOR TO ENGINEERING
NATURE’S MEDICINES AND UNDERSTANDING COMPLEX BACTERIAL LIFE CYCLES

The discovery of streptomycin, neomycin, and tetracycline moved members of the ge-
nus Streptomyces into the spotlight as producers of medically important antibiotics. At that
time, however, virtually nothing was known about the genetics of these bacteria. This lim-
ited the discovery of new and more potent antibiotics and at the same time spurred the
need for establishing tools and methodologies to genetically manipulate Streptomyces.

FIG 1 Classic Streptomyces life cycle. Spore germination involves swelling and the emergence of one or two germ tubes that grow by a
combination of tip growth and branching into a dense vegetative mycelial network that penetrates the surrounding growth substrate.
During vegetative growth, cell division occurs occasionally, leading to the synthesis of crosswalls that segment the growing hyphae into
multigenomic compartments. To reproduce, streptomycetes raise aerial (reproductive) hyphae that escape the vegetative colony surface
and grow into the air. The aerial hyphae undergo a synchronous cell division event leading to the synthesis of dozens of unigenomic
prespore compartments. These further mature to give thick-walled, pigmented spores, which are then released into the environment to
restart the life cycle. Two major biosynthetic protein complexes are highlighted: The polarisome (magenta), which drives the polar tip
growth of vegetative and aerial hyphae, and the divisome (blue), which leads to crosswalls and sporulation septa.
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The founding member of the Streptomyces genetics era and the best-known repre-
sentative of the genus is S. coelicolor A3(2). S. coelicolor A3(2) has a single linear 8.6-
Mbp chromosome (72.1% GC content), encoding;7,800 genes (12). In addition, S. coe-
licolor A3(2) harbors two episomes, the linear plasmid SCP1 (356 kb; 69.1% GC content;
351 coding sequences) (25) and the circular plasmid SCP2 (31 kb; 72.1% GC content; 34
coding sequences) (26). Across its genome, S. coelicolor A3(2) has at least 27 biosyn-
thetic gene clusters encoding specialized metabolites.

There are two common plasmid-free derivatives of S. coelicolor A3(2) that were isolated
independently: strains M145 and M600 (27, 28). It is worth noting that M145 and M600 dis-
play phenotypic differences, likely due to their lineage history (29, 30). Importantly, M145
was used to generate the annotated genome sequence of S. coelicolor A3(2) (12) and
shows an advantageous antibiotic production and growth profile compared to M600.
These characteristics have led to M145 being the more widely used laboratory “wild-type”
strain (referred to as S. coelicolor henceforth).

The first milestone in the history of Streptomyces genetics was the discovery of
genetic recombination in S. coelicolor (31–34), which enabled the systematic mapping
of genes on the chromosome (35). The genetic analysis of Streptomyces was further
supported by a series of ground-breaking technical advances that were driven in part
by the discovery of conjugative plasmids (36), the characterization of several bacterio-
phage attachment sites for the site-specific integration of donor DNA (37, 38), the de-
velopment of an efficient conjugation system (39), and the preparation of an ordered
library of large S. coelicolor chromosomal inserts in an E. coli cosmid vector (40), which
provided the material for sequencing the entire genome (12). These technical advan-
ces facilitated everything from cloning the first Streptomyces gene to heterologously
expressing entire biosynthetic pathways in S. coelicolor (41, 42).

One of the reasons that S. coelicolor was initially such an attractive model system is that
it produces pigments that make outstanding genetic markers. The species name “coeli-
color,” which means “heavenly colored” or “sky colored” in Latin, was inspired by the obser-
vation that S. coelicolor produces a distinctive blue-pigmented molecule called actinorho-
din, which accumulates in the culture medium and on the surface of S. coelicolor colonies
(Fig. 2A) (43). In addition to actinorhodin, S. coelicolor hyphae also produce red (undecyl-
prodigiosin) and yellow (coelimycin) specialized metabolites alongside a gray pigment that
is associated with mature spores (44–46). Mutants blocked at different steps in the pigment
biosynthesis pathway can be easily identified by visually screening for S. coelicolor colonies
with altered colony coloration.

The production of actinorhodin is among the first and probably most thoroughly
investigated pathways in S. coelicolor. Actinorhodin is not only a blue-pigmented mole-
cule but also an antibiotic (47). Screening for Streptomyces mutants that had either lost
or regained this blue color enabled the isolation and mapping of the actinorhodin

FIG 2 Streptomyces coelicolor. (A) Image of an S. coelicolor colony with aerial mycelium and gray-pigmented spores. The dark halo around the colony and
the droplets on top of the colony are secreted actinorhodin. (B) Schematic showing the actinorhodin biosynthetic gene cluster (SCO5071 to SCO5092) and
its chemical structure.
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biosynthetic pathway genes in vivo. Early research on actinorhodin production
revealed several important features about antibiotic synthesis, including the fact that
genes encoding the biosynthetic enzymes are arranged together in so-called biosyn-
thetic gene clusters (BGCs) (Fig. 2B). These BGCs include all the genes required for
metabolite production, export, and self-resistance. Unusually, given that BGCs are gen-
erally considered to be nonessential genes, they are found predominantly on the chro-
mosome rather than on plasmids (48, 49).

Actinorhodin belongs to the class of polyketide antibiotics and is produced by an ar-
omatic type II polyketide synthase (PKS) (50), a family of large multidomain enzymes
comprising separate modules with dedicated enzymatic activities. Through investiga-
tions into the genetics of polyketide production, the actinorhodin biosynthetic pathway
became the first target for genetic engineering resulting in a unique “hybrid” antibiotic
(51). This discovery led to the concept of combinatorial biosynthesis of small molecules
by the rational engineering of the core modular biosynthetic enzymes (52).

In addition to directing the production of actinorhodin, sequencing of the S. coelicolor
genome revealed that this strain has the capacity to produce a wide array of structurally
distinct specialized metabolites beyond just polyketide antibiotics. These compounds
include peptides derived from nonribosomal peptide synthetases (NRPS), lanthipeptides,
bacteriocins, terpenoids, and aminoglycosides, in addition to many other natural products
(53). Such structural diversity in the specialized metabolic output of S. coelicolor is now
known to be a hallmark of all streptomycetes. The building blocks used to assemble these
specialized metabolites are often derived from primary metabolism (54, 55). Intriguingly,
these linkages to primary metabolism extend beyond metabolite assembly to include
transcriptional control, with many regulators of central metabolic pathways (e.g., AfsQ1
[nitrogen assimilation] and PhoP [phosphate utilization]) directly or indirectly controlling
the expression of BGCs (56–58).

While the pigmented antibiotics produced by S. coelicolor represented an outstanding
genetic marker for studies into specialized metabolism, its visually distinguishable devel-
opmental stages proved equally attractive for those interested in Streptomyces differen-
tiation. The first seminal insight into the regulatory networks governing this multicellular
developmental program came from isolating two groups of S. coelicolor mutants that
were defective in aerial mycelium formation and sporulation. The mutations associated
with these morphological defects were subsequently mapped to genomic loci that
defined the two major classes of developmental regulators in Streptomyces: the Bld
(bald) and Whi (white) regulators (59, 60). Bld regulators control the formation of aerial
(reproductive) hyphae, and mutations in bld loci result in a so-called “bald” phenotype,
with colonies that have waxy surfaces because they lack the hair-like layer of aerial
hyphae. Whi regulators are required to differentiate the aerial hyphae into spore-bearing
structures, and whi mutants fail to synthesize the colored pigment associated with
mature spores (e.g., gray for S. coelicolor and green for S. venezuelae). Thus, the resulting
colonies have a characteristic light/white color.

Although using S. coelicolor as a model system has provided the foundational under-
standing of Streptomyces development, the effective application of global omics technol-
ogies and cell biological tools and techniques has been limited by its complex lifestyle.
Like many other Streptomyces species, S. coelicolor only sporulates on solid medium in an
asynchronous manner, and it forms large mycelial clumps in liquid medium that can
impact reproducible cultivation. To overcome these technical challenges and to advance
our understanding of the signals and regulatory pathways controlling the progression
through the Streptomyces life cycle, Streptomyces venezuelae was adopted as an experi-
mental model organism for developmental studies.

STREPTOMYCES VENEZUELAE PROVIDES NEW AVENUES TO STUDY THE CELL BIOLOGY
UNDERPINNING THE GROWTHANDDEVELOPMENT IN STREPTOMYCETES

S. venezuelae, as its name suggests, was first isolated in Venezuela from a soil sam-
ple and was initially described as a chloramphenicol producer (61, 62). The common
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laboratory strain is S. venezuelae NRRL B-65442, which has an 8.2-Mbp, GC-rich (72.5%)
linear chromosome, encoding ;7,100 proteins, and a 158-kb circular plasmid, pSVJI1
(70.1% GC content and 163 coding sequences). Genome sequencing further indicated
the presence of at least 34 BGCs, the majority of which are not expressed under stand-
ard laboratory conditions (63). Comparative sequence analysis revealed that ;85% of
the protein-coding genes on the S. venezuelae chromosome have orthologues in S.
coelicolor A3(2), with an average protein sequence identity of more than 64%.

Importantly, unlike S. coelicolor, S. venezuelae grows rapidly in a highly dispersed man-
ner and sporulates comprehensively and almost synchronously in liquid culture (64).
Although some regulatory details may differ between both species, all known regulatory
mutations that block sporulation on solid medium also prevent sporulation in liquid-
grown S. venezuelae cells. In addition to there being a generalized transducing phage
available for use in S. venezuelae (65), most shuttle vectors, DNA transfer, and recombinant
DNA techniques developed for S. coelicolor can be seamlessly used to clone and manipu-
late genes in S. venezuelae.

Consequently, the introduction of S. venezuelae as a new model system has greatly
facilitated global functional analyses and provided a detailed understanding of the regula-
tory networks underpinning the complex multicellular developmental program from ger-
mination to sporulation (66, 67). Here, we highlight a few recent studies demonstrating the
benefits of using S. venezuelae as a model species for developmental and cell biological
studies.

The first pioneering study in S. venezuelae that combined chromatin immunoprecipita-
tion sequencing (ChIP-seq) and global transcriptional profiling came from Bibb et al. (68),
who set out to determine the regulon of the developmental regulator BldN. BldN is an ECF
sigma factor that directs the transcription of genes required to synthesize the major com-
ponents of the hydrophobic sheath (comprising the chaplin and rodlin proteins, discussed
below) encasing the aerial hyphae. This study laid the foundation for many others that
have followed and, collectively, provided comprehensive insight into the developmental
regulatory networks governing Streptomyces differentiation.

To complete the life cycle and transform aerial hyphae into chains of spores, the
function of multiple Whi regulators is required. Two transcription factors WhiA and WhiB
sit at the top of this regulatory cascade and are essential for coordinating the cessation of
aerial growth and the initiation of sporulation septation. Work by Bush et al. revealed that
together WhiA and WhiB control the expression of about 240 genes, including those that
encode proteins with roles in polar growth, cell division, and spore maturation as well as
many proteins of unknown function (69, 70).

The fact that S. venezuelae completes its life cycle in liquid has also proven to be a com-
pelling characteristic to study the spatiotemporal control of proteins that drive central de-
velopmental processes at the cellular level. In addition, the establishment of microfluidic-
based time-lapse fluorescence imaging techniques has allowed the entire spore-to-spore
life cycle to be captured (Fig. 3A) (71). This has opened up the field of Streptomyces cell
biology and led to a number of important advances in our understanding of how critical
cellular events, such as polar growth, chromosome arrangement and cell division, are
organized in space and time (Fig. 3B) (72–78). For example, a recent study identified an
essential component for crosswall formation (Fig. 1). The nature and significance of cross-
walls, compared to the functionally distinct division septa formed during sporulation, had
been elusive for decades. Using a combination of live-cell imaging and molecular genetics,
Bush et al. (74) demonstrated that hyphal compartmentalization via crosswalls is crucial for
the ordered progression through the developmental life cycle. This hyphal compartmental-
ization appears to ensure efficient sporulation and may also impact other cellular processes
like specialized metabolite production.

RESOURCES AND TOOLS TO STUDY STREPTOMYCES

The go-to resource for many Streptomyces researchers over the past decades has been
the book “Practical Streptomyces Genetics” (79), which contains a comprehensive collection
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of laboratory protocols, media recipes, plasmid details, and other useful information on
how to grow, manipulate, and evaluate Streptomyces species. Although this handbook was
last updated in 2000 and thus lacks information on more recent developments in the field,
it remains an invaluable and freely available resource that can be downloaded from
StrepDB (http://strepdb.streptomyces.org.uk). StrepDB is the Streptomyces genomes anno-
tation browser that hosts the genome and plasmid sequences of many of the best studied
Streptomyces species, including S. coelicolor and S. venezuelae.

The most common methods of genetically manipulating S. coelicolor and S. venezue-
lae involve using the ReDirect technique, which is a l RED-based gene disruption pro-
tocol (80, 81), and CRISPR-Cas9-mediated genome editing (82, 83). The design of single
guide RNA sequences for CRISPR-based genome engineering has been further sup-
ported by the interactive online tool CRISPy-web (https://crispy.secondarymetabolites
.org/#/input) (84).

Further advances in Streptomyces genetics that have facilitated the cloning, expres-
sion, and manipulation of genes and biosynthetic pathways in nonmodel Streptomyces
species (see also reference 85) include the development of inducible promoters to con-
trol the conditional expression of genes (86, 87) and synthetic promoter systems for
targeted gene expression studies (88–90).

A multitude of databases and computational approaches that have been developed
to mine the ever increasing number of Streptomyces genomes for novel BGCs comple-
ment these genetic tools. The bioinformatic pipeline antiSMASH (https://antismash
.secondarymetabolites.org/#!/start) is a widely used online tool that predicts BGCs in
streptomycetes and other microbial genomes (91). The relative ease of cluster identifi-
cation has in turn fueled an interest in cloning and heterologously expressing BGCs of
interest. Heterologous expression has been greatly facilitated by the generation of a
suite of S. coelicolor “superhosts” (92). These strains lack multiple endogenous BGCs,
including those for actinorhodin and prodiginine, and have been further genetically
modified to increase specialized metabolite production.

Given the wealth of genetic and genomic tools that have been developed up to this
point, there is considerable interest in bringing the field together to both collate existing
techniques and resources and develop additional community-wide tools and resources

FIG 3 Streptomyces venezuelae. (A) Time-lapse images of wild-type S. venezuelae grown in liquid using a microfluidic system showing the cellular development
during the Streptomyces life cycle, including germination, vegetative growth, and sporulation (white arrowheads). (B) Composite light microscopy image of S.
venezuelae producing fluorescently tagged DivIVA (magenta) and FtsZ (blue) to visualize growing hyphae and sites of cell division, respectively. Open arrowheads
indicate crosswalls, and filled arrowheads point to hyphae undergoing sporulation septation. Scale bars, 10 mm.
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aimed at advancing and exploiting Streptomyces biology. One such initiative is ActinoBase
(http://actinobase.org/index.php/Main_Page), a recently established online platform that
aims to integrate freely accessible scientific resources, including experimental protocols
covering more recent technical advancements (93). Considering the long history of
Streptomyces genetics (94), the development of a comprehensive Wiki-based platform rep-
resents a valuable resource and one with considerable scope for future growth and utility
for the growing Streptomyces community.

NOTABLE DISCOVERIES

The experimental and technical foundations laid by decades of work in S. coelicolor
and S. venezuelae systems have enabled a multitude of pioneering discoveries, span-
ning everything from unique genetic regulatory mechanisms to novel developmental
trajectories and community-based survival strategies.

Regulatory innovations. From genetic and genomic perspectives, the streptomycetes
have proven to be unrivaled in their regulatory innovations. Early evidence of this came in
the 1980s, when it was discovered that a key developmental and metabolic determinant
known as bldA (95) corresponded to a leucyl tRNA needed to translate the rare TTA/UUA
codon (96). The fact that a tRNA was not essential for bacterial viability was surprising, and
the phenotypic effects associated with its mutation suggested that it had been coopted
for the translational control of development and antibiotic production. Analysis of the S.
coelicolor genome sequence revealed that fewer than 2% of all genes possessed a TTA
codon. Included among these was the developmental regulator-encoding adpA/bldH
gene, which is now known to be solely responsible for the developmental block observed
in the bldA mutant (97, 98). Additional TTA codons were present in cluster-situated regula-
tors of multiple BGCs, including the actII-ORF4 (actinorhodin) and redZ (undecylprodigiosin)
regulators in S. coelicolor. Indeed, expression of bldA has been effectively exploited to stim-
ulate cryptic antibiotic production in other streptomycetes (e.g., Kalan et al. [99]).

Beyond translational control, Streptomyces are also masters of transcriptional regu-
lation, as evidenced by their abundance of sigma factors and transcription factors. In
the early (pregenomic) 1990s, comparative analysis of the S. coelicolor sigma E
sequence revealed similar sigma factors to be present in phylogenetically diverse bac-
teria (100). These proteins comprise a distinct subfamily of sigma factors that are
shorter than the canonical sigma 70-type sigma factors due to truncations in region 3.
These were dubbed the extracytoplasmic function (ECF) sigma factors due to the con-
tribution that many of their founding members made in responding to exogenous
stresses. As detailed above, the ECF sigma factors are the largest group of sigma factors
in the streptomycetes (12).

The streptomycetes have also been found to have creative transcription factor configu-
rations. BldM and WhiI are developmental regulators belonging to the “orphaned” (no
associated kinase) response regulator group of proteins (101, 102). Investigations into the
function of these transcription factors in S. venezuelae revealed that BldM governs the
expression of one set of genes in its homodimer configuration, and when it heterodimer-
izes with WhiI, it controls an independent set of target genes (103). Beyond their flexible
association with protein partners, work in S. venezuelae has also revealed unusual associa-
tions with cyclic nucleotide cofactors. One of the most striking examples of this was seen
for BldD, the master regulator of reproductive development in the streptomycetes. From
earlier work in S. coelicolor, BldD was known to dimerize (104) and repress the activity of its
target genes (105, 106). The nature of the BldD dimer configuration remained mysterious
until the crystal structure of BldD was solved in 2014 (107). This revealed that the BldD
dimer was not assembled in a conventional way involving protein-protein interactions.
Instead, BldD monomers were joined together by a quartet of cyclic-di-GMP molecules
arranged in a stacked dimer-of-dimers configuration (107). This study revealed not only a
unique mechanism of protein dimerization but also an unexpected conformational flexibil-
ity for nucleotide second messengers, as tetramer forms of cyclic di-GMP had not been
observed previously.
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Despite this unprecedented discovery, protein interactions mediated by cyclic-di-
GMP in the streptomycetes now extend beyond BldD. Subsequent investigation into
the nature of the interaction between the WhiG sigma factor, a motility-like sigma fac-
tor that directs Streptomyces sporulation (108), and its cognate anti-sigma factor RsiG
revealed that this is mediated by a dimeric cyclic-di-GMP molecule (109). Individually,
the RsiG anti-sigma factor (but not sigma WhiG) binds cyclic-di-GMP. Importantly, this
ligand-bound complex is the only form of RsiG that can associate with and sequester
sigma WhiG to prevent sporulation. In addition to being an essential cofactor in con-
trolling progression through the Streptomyces life cycle, cyclic-di-GMP was also recently
found to bind and stimulate the catalytic activity of a glycogen-degrading enzyme
(110). This further expands the role of this second messenger molecule in Streptomyces
from modulating the activity of two central transcription factors in the developmental
regulatory cascade to mediating energy storage metabolism.

Developmental innovations. As their regulatory systems suggest, the streptomy-
cetes are complex bacteria, and much of this complexity has been both uncovered and
unraveled in the S. coelicolor and S. venezuelae systems. Their fungal-like growth as fila-
mentous hyphae are unusual in the bacterial world, and this is driven by hyphal tip
extension. Work in S. coelicolor revealed that this polar growth is mediated by DivIVA
(111) and an associated polarisome complex that includes multiple cytoskeletal ele-
ments (112–114). It has subsequently been established that polar growth is shared by
other actinobacteria as well as members of the Rhizobiales (e.g., Agrobacterium and
Sinorhizobium) (115), although the underlying growth mechanism in the latter group
has yet to be fully elucidated. Within the context of the Streptomyces life cycle, the
DivIVA-polarisome drives the growth of both the branching vegetative hyphae and the
nonbranching aerial hyphae (Fig. 1).

The raising of aerial hyphae from the vegetative milieu requires the activity of multi-
ple surfactant proteins, including SapB and the chaplins, which have intriguing struc-
tural properties. First identified in S. coelicolor, SapB shares structural similarity with
lantipeptide antibiotics (116), but instead of inhibiting the growth of neighboring bac-
teria, it promotes the raising of aerial hyphae following secretion into the environment
during growth under nutrient-replete conditions (19). Like SapB, the chaplin proteins
were also identified in S. coelicolor as small proteins with surfactant properties, but
they have a very different protein architecture than SapB and are expressed during aer-
ial development under all tested growth conditions (21, 22). After secretion, the chap-
lins polymerize to form functional amyloid fibrils that coat the surface of the emerging
hyphae and promote aerial hyphae formation (21). At the time, this was only the sec-
ond known example of functional amyloids (after the E. coli curli proteins [117]), and it
is now well-established that amyloid proteins play important roles in the community
development of many bacteria (117–119).

It has long been postulated that the transition from vegetative to aerial mycelial
growth is accompanied by a developmentally regulated cell death process in which
part of the vegetative mycelium is dismantled to feed the emerging reproductive aerial
hyphae (120–123). However, molecular insights into the basis of this phenomenon
have been limited. Recently, two studies reported that in S. coelicolor, hyphal cell death
is mediated by a contractile injection system (CIS) (124, 125). CIS are phage-tail-like
structures that in other systems predominantly contribute to interspecies interactions
(126–129) but seem to function differently in Streptomyces. While the exact molecular
mechanism of CIS-mediated cell death remains to be determined, it is important to
note that most Streptomyces species encode a cis gene cluster (130, 131), suggesting a
conserved role for CIS in intracellular cell death and multicellular development.

Vegetative and aerial hyphae can be distinguished by both their branching status
and the nature of their cell surfaces; vegetative hyphae are branched and are hydro-
philic, whereas aerial hyphae are unbranched with hydrophobic surfaces. Both cell
types are, however, multinucleated. As this would suggest, cell division is not common
during vegetative growth and early aerial development, and unlike virtually all other
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bacteria, cell division is not essential for Streptomyces viability. Deleting the central cell
division gene ftsZ in either S. coelicolor or S. venezuelae leads to an inability to form
crosswalls and sporulation septa, but the mutation still permits vegetative and aerial
growth (132, 133). FtsZ assembly in the reproductive hyphae is a remarkably synchro-
nous process; it assembles into a ladder-like array of rings extending the length of the
aerial filaments (Fig. 3B) (71, 134). These FtsZ rings mark the site of future cell division,
defining where the aerial hyphae will be subdivided into single-genome prespore com-
partments. There has been considerable interest in understanding what factors impact FtsZ
localization (and the associated chromosome segregation), and work in S. coelicolor and S.
venezuelae is revealing this to require the activity of both Streptomyces-specific proteins (73,
135, 136) and proteins found in other bacterial phyla (73–75, 137).

Reproductive growth, encompassing aerial hyphae formation and sporulation, is typi-
cally considered to be genetically coordinated with (but spatially segregated from) the spe-
cialized metabolite-producing vegetative cells. Recent work in S. coelicolor has established
that there is a genetic basis underlying this “division of labor” within a Streptomyces colony
(138). It appears that a subset of cells within a colony undergoes significant chromosomal
reorganization (amplification or deletion of genomic segments as large as 1 Mb) (138) and
a subsequent increase in mutation rate (139). These subpopulations of cells are often
highly pigmented, indicating enhanced antibiotic production, and are generally less fit
than their sporulating counterparts whose genomic integrity is intact. Notably, however,
the presence of these growth-deficient antibiotic-producing cells does not adversely
impact the overall fitness of the S. coelicolor colony, at least in the laboratory (140), sug-
gesting that this segregation of cell function into specialized metabolite producer and
reproductive cell producer has been evolutionarily advantageous.

While many of these innovative discoveries have come from investigations using S. coe-
licolor as a model system, more recent studies in S. venezuelae are revealing that the devel-
opmental and growth repertoire of these bacteria is far broader and more flexible than
had been previously appreciated. Indeed, changing the conventional growth medium of S.
venezuelae or growing S. venezuelae in association with yeast enables an apparent motility-
type response in which the colony spreads rapidly over solid surfaces (Fig. 4A). To date,
this so-called “exploratory growth”mode appears to be a broadly, but not universally, con-
served trait within the streptomycetes (140). Beyond an apparently enhanced growth rate,
exploring S. venezuelae is also notable for the release of volatile organic compounds, which
serve dual functions in communication and competition; they promote exploration in
nearby streptomycetes and at the same time inhibit the growth of other microbes by mak-
ing iron less bioavailable (141). In addition to this rapid colonial expansion, S. venezuelae
has also proven adept at shedding its wall and growing as more individual “S-cells” in
response to hyperosmotic conditions (Fig. 4B) (142). Importantly, both S-cells and exploring
cells are not terminally differentiated growth states and are capable of resuming their clas-
sical developmental growth cycle when conditions permit.

FIG 4 Alternative Streptomyces growth modes. (A) Exploratory growth is triggered in response to glucose depletion (e.g., when cells are grown beside
yeast). Explorer cells grow as nonbranching vegetative hyphae and expand rapidly across solid surfaces. (B) S-cells are extruded from hyphal tips following
exposure to hyperosmotic stress or cell wall-targeting antibiotics. S-cells are vesicle-like structures that lack a cell wall and contain all cellular components
to replicate. Both explorer and S-cells are transient cell types that can revert to the classic developmental program (Fig. 1).
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Interaction innovations. Cell wall shedding, as observed for S-cells, is now being rec-
ognized as a mechanism of phage defense through the removal of many phage receptors
(143, 144). As predominantly environmental bacteria, Streptomyces spp. are under constant
threat from phage attack, and multiple phage defense systems have been identified
through work using S. coelicolor and S. venezuelae. An excellent example of an enzymatic
phage defense system is the Pgl system (for phage growth limitation), which was first iden-
tified in S. coelicolor in the early 1990s (145). Pgl is a multigene locus whose products
include a kinase and methyltransferase (146), with DNA methylation being key to the
restriction of phage DNA replication. Notably, Pgl-like systems have been found through-
out bacteria where they have been dubbed the “BREX” (for bacteriophage exclusion) sys-
tems (147). More recently, the Streptomyces phage defense repertoire has been expanded
to include a role for specialized metabolites. Using S. coelicolor as a test system, Kronheim
et al. revealed that DNA intercalating compounds have potent antiphage effects (148),
whereas Kever et al. observed similar effects for aminoglycoside antibiotics using S. vene-
zuelae (149).

Specialized metabolites have long been known to have key roles in promoting the
competitive fitness of their producers given the growth (and now phage) inhibition capa-
bilities of many of these natural products. These compounds are, however, increasingly
being recognized for having alternative roles in modulating community dynamics, with
the volatile metabolite geosmin being an outstanding example (described above).

FUTURE DIRECTIONS

The decades of work conducted using S. coelicolor, and more recently S. venezuelae,
are providing an outstanding platform from which to launch future investigations into
this group of fascinating microbes. Given the complexity of the classical Streptomyces
sporulating life cycle and newly described growth strategies, there remains much to
be understood about the cellular mechanisms and signals underpinning these differ-
ent developmental stages and the transitions between them.

The first bacterial signaling molecule discovered in Streptomyces was the hormone-
like g -butyrolactone molecule A-factor (150, 151), which induces antibiotic production
and morphological development in Streptomyces griseus (reviewed by Horinouchi [152]).
While g -butyrolactones are produced by many Streptomyces species, their biological
roles appear to vary (153–155). Given the enormous diversity of specialized metabolites
produced by these organisms, it is conceivable that many of these have signaling func-
tions. Determining the nature and activity of these small, diffusible molecules in regulating
antibiotic production and development in Streptomyces and facilitating intra- and interspe-
cies communication and competition, including interactions with other microbes, plants,
and insects/arthropods, will be a rich area for future investigation.

Innovations in imaging technologies are further revolutionizing our ability to probe
cellular dynamics and cell organization. These innovations in turn are providing un-
precedented opportunities to address fundamental questions relating to, for example,
bacterial growth, cell wall biosynthesis and remodeling, genome dynamics, and the
cytoplasmic organization of protein complexes. Thanks to advances in genomic tech-
nologies, it is becoming possible to define the structure of the Streptomyces chromo-
some at different life cycle stages (70). Identifying the proteins responsible for chromo-
some organization (as well as biosynthetic cluster control) and how their binding and
activities change under different conditions will be a major goal moving forward. It is
also worth noting that the majority of genome studies to date have been conducted
on plasmid-free strains of S. coelicolor. Understanding how plasmid dynamics are coor-
dinated with those of the chromosome, what factors are needed for plasmid organiza-
tion, segregation, and transmission, and whether these differ for circular versus linear
plasmids will all be questions of interest.

Despite a recent flurry of reports on prokaryotic antiphage systems, relatively little is
known about how Streptomyces species defend themselves against phages and other self-
ish mobile genetic elements. Given their unique multicellular lifestyle, genome architecture,
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and the fact that the products of the majority of the encoded BGCs are unknown, it would
not be surprising if Streptomyces genomes harbor an as-of-yet unexplored repertoire of
novel defense strategies against parasitic nucleic acid vectors.

In future years, investigations into Streptomyces biology will likely extend well
beyond these traditional model systems. The relative ease of generating draft genome
sequences, coupled with the fact that many of the genetic tools developed and honed
in S. coelicolor and S. venezuelae can be applied to uncharacterized strains, is opening
the door to exploring the biology of diverse Streptomyces species. It will be interesting
to see how our understanding of Streptomyces biology in the laboratory translates into
its native environment and how interactions with other organisms changes their
growth, metabolism, and behavior and vice versa.
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