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Pseudomonas aeruginosa and the phytopathogen P. syringae produce the exopolysaccharide alginate, which is
a copolymer of p-mannuronic and L-guluronic acids. One of the key regulatory genes controlling alginate
biosynthesis in P. aeruginosa is algT, which encodes the alternate sigma factor, o2, In the present study, the
algT gene product from P. syringae pv. syringae showed 90% amino acid identity with its P. aeruginosa coun-
terpart, and sequence analysis of the region flanking algT in P. syringae revealed the presence of nadB, mucA,
and mucB in an arrangement virtually identical to that of P. aeruginosa. An algT mutant of P. syringae was
defective in alginate production but could be complemented with wild-type algT from P. syringae or P. aerugi-
nosa when expressed in frans. The algT mutant also displayed increased sensitivity to heat, paraquat, and hy-
drogen peroxide (H,0,); the latter two compounds are known to generate reactive oxygen intermediates. Sig-
nals for activation of algT gene expression in P. syringae were investigated with an algT::uidA transcriptional
fusion. Like that in P. aeruginosa, algT transcription in P. syringae was activated by heat shock. However, algT
expression in P. syringae was also stimulated by osmotic stress and by exposure to paraquat, H,O,, and copper
sulfate. The latter two compounds are frequently encountered during colonization of plant tissue and may be

unique signals for algT activation in P. syringae.

Many pseudomonads, including the phytopathogen Pseudo-
monas syringae, produce the exopolysaccharide alginate, a co-
polymer of O-acetylated -1,4-linked D-mannuronic acid and
its C-5 epimer, L-guluronic acid. P. syringae induces a wide va-
riety of symptoms on plant hosts and can also exist as an
epiphyte on plant surfaces without causing disease. Yu et al.
(62) used a genetic approach to evaluate the role of alginate in
the pathogenicity and epiphytic fitness of P. syringae pv. syrin-
gae 3525, which causes bacterial brown spot on beans. Alginate
contributed significantly to both virulence and epiphytic survi-
val of P. syringae pv. syringae 3525, perhaps by facilitating col-
onization and/or dissemination of the bacterium in planta (62).

Alginate has been extensively studied in P. aeruginosa, where
it functions as a virulence factor in cystic fibrosis patients (47).
An important feature of alginate production by P. aeruginosa is
that the alginate biosynthetic genes are normally silent but are
activated in the cystic fibrotic lung, which results in a mucoid
phenotype. In P. aeruginosa, genes that encode the biosynthesis
and regulation of alginate map to four chromosomal locations.
With the exception of algC, which is located at 10 min, the
structural genes are clustered within an 18-kb region located
at 34 min (18, 48). The alginate biosynthetic gene cluster in
P. aeruginosa is presumably organized as an operon with tran-
scription initiating at the algD promoter (9).

Genes controlling the regulation of alginate production in-
clude algRI (algR), algR2 (algQ), algR3 (algP), and algB (20,
54). AlgR1 functions as a response regulator and binds to
multiple sites upstream of algC and algD (25, 42, 64). The genes
which mediate the conversion to constitutive alginate produc-
tion are located at 68 min on the P. aeruginosa chromosome
and include algT (algU), mucA, mucB (algN), mucC (algM),
and mucD (algY). The alternative sigma factor encoded by
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algT, 0%, is required for transcription of algD, algR1, and algT
(21, 52, 60). Both the algD and algR1 promoters show a con-
sensus sequence at the —35/10 region, a finding which is con-
sistent with recognition by ¢*2, suggesting that an RNAP-g**
complex binds to both promoters and positively regulates tran-
scription (52). MucA is a negative regulator of algT transcrip-
tion and encodes an anti-o factor with affinity for 0% (53, 61).
MucB is also a negative regulator and is thought to interact
with the periplasmic domain of MucA, thereby altering its
conformation so that it binds ¢** and targets it for degradation
(39). MucC and MucD also modulate the expression of algT
and have been described elsewhere (6, 7).

As in P. aeruginosa, the alginate biosynthetic genes in other
pseudomonads are normally silent (19). Interestingly, an indig-
enous plasmid designated pPSR12 conferred constitutive algi-
nate production to P. syringae pv. syringae FF5 (29). pPSR12
does not contain homologs of the biosynthetic or regulatory
genes which control alginate production in P. aeruginosa; in-
stead, this plasmid presumably contains regulatory genes
which have not been characterized (29). Mutagenesis of FF5
(pPSR12) with Tn)5 resulted in the isolation of several alginate
defective (Alg™) mutants, including FF5.31 and FF5.32, which
contain TnS insertions in algl. and algR1, respectively (15, 46).
The arrangement of the alginate structural gene cluster and
the genes flanking algR1 were virtually identical in both P. sy-
ringae and P. aeruginosa (15, 46). However, complementation
analyses indicated that the structural gene clusters in P. aerugi-
nosa and P. syringae were not functionally interchangeable
when expressed from their native promoters (46). Further ex-
periments indicated that P. syringae, unlike P. aeruginosa, does
not require a functional copy of algR! for activation of the algD
promoter (15).

In the present study, an Alg™ mutant of P. syringae pv.
syringae FF5(pPSR12) was shown to contain a TnS insertion
upstream of the algT-mucABCD gene cluster. This region was
cloned from P. syringae, and the role of algT in P. syringae was
evaluated. An algT mutant was shown to be defective in algi-
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TABLE 1. Bacterial strains and plasmids

Strain or plasmid Relevant characteristics Reference
or source
Strains
Escherichia coli DH5a 50
Pseudomonas syringae pv. syringae
FF5 No detectable plasmids, nonmucoid 29
FF5.36 Cu" Km"; contains pPSR12, slightly mucoid, nadB::Tn5 This study
FF5.LK1 Cm’"; contains pPSR12, nonmucoid, alg7::Cm" This study
Plasmids
pBluescript SK(+) Ap"; ColEI origin, cloning vehicle Stratagene
pCR2.1 Ap" Km"; 3.9-kb cloning vector Invitrogen
pRK415 Tc"; RK2-derived cloning vector 27
pRK2013 Km"; helper plasmid 17
pRK7813 Tc"; cosmid vector 23
pBBRIMCS Cm’"; 4.7-kb broad-host-range cloning vector 31
pBBR.Gus Cm"; 6.6-kb promoter probe vector containing uid4 in pBBRIMCS 45
pPSR12 Cu' Sm"; 200-kb, confers constitutive alginate production to P. syringae pv. syringae FF5 29
pSL1 Ap" Cm"; 650-bp Cm" cassette in pBluescript SK(+) 33
pMGm Ap" Gm'; 2-kb Gm" cassette 43
pJG309 Tc"; contains algT from P. aeruginosa 19
pFF5.36 Tc" Km'; contains Tn5-inactivated alginate genes from FF5.36 in pRK7813 This study
pFF5.36B Ap" Km'; contains a portion of TnJ5, nadB, and algT as a 6-kb BamHI fragment from This study
pFF5.36 in pBluescript SK(+)
pLKT5 Tc'; cosmid clone from FF5(pPSR12) in pRK7813 This study
pBTB6.5 Ap'; contains a 6.5-kb BamHI fragment from pLKTS5 in pBluescript SK(+) This study
pBTB.Cm Ap" Cm'; contains alg7::Cm" in pBluescript SK(+) This study
pRTB6.5 Tc'; contains a 6.5-kb BamHI fragment from pLK5T5 in pRK415 This study
pRTB6.5.Cm Tc" Cm'; contains algT::Cm" in pRK415 This study
pCRalgTA Ap’Km"; 1.2-kb PCR fragment in pCR2.1 This study
pCRalgTI Ap"Km'"; 1.2-kb PCR fragment in pCR2.1 This study
palgTA Cm"; 1-kb HindlIll/Pst] fragment containing the algT promoter region in pBBR.Gus; This study
transcriptionally active
palgTA.1 Cm" Gm'; contains Gm" cassette from pMGm in palgTA This study
palgTI Cm"; 1-kb Kpnl/HindIII fragment containing the algT promoter region in pBBR.Gus; This study

transcriptionally inactive

nate production, indicating that algT is essential for alginate
biosynthesis in P. syringae. The algT mutant was also more
susceptible to killing by heat and superoxide-generating redox
cycling compounds, indicating that AlgT (0*%) regulates genes
in P. syringae which respond to environmental stress.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. Table 1 lists the bacterial strains and
plasmids used in the present study. P. syringae was routinely maintained at 28°C
on King’s medium B (30), mannitol-glutamate (MG) (26), or MG supplemented
with yeast extract at 0.25 g/liter (MGY). Escherichia coli strains were grown on
Luria-Bertani medium (41) at 37°C. Antibiotics were added to media at the
following concentrations (pg/ml): ampicillin, 100; tetracycline, 12.5; kanamycin,
25; spectinomycin, 25; chloramphenicol, 25; and gentamicin, 2.

Molecular genetic techniques. Plasmids were isolated from P. syringae as
described by Kado and Liu (24). Restriction enzyme digests, agarose gel elec-
trophoresis, Southern transfers, and isolation of DNA fragments from agarose
gels were performed by using standard protocols (50). Genomic DNA was
isolated from P. syringae by using established procedures (56), and a genomic
library of FF5.36 was constructed in pRK7813 as described previously (2). Clones
were mobilized into recipient strains by using a triparental mating procedure and
the mobilizer plasmid pRK2013 (4).

DNA fragments were labeled with digoxigenin (Genius Labeling and Detec-
tion Kit; Boehringer Mannheim, Indianapolis, Ind.) or with [a-*P]dCTP (Rad
Prime DNA Labeling System; Gibco BRL, Gaithersburg, Md.). Hybridizations
and posthybridization washes were conducted under high-stringency conditions
(57).

Isolation and quantitation of alginate. Selected strains were inoculated by
dilution streaking to MGY agar (three plates per strain) and incubated at 28°C
for 96 h. Each plate was handled separately for quantitation of alginate. Cells
were washed from each plate and resuspended in 0.9% NaCl. Removal of
cellular material from the mucoid growth and estimation of total cellular protein
were performed as described previously (40). Alginate production was assessed
by the carbazole method, an assay which quantifies the total amount of uronic
acid polymers (40). In addition to alginate, other uronic acid polymers are de-
tected by this assay, but we previously demonstrated that these are very minor

components of the mucoid material isolated from FF5(pPSR12) (29). Alginic
acid from seaweed (Macrocystis pyrifera; Sigma Chemical Co., St. Louis, Mo.) was
used as a standard in these experiments. Mean values of three replicates were
expressed as micrograms of alginate per milligrams of protein.

DNA sequencing and analysis. Nucleotide sequencing reactions were per-
formed by the dideoxynucleotide method (50) with Ampli7ag DNA polymerase
(Perkin-Elmer, Foster City, Calif.). Automated DNA sequencing was accom-
plished by using an ABI 373A apparatus and the ABI PRISM Dye Primer Cycle
Sequencing Kit (Perkin-Elmer). Automated sequencing was provided by the
Oklahoma State University Recombinant DNA-Protein Resource Facility. The
Tn5 insertion in FF5.36 was localized by sequencing the DNA flanking the
transposon by using the oligonucleotide 5'-GGTTCCGTTCAGGACGCTAC,
which is derived from the border region of IS50 (49). Sequence data were aligned
and homology searches were executed by using the University of Wisconsin
Genetics Computer Group Sequence Analysis Package (version 9.0) or the
National Center for Biotechnology Information BLAST network server.

Construction of an algT mutant of P. syringae. The chloramphenicol resistance
(Cm") gene in pSL1 was used to construct a nonpolar mutation in algT. pBTB6.5,
which contains algT in a 6.5-kb BamHI fragment in pBluescript SK(+), was
linearized with Nrul, which generates a unique site within algT (Fig. 1A). The
Cm’" cassette in pSL1 was excised as a 0.65-kb Smal fragment and ligated into
linearized pBTB6.5, resulting in pBTB.Cm. The 7.15-kb BamHI fragment in
pBTB.Cm was then excised and ligated into BamHI-digested pRK415. pRT-
B.Cm, the construct containing alg7::Cm" in pRK415, was then introduced into
P. syringae pv. syringae FF5(pPSR12) by triparental mating, and selection pres-
sure for the vector (Tc") was removed to facilitate homologous recombination
4).
Heat killing assays. Bacterial cultures were grown to an A, of 0.45 at 28°C
and then incubated at 43°C for 0, 15, 30, 45, and 60 min; three replicate cultures
were sampled at each time point. Cell dilutions were plated onto MGY agar in
triplicate, and viable cells were scored as CFU. Survival was expressed as the
percentage of input cells which retained viability.

Susceptibility to killing with ROI. Sensitivity to paraquat or hydrogen perox-
ide (H,0O,) was determined by measuring the diameter of the inhibition zone
surrounding filters impregnated with reactive oxygen intermediates (ROI)-gen-
erating agents. Filter disks (6 mm) were soaked with 5 wl of 1.9% paraquat or 3%
H,0, and placed on a layer of soft agar (2 ml of 0.6% agar) containing 100 .l
of an overnight culture of P. syringae; this was allowed to gel on 25 ml of MGY
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FIG. 1. (A) Physical and functional map of the 6.5-kb BamHI fragment in
pBTB6.5 and pRTB6.5. The arrows within each open reading frame indicate the
direction of translation for each gene. (B) Location and orientation of the
algT::uidA transcriptional fusions in palgTA and palgTI. The HindIII site was
added during PCR amplification. (C) Expanded view of the 582-bp algT gene
from P. syringae FF5(pPSR12). The arrow indicates the location used for inser-
tion of the antibiotic resistance cassette (Cm"). Abbreviations: B, BamHI; C,
Clal; E, EcoRI; K, KpnI; N, Nrul; P, Pstl.

containing 1.5% agar. Cells were incubated at 28°C, and inhibition zones were
measured 12 to 16 h after inoculation.

Construction of transcriptional fusions. pPBBR.Gus, which contains a promot-
erless glucuronidase gene (uidA) downstream of the polylinker in pPBBRIMCS,
was used to create algT::uidA transcriptional fusions. To obtain the algT pro-
moter region in transcriptionally active and inactive orientations, a 1-kb PCR
product was cloned into the HindIII-PstI or Kpnl-HindIII sites of pBBR.Gus,
respectively. The promoter region was amplified from pBTB6.5 by using the
forward primer 5'-CTGAAGCTTCTGCCCTTGGCGACCAC (the HindIII site
is underscored and is followed by nucleotides corresponding to —488 to —472 in
Fig. 2) and the reverse primer 5'-CTCTTGGGCTATCGCCGCTGTCTC (the
complement of nucleotides 580 to 604 in Fig. 2). After amplification of the 1-kb
PCR product, ligation in pCR2.1, and transformation into E. coli DH5a, plas-
mids pCRalgTA and pCRalgT1 were recovered. These were digested with
HindIII and PstI (pCRalgTA) or HindIII and Kpnl (pCRalgTI) and ligated into
pBBR.Gus, resulting in palgTA and palgTI, respectively (Fig. 1B).

GUS assays. Transcriptional activity was initially screened by spotting bacterial
suspensions (A4 = 0.1) onto MG agar medium amended with chloramphenicol
and 20 pg of X-Gluc (5-bromo-4-chloro-3-indolyl glucuronide) per ml; plates
were then incubated at 28°C for 48 h. Prior to quantitative glucuronidase (GUS)
assays, all strains were grown overnight in MGY broth containing chloramphen-
icol. Bacterial concentrations were then adjusted to an A4y, of 0.1 in MGY broth
and incubated at 28°C at 250 rpm. For temporal studies, 1-ml aliquots (three
replicates per time point) were removed at 0, 1, 2, 5, 8, 12, 24, and 30 h and
analyzed for GUS activity as described previously (44). GUS activity was ex-
pressed in units per milligram of protein with 1 U equivalent to 1 nmol of
methylumbelliferone formed per min. The effect of salt, sorbitol, and copper
sulfate on algT expression was evaluated by adjusting the bacterial concentration
to an Ag of 0.1 and incubating the cells for 10 h in MGY broth amended with
NaCl (0.15, 0.3, or 0.4 M), sorbitol (0.3, 0.6, or 0.8 M), or CuSOy, (50, 100, or 200
wM). algT transcription was also investigated by preparing bacterial suspensions
as described above, growing them to an A4y, of 0.5, and incubating them at
elevated temperature (50°C) or in media amended with H,O, or paraquat (0.001
or 0.01%). Bacterial cells (1 ml) were removed at 0, 15, 30, 60, and 120 min for
temperature studies and at 0, 15, 30, and 60 min for assays with H,O, and
paraquat.

Nucleotide sequence accession number. The nucleotide sequence for algT in P.
syringae pv. syringae has been deposited in the GenBank database under acces-
sion no. AF190580.

RESULTS

Location of Tn5 insertion in FF5.36. The Tn5 mutant
FF5.36 exhibited a leaky phenotype for alginate and produced
low amounts of the exopolysaccharide in vitro; this mutant was
previously isolated by mutagenesis of FF5(pPSR12), which
produces alginate constitutively at high levels (29). To locate
the Tn5 insertion in FF5.36, a genomic library of this mutant

J. BACTERIOL.

was constructed in pRK7813, and a cosmid clone containing
the Tn5 insertion was recovered and designated pFF5.36. The
internal BamHI site in TnS and 3 kb of flanking DNA from
FF5.36 were cloned from pFF5.36 into pBluescript SK(+),
resulting in a clone named pFF5.36B. A primer specific for the
border region of IS50 indicated that the TnS insertion was
located within nadB at nucleotide 61 of the corresponding P.
aeruginosa sequence (12). The nadB gene encodes L-aspartate
oxidase and is located approximately 400 bp upstream of algT
in P. aeruginosa (12). A 600-bp region downstream of the Tn5
insertion was sequenced in pFF5.36B; this region showed 73%
nucleotide sequence identity to the first 100 bp of nadB and
65% nucleotide sequence identity to the nadB-algT intergenic
region and the 5" end of algT from P. aeruginosa. These results
indicated that the location of nadB and algT was conserved in
P. syringae and P. aeruginosa.

-575 CTTGTGTATAAGATéAGGGCTCAACCCGGCCGCGCCGCTGCCGATTACC;Z;;EZ??;IG
-515 CTGAAAATGTTGACTCATCTGnggiiCTGCCCTTGGCGACCACTAGTATAAGTATTGGG
-455 GTAACGGCACAATAGCCTCGCCTACATGGCAATGTGAGACCACGGCGGGTCTGGATTGTG
-395 CTCCAGTCCTCGACGTCATGCCTATTGATTTCCTTTTGTTGAGTTGCTGGAAATGCTCCA
-335 GTGTATTGATTTAAGGGAGTTTTATGCAGTTTGCGGCTCACGCCAGCGGTTGTGCCAATG

-275

GCAGGTTGCCTACACAGGAACAGCGTCGATT
-215 TCGCAGGGTTAGATAAGTGATCATCAACTGCGAAACCGGCGACAAGACTATTCGCGCAGC
-155 CGACCGTGTCGAGCTGCGTTTTTCGTGCAGGCTTTACGATGGCTTGCAGGARACTTGCTT

HTTGCGAARAGCCCGAG!

-95 GRAAGGGGGAgE

ATGTTTGCGAGCCTGAACAATATCAG

=35 TTGCAACACTCCTTCATGCTTAACGAGGAGTGTTCATGCTAACCCAGGAAGAGGATCAGC
algr--->M L T Q E E D Q Q 9

26 AGCTTGTCGAACGCGTACAGCGTGGCGATACGCGAGCATTTGATCTGTTGGTGCTGARAGT

L vV ER YV QR GG DT RATFDULTILV L K Y 29
86 ATCAGCACAAAATTCTAGGGTTGATCGTGCGATTCGTGCACGACACCCATGAGGCTCAAG

Q H K I L 6L I VRVFV HDTHEA AZQTD 49
146 ACGTTGCACAGGAAGCCTTTATCAAGGCTTATCGTGCTCTCGGAAATTTTCGCGGCGACA

vV A Q EAF I KA Y RAULGUNFRG D 5§ 69
206 GTGCTTTCTACACCTGGCTGTACCGCATCGCCATTAACACGGCGRAAGARCTATCTGGTTT

A F Y T W L Y RTIATINTA AI KNDNYL V 8 89

Nrul

266 CGCGAGGTCGGCGGCCACCGGATAGCGATGTAAGGTCTGAAGACGCGGAGTTCTACGACG

R GR R P P D S DV R S EDAUEF Y D G 109
326 GCGACCACGGCCTCRAGGACATCGAGTCGCCGGAGCGTGCATTGTTGAGGGATGAGATCG

D HGL K DTIE S P EURAILULRDETI E 129
386 AGGGCACCGTCCATCGGACCATCCAGCTTCTCCCGGAAGATTTACGTACGGCACTAACTT

G T VvV HRTTI QL L PETDTZ LU RTA ATLTL 149

EcoRT
446 TACGTGAATTCGATGGTCTGAGTTATGAAGACATTGCGAGCGTCATGCAGTGTCCTGTTG

R E F b G L 8 Y EDTIASVMOQC PV G 169
506 GTACCGTGCGCTCTCGGATCTTCCGCGCTCGGGAAGCCATCGATARRGCCCTGCAGCCGT
T V R $ R I F RARUEA ATIDI KA ATILQ P L 189

566 TGTTGCAGGAATCCTGAGACAGCGGCGATAGCCCAAGAGAGGAACCCGCCATG

L Q E s * mucA--->M 193

FIG. 2. Nucleotide sequence of algT from P. syringae pv. syringae FF5
(pPSR12) containing the 5" end of nadB and the nadB-algT intergenic region.
The vertical arrow shows the Tn5 insertion site in mutant FF5.36. Potential rec-
ognition sequences for 0?2 are shaded and underlined, and the putative ribosome
binding site for algT is underlined. Nucleotides are numbered with respect to the
algT translational start site and are indicated on the left; amino acid residues for
AlgT are indicated on the right. Translational start sequences are shown in bold
italics, and the translational stop codon for algT is indicated by a bold asterisk.
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ARANTGTTGACTCATGCTGAAAATGTTGACTCATCTGEGAATTCTGCECTTGGCG-ACCACTAGTATARGTATTEGGGT ~454
CGCATT-TCECCGTGGTGGAGCCCTAGTATATAGAAGGGCCT

AACGGCACAATAGCCTCGCCTACATGGCAATGTGAGACCACGGCGGGTETG--GATTGTGETCCAGTCCT--CGACGTC ~380
CCGCTGCCGETCCBECCEGATGAGCTGCGGGCCTGTCATCEGE

Ps algT ATGCCTATTGATTTCCTTTTGTTGAGTTGCTGGARATGCTCCAGTGTATTGATTTAAGGGAGTTTTATGCAGTTITGCGG -300
Pa algT -248 AGGEGTCATCA------------ GAGCGGGGCGEA-————————~ TGPAGTGCT-—-——— GGAACTET-—--~ CTTAG---
Ps algT CTCACGCCAGCGETTGTGCCAATGGRACTTTTC TTARAGAACCATGCTGAATAGCAGGTTGCCTACACAG--GAACAGC -223
Pa algT -205 ---ACGC-ATCGGTE---CCARAGCAGGATG-CCTGAAGACC--TCGTC-~—~~ CGGTTGGCCTACCCAGCGGCACAGA
Ps algT GTEGATTTCGCAGGGTTAGAT - ~BAGTGATCATCAACTGCGAAACCGGCGACAAGACTATTCGCGCAGCCGACCETGTE ~146

Pa algT -140 GGCCGGGCC-CTGAGCCCGATGCAATCCATTTTC- ~~-GCGGGGCCCG-GACACGA-TGTCCEGG--GCCGCACGTCAL

Ps algT GAGCTGCGTTITTTCGTGECAGGCTT TACGATGGCTTGCAGGAAACTTGCTTGARGGCEGAGARCTTTTGCGAARAGCEEE  -67
Pa algT -70 GAGC----------— GAGGBA~-———————. BARACTCGT--GACGCATGCTTGGAGGGE-AGRACTTTTGCAAGARGECCE
Ps algT AGTCTATGT I TGEGAGCCTGAACARTATCAGTTGCAACACTCCTTCATGCTTAACGAGGAGTGTTCATGCTAACELAGE 13

Pa algT -12 AGTCTATCTTEGCAAGACGATTCGCTGGGACGCTCGAAGCTCCTCCAGGTTCGAAGAGGAGCTTTCATGCTAACCCAGE
*

algT--->

FIG. 3. Alignment of the algT promoter sequences from P. syringae pv. syringae FF5(pPSR12) (Ps algT) and P. aeruginosa (Pa algT). The nucleotides for the
P. aeruginosa sequence are shown on the left with +1 (see asterisk) corresponding to the transcriptional start site. Nucleotides for the P. syringae pv. syringae algT
promoter are shown on the right with +1 corresponding to the translational start site. Gaps (--) were used to maximize the alignment, and identical bases are shaded.
The 02 recognition sequences in both species are indicated in boldface type and are double-underscored. The nadB and algT translational start sites are in boldface,

and the direction of translation is indicated with an arrow.

Cloning of algT from P. syringae. A genomic library of P.
syringae FF5(pPSR12) was previously constructed in pRK7813
(46). In the current study, the 6-kb BamHI fragment from
pFF5.36B, which contains a portion of algT, was used to screen
the library for clones containing the complete algT coding
region. One clone designated pLKT5 was chosen for further
study and contained a 6.5-kb BamHI fragment which hybrid-
ized with the probe. This fragment was subcloned in pBlue-
script SK(+), resulting in pBTB6.5, and partially sequenced by
using the T7 and T3 primers. Sequence analysis indicated that
the right border of this fragment contained DNA homologous
to mucB (Fig. 1A). Since algT is generally associated with the
mucABCD gene cluster (20, 38), we suspected that pBTB6.5
contained a functional copy of algT.

Sequence analysis of algT. A physical map of pBTB6.5 was
constructed to further localize the alginate regulatory genes on
this fragment (Fig. 1A). Sequence data for the P. syringae algT
gene were initially derived by using a primer based on the
nucleotide sequence downstream of the Tn5 insertion located
in FF5.36 (see vertical arrow, Fig. 2). Additional sequence data
was obtained by primer walking, and both DNA strands were
sequenced for verification. The P. syringae algT homologue was
582 bp and was highly related to algT from P. aeruginosa (81
and 90% nucleotide and amino acid identities, respectively)
(13). The deduced translational product of algT is a protein
consisting of 193 amino acids with a predicted mass of 22.3
kDa. A potential ribosome binding site was identified 7 bp
upstream of the predicted translational start site. Two putative
AlgT (c*%) recognition sites were located 60 and 248 bp up-
stream of the algT translational start site (Fig. 2). The location
and sequence of the first ¢** recognition site (60 bp upstream
of the initiation codon) was conserved in both P. syringae and
P. aeruginosa (Fig. 3). The nadB gene in P. syringae was located
516 bp upstream of the algT translational start site and was
divergently transcribed with respect to algT (Fig. 1 and 2).
Interestingly, nucleotide identity in the 516-bp intergenic re-
gion between nadB and algT was only 46% when the P. syringae
and P. aeruginosa regions were compared (Fig. 3). Additional
sequencing downstream of algT revealed mucA and mucB ho-
mologues (Fig. 1) which showed 68 and 70% nucleotide iden-
tities, respectively, to the genes previously sequenced in P.
aeruginosa (19, 35). In summary, the arrangement of nadB,
algT, mucA, and mucB is conserved in P. syringae, P. aerugi-
nosa, and A. vinelandii (12, 35, 38).

Construction of an algT mutant. FF5.36, which contains a
Tn5 insertion in nadB, was unstable with respect to alginate
production. To avoid potential polar effects on adjacent genes,
we constructed an algT mutant with a Cm" cassette which lacks
transcriptional terminators. Recombination of the Cm" cas-
sette into algT was verified by PCR and sequence analysis.
FF5.LK1, the algT mutant resulting from this experiment, pro-
duced 61 pg of uronic acid polymers/mg of protein, a level
approximately 43-fold lower and significantly less (P = 0.01)
than FF5(pPSR12), which synthesized 2,652 g of uronic acid
polymers/mg of protein. Previous work indicated that most of
the uronic acid polymers synthesized by FF5(pPSR12) were
alginate (29). Furthermore, alginate-defective strains of FF5
(pPSR12) still synthesized low amounts of uronic acid poly-
mers in the carbazole assay (15, 29, 46); therefore, we conclud-
ed that the algT mutant, FF5.LK1, was defective in alginate
production.

Complementation experiments. pRTB6.5, which contains
algT, mucA, and mucB in pRK415, was evaluated for its ability

% Survival
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0 ; : ]
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FIG. 4. Heat-killing curves for P. syringae pv. syringaec FF5(pPSR12) (wild-
type [®]) and FF5.LK1 (a/gT mutant [m]). The strains were incubated at 43°C for
15, 30, 45, and 60 min, and surviving cells were counted as CFU. Bars indicate
standard errors of the means, and survival is expressed as the percentage of input
CFU at time zero. The experiment was repeated with similar results.



7180 KEITH AND BENDER

TABLE 2. Sensitivity to killing by paraquat and H,O, in
the wild-type and algT mutant of P. syringae pv. syringae

Growth inhibition zone
(mean diam [mm] + SE)*

Strain Characteristics
Paraquat H,0,
(1.9%) (3%)
FF5(pPSR12) Mucoid, wild-type 244 £ 0.2 133 £0.1
FF5.LK1 Nonmucoid, algT::Cm" 322+0.2 16.5 = 0.1

“ Sensitivities to paraquat and H,O, are expressed as diameters of growth
inhibition zones surrounding filter disks impregnated with 5 pl of the indicated
solutions. The experiment was repeated with similar results.

to complement P. syringae pv. syringae FF5.LK1 for alginate
production. pRTB6.5 did not restore alginate production to
FF5.LK1, possibly because this plasmid also contains the neg-
ative regulators, mucA and mucB, which could suppress the
conversion to mucoidy (19, 36). Consequently, we examined
whether palgTA.1, which contains algT but lacks extraneous
flanking DNA, could restore alginate production to FF5.LKI.
Transconjugants of FF5.LK1 containing palgTA.1 were visibly
mucoid and produced 1,086 pg of alginate/mg of protein; this
amount was significantly higher (P = 0.01) than the level syn-
thesized by FF5.LK1, indicating that palgTA.1 could partially
complement the algT mutant. We also investigated whether
pJG309, which contains algT from P. aeruginosa, could com-
plement FF5.LK1 for alginate production. FF5.LK1(pJG309)
transconjugants produced 1,081 pg of alginate per mg of
protein, a level equivalent to that obtained with FF5.LK1
(palgTA.1), which suggests that the two genes may be func-
tionally interchangeable.

Effects of algT on susceptibility to heat and ROI. Previous
reports indicate that algT functions as an alternative sigma
factor in P. aeruginosa and is involved in the transcriptional
activation of heat shock genes (37, 52). Therefore, we evalu-
ated whether the algT mutation in FF5.LK1 resulted in an
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increased sensitivity to heat killing when compared to the wild-
type FF5(pPSR12). Survival after exposure to 43°C was signif-
icantly reduced in the algT mutant compared to the wild-type
strain (Fig. 4). Within 15 min there was an 85% reduction in
the viability of the mutant compared with only 27% in the
wild-type (Fig. 4). No difference in viability between the wild-
type and mutant strains was apparent after a 60-min incubation
at 43°C (Fig. 4).

To determine whether algT is involved in tolerance to com-
pounds that generate ROIs, the wild-type FF5(pPSR12) and
algT mutant FF5.LK1 were exposed to H,O, and paraquat, a
superoxide-generating redox cycling compound (16). FF5.LK1
was significantly more sensitive to paraquat and H,O, than FF5
(pPSR12) (Table 2), indicating that algT has a role in mediat-
ing resistance to ROIs in P. syringae. Both FF5(pPSR12) and
FF5.LK1 grew at identical rates in vitro (data not shown), in-
dicating that the algT mutation did not significantly affect growth.

Kinetics of algT transcription. palgTA, palgTI, and pPBBR.Gus
were mobilized into P. syringae pv. syringae FF5 and assayed
for GUS activity. Colonies of FF5(palgTA) turned blue on me-
dia containing X-Gluc, indicating that algT was transcribed at
physiological temperatures (28°C). FF5 transconjugants con-
taining palgTI (algT in the transcriptionally inactive orienta-
tion) or pBBR.Gus (vector control) remained colorless on
X-Gluc media. When FFS5 transconjugants containing palgTA,
palgTI, or pPBBR.Gus were grown in MGY broth at 28°C, growth
curves were similar, indicating that the transcriptional fusions
had no significant effect on growth (data not shown). A time
course experiment at 28°C indicated that algT transcriptional
activity increased steadily over time with 960 U of GUS/mg of
protein at 30 h; this gradual increase in expression is similar to
observations made for algT in P. aeruginosa (13). GUS activity
in FF5(palgTI) and FF5(pBBR.Gus) remained low (1 to 14 U)
throughout the sampling period and was not significantly dif-
ferent between the two transconjugants; consequently, FF5
(pBBR.Gus) was used as a negative control in all subsequent
experiments.
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FIG. 5. GUS activity in P. syringae pv. syringae FF5 derivatives grown in MGY broth containing sodium chloride (A), sorbitol (B), or copper sulfate (C). Prior to
the GUS assays, all strains were grown for 20 h in MGY broth containing chloramphenicol. The bacterial concentration was adjusted to an A, of 0.1, and the cells
were incubated at 250 rpm for 10 h at 28°C in MGY broth amended with NaCl, sorbitol, or copper sulfate. palgTA contains the algT promoter in the transcriptionally
active orientation, and pBBR.Gus contains a promoterless glucuronidase gene. Values are the mean from one experiment containing three replicates, and the
experiment was repeated with similar results. Treatments accompanied by the same lowercase letter were not significantly different at a P of 0.01 as shown by Duncan’s

multiple-range test.
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FIG. 6. GUS activity in P. syringae pv. syringae FF5 derivatives grown in
MGY broth containing H,O, (A) or paraquat (B). Prior to the GUS assays, all
strains were initially grown as described in Fig. 5; bacterial concentrations were
then adjusted to an A4, of 0.5 and incubated in MGY broth amended with H,0,
or paraquat. palgTA is described in Fig. 5. Values represent the mean from one
experiment containing three replicates; the experiment was repeated with similar
results. Treatments accompanied by the same lowercase letter were not signifi-
cantly different at a P of 0.01 as determined by Duncan’s multiple-range test.

algT expression in response to selected factors. GUS activity
in FF5(palgTA) was significantly higher (P = 0.01) when the
growth medium was amended with 0.15 or 0.3 M NaCl; in
contrast, FFS(pBBR.Gus) showed no response to the addition
of NaCl (Fig. 5A). To determine whether the effect of NaCl
was ionic or osmotic, sorbitol (a nonionic, nonmetabolizable
solute) was examined for its effect on algT expression. Sorbitol
was added to MGY broth at 0.3, 0.6, and 0.8 M, concentrations
which are osmotically equivalent to 0.15, 0.3, and 0.4 M Na(Cl,
respectively. The transcriptional activity of algT was signifi-
cantly higher (P = 0.01) than the nonsupplemented control
when sorbitol was added at all concentrations tested (Fig. 5B).
Therefore, the stimulation of a/lgT gene expression by NaCl is
due to increased osmolarity rather than an ionic effect.

We previously demonstrated that the addition of copper
sulfate to the growth medium increased both alginate produc-
tion and algD transcriptional activity in P. syringae pv. syringae
FFS (29, 46). In the present study, we found that algT gene
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expression was significantly higher (P = 0.01) than the non-
amended control when copper sulfate was added at all con-
centrations tested (Fig. 5C). Since the algT gene product, o2,
binds to the algD promoter and activates transcription, these
results suggest that copper sulfate may stimulate alginate pro-
duction via the algT signal transduction pathway.

The addition of H,O, or paraquat to actively growing cul-
tures of FF5(palgTA) at 0.001 and 0.01% stimulated algT ex-
pression 30 min after each compound was added (Fig. 6).
When FF5(palgTA) was incubated for 60 min in H,O, or
paraquat, a 2.3- to 3.7-fold increase in algT expression was
observed, respectively (Fig. 6). Longer incubation periods (4 h)
did not result in further stimulation of algT gene expression
(data not shown). Furthermore, a basal level of algT transcrip-
tional activity (ca. 400 U of GUS/mg of protein) was necessary
to see further induction of the algT promoter when ROI-gen-
erating compounds were added; otherwise both H,O, and para-
quat were toxic (data not shown).

When actively growing FF5(palgTA) cells were subjected to
a temperature upshift (30 to 50°C), a significant increase in
algT transcriptional activity was apparent within 15 min and
was twofold higher than in control cells (which were not heat
shocked) at 60 min (Fig. 7). GUS activity in FF5(pBBR.Gus)
remained low, regardless of temperature (Fig. 7).

DISCUSSION

In the present study, the Alg™ mutant FF5.36 contained a
Tn5 insertion in nadB, which encodes L-aspartate oxidase, a
flavoprotein in the pathway for NAD biosynthesis (12). The
nadB gene in both P. syringae and P. aeruginosa (12) is encoded
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FIG. 7. GUS activity in P. syringae pv. syringae FF5 subjected to heat shock
(temperature shift from 30 to 50°C). Prior to GUS assays, all strains were grown
at 30°C as described in Fig. 5. The bacteria were incubated at 30°C until the
concentration had an A4y, of 0.5 and were then exposed to heat shock by rapid
transfer to 50°C. palgTA and pBBR.Gus are described in Fig. 5. Values represent
the mean from one experiment containing three replicates, and the experiment
was repeated with similar results. Treatments accompanied by the same lower-
case letter were not significantly different at a P of 0.01 as determined by
Duncan’s multiple-range test.
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upstream of algT and divergently transcribed with respect to
algT. In P. aeruginosa, nadB was not essential for NAD pro-
duction, and a Tn501 insertion in nadB did not affect alginate
biosynthesis (12). However, in the present study, the nadB::
Tn5 insertion in FF5.36 was unstable with respect to alginate
production. Although we could not identify additional Tn5
insertions in FF5.36, it remains possible that additional point
mutations may have occurred, leading to a nonmucoid pheno-
type. Therefore, the algT mutant FF5.LK1 was constructed in
the present study, and all subsequent experiments were con-
ducted with this mutant.

The algT genes in P. syringae and P. aeruginosa are highly
homologous (81% nucleotide identity) and closely related to
rpoE, which encodes oF, an alternate sigma factor involved in
high-temperature gene expression in E. coli (11, 13, 14). Our
results show that the algT promoter region in P. syringae con-
tained two motifs conserved in promoters transcribed by the
RNAP-¢* complex (11) (Fig. 3). In P. aeruginosa, these two
promoters were AlgT-dependent and designated P, and P,
(52). The conservation of these promoters in P. syringae and P.
aeruginosa and the complementation of FF5.LK1 with algT
from both species suggest that the alg7 homologs in these two
pseudomonads may be functionally interchangeable.

In P. aeruginosa, the negative regulatory genes mucA and
mucB suppress alginate production, and mutagenesis of these
genes results in a mucoid phenotype (19, 36). In the current
study, pRTB6.5, which contains algT, mucA, and mucB, did not
restore alginate production to the algT mutant FF5.LK1. How-
ever, palgTA.1, which contains algT without extraneous flank-
ing DNA, partially restored alginate production to FF5.LK1.
Previous studies have shown that MucA physically binds AlgT
(0*?) and functions as an anti-o factor (53, 61), whereas MucB
is presumed to alter the conformation of MucA in such a way
that it targets 0 for degradation (39). Therefore, a stoichio-
metric relationship exists between these three proteins and
may explain why alginate production was not fully restored to
wild-type levels in FF5.LK1(palgTA.1).

There is growing evidence that the algT-mucABCD gene
cluster forms a signal transduction system that modulates algT
activity in response to environmental stress (13, 37, 51, 52, 63).
The algT gene fusion from P. syringae was transcriptionally
activated in response to both NaCl and sorbitol (Fig. 5), indi-
cating that osmotic stress is a stimulus for algT activation in
both P. syringae and P. aeruginosa (52). Phytopathogenic bac-
teria are exposed to high osmolarities on the leaf surface (3),
and the increased synthesis of alginate is critical to survival
during epiphytic colonization (62); therefore, transcriptional
activation of algT may enhance epiphytic fitness.

The algT mutant of P. syringae was more sensitive to H,O,
and paraquat, and algT expression was activated in response to
both compounds. Although an algT mutant of P. aeruginosa
showed increased susceptibility to paraquat, no difference in
sensitivity to H,O, was detected between the mutant and wild-
type strains (37). These results suggest that P. syringae and
P. aeruginosa differ in their response to ROIs. Although as-
pects of the oxidative burst are similar in animal and plant
hosts (32), plant cells produce ROIs (mainly H,O,) constitu-
tively throughout the defense response (5), and H,O, has an
important role in plant disease resistance (1, 8, 59). In animals,
alginate production by P. aeruginosa may suppress the oxida-
tive burst in neutrophils and scavenge the ROIs produced by
phagocytic cells (22, 55). Therefore, the activation of algT by
ROIs and the subsequent production of alginate may help
P. syringae evade the plant defense response.

In previous studies, copper sulfate stimulated algD transcrip-
tional activity and alginate production in P. syringae (29, 46).
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However, copper sulfate was not a signal for algD gene expres-
sion or alginate production in clinical strains of P. aeruginosa,
possibly because these strains are not repeatedly exposed to
toxic levels of copper sulfate (29, 46). In the current study, the
algT promoter in P. syringae pv. syringae FF5 was stimulated by
exposure to copper sulfate (Fig. 5C), which is consistent with
earlier studies showing algD activation in response to copper
sulfate (46). In agriculture, bactericidal sprays containing cop-
per sulfate are frequently used for the control of P. syringae and
other phytopathogenic bacteria, and copper-mediated stress is
high. Because copper is known to generate free radicals (58),
the increased production of alginate in response to copper
sulfate may be caused by oxidative stress. Alternatively, the
sequence divergence in the nadB-algT intergenic regions of
P. syringae and P. aeruginosa may reflect the unique activation
of the algT promoter in P. syringae by copper sulfate.

The algT mutant of P. syringae was more sensitive to elevated
temperature (Fig. 4), and algT expression was activated in re-
sponse to heat shock (Fig. 7). In contrast to human and animal
pathogens, little is known about how phytopathogenic bacteria
respond to temperature stress. We recently demonstrated that
P. syringae responds to heat shock by producing DnaK (28), a
molecular chaperone that facilitates the disassembly of pro-
teins that have been damaged by heat stress (34). The present
study expands our knowledge of the temperature stress re-
sponse in P. syringae and clearly shows that algT increases the
heat tolerance of this bacterium. The increased production of
alginate in response to elevated temperatures could be advan-
tageous since the alginate capsule could provide some protec-
tion from the dehydration and desiccation which develop dur-
ing heat stress.

In P. syringae, algT is required for alginate production and
increases the survival of the bacterium during environmental
stress. Copper and H,O, are toxic compounds that P. syringae
encounters during colonization of host plant tissues, and these
substances may be unique signals for algT activation in this
bacterium. However, heat shock is a conserved signal for ac-
tivation of algT expression in both P. aeruginosa (52) and P. sy-
ringae. In P. aeruginosa, AlgT (o) is required for transcription
of algD, which encodes GDP-mannose dehydrogenase, the first
committed step in the alginate biosynthetic pathway (10). In
P. syringae, the algD promoter region contains a putative rec-
ognition site for o®* (15), but the requirement of ¢** for algD
transcription has not yet been demonstrated. However, the
transcriptional activation of the algT and algD (46) promoters
in response to heat, osmotic stress, and copper sulfate supports
the hypothesis that algT may control activation of algD tran-
scription in P. syringae. Studies are currently under way to
examine this hypothesis and other possible roles for algT in the
pathogenicity and fitness of P. syringae.
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