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Abstract: Quantitative differential phase-contrast (DPC) imaging is one of the commonly used
methods for phase retrieval. However, quantitative DPC imaging requires several pairwise
intensity measurements, which makes it difficult to monitor living cells in real-time. In this study,
we present a single-shot quantitative DPC imaging method based on the combination of deep
learning (DL) and color-encoded illumination. Our goal is to train a model that can generate an
isotropic quantitative phase image (i.e., target) directly from a single-shot intensity measurement
(i.e., input). The target phase image was reconstructed using a linear-gradient pupil with two-axis
measurements, and the model input was the measured color intensities obtained from a radially
asymmetric color-encoded illumination pattern. The DL-based model was trained, validated,
and tested using thirteen different cell lines. The total number of training, validation, and testing
images was 264 (10 cells), 10 (1 cell), and 40 (2 cells), respectively. Our results show that the
DL-based phase images are visually similar to the ground-truth phase images and have a high
structural similarity index (>0.98). Moreover, the phase difference between the ground-truth and
DL-based phase images was smaller than 13%. Our study shows the feasibility of using DL to
generate quantitative phase imaging from a single-shot intensity measurement.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantitative phase imaging (QPI) is a powerful imaging technique that can retrieve phase
information of a sample without any labeling (or staining) agents [1–3]. QPI has been used
in many fields such as physiology, pharmacology, and cell biology and has shown promising
results in a wide range of biomedical applications such as dynamic monitoring of cell membrane
characteristics, investigations of morphological and biochemical changes of imaging cells, and
drug screening and selection [1–3]. Today, several different QPI techniques have been developed,
including holography [4], transport of intensity equation [5,6], differential phase contrast (DPC)
[7,8] and Fourier ptychography [9,10]. Among these techniques, DPC seems to be a promising
method for imaging living cells in vitro due to its rapid imaging acquisition, short reconstruction
time, and good system stability.

In quantitative DPC, phase distribution can be retrieved by deconvolving the DPC image
with the calculated phase transfer function (PTF) [8]. In general, the DPC image is obtained
from intensity measurements of two complementary illumination patterns, and at least 2-axis
measurements (i.e., 4 images) are required. To achieve real-time quantitative DPC imaging (>30
fps), several single-shot imaging techniques [11–13] based on the color-multiplexed illumination
have been proposed. The price to pay is to reconstruct phase anisotropically [11], or significantly
reduce system throughput [13]. In addition, these single-shot imaging methods assume no
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dispersion in the sample. However, the refractive index changes with wavelength. One recent
study showed that single-shot quantitative DPC imaging could be achieved by using the Polarsens
camera integrated with a polarisation filter mask [14]. However, in order to provide four separate
polarisation-resolved images, the size of the phase image is cut in half.

Deep learning (DL) is a branch of machine learning that has been shown to be successful
in many different fields including optical microscopy [15,16]. For example, DL was applied
to optimize illumination pattern in QPI [17,18]. In addition, one previous study showed that
DL had the ability to blindly restore the quantitative in-focus phase image from an out-of-focus
intensity image [19]. One recent study showed the feasibility of using DL to generate one 12-axis
reconstructed isotropic phase image from 1-axis reconstructed anisotropic phase image [20]. This
indicates that the number of required intensity measurements can be reduced from 24 to 2. Thus,
the DL-based method [20] is a two-shot quantitative DPC imaging method. Because the two
intensity measurements obtained from two different pupil patterns require ∼1 second for changing
the illumination pattern, the DL-based method [20] is difficult to achieve fast data acquisition
(>30 fps). This means that a single-shot quantitative DPC imaging method is required. To our
knowledge, it is still unknown whether DL has the ability to achieve single-shot quantitative DPC
imaging.

In this study, our aim is to provide single-shot quantitative DPC imaging by using DL.
Specifically, we build a DL-based model designed to generate one isotropic phase image from a
single-shot intensity measurement. The input was the color intensity measurements obtained
from a radially asymmetric color-encoded illumination pattern shown in [21]. The target was
the phase image obtained using a linear-gradient pupil with two-axis measurements [22]. The
DL-based model was trained, validated, and tested using thirteen different cell lines. To evaluate
the performance of the proposed method, we calculated the structural similarity index (SSIM)
[23] between the ground-truth and DL-based phase images. We also drew several regions of
interest (ROIs) and computed the phase differences between the ground-truth and DL-based
phase images.

2. Materials and methods

2.1. System setup and phase retrieval of quantitative DPC imaging

As shown in Fig. 1(a), the system setup of the quantitative DPC imaging is based on a commercial
inverted microscope system (Olympus IX70). The light source is a tungsten halogen lamp. A
thin-film transistor (TFT) panel (2.8′′ TFT Touch Shield) controlled by an Arduino control board
(UNO32) is served as digital pupils for different illumination patterns [21,22]. The TFT panel
module located at the front focal plane of the condenser lens has a pixel array of 240×320 with a
pixel size of 180 µm. The radially asymmetric color-encoded illumination pattern [21] generated
by the TFT panel is the illumination with wavelengths of 456, 532, and 603 nm. The specimen is
placed at the back focal plane of a condenser (LA1951-ML, Thorlab). The front and back focal
lengths of the condenser are 25.3 mm (Ff) and 17.6 mm (Fb), respectively. A objective lens with
a magnification of 10X and a numerical aperture of 0.3 (LMPLN10XIR, Olympus) is used to
image the sample, and the intensity measurement is performed by a color camera (Alvium 1800
U-500c) with 2.2 µm pixel size, 67 fps and 1944×2592 pixels.

Typically, the quantitative phase distribution can be retrieved by deconvolving the measured
DPC image with the calculated PTF. In brief, based on the weak phase assumption, there is a
linear relationship between the DPC image (IDPC) and the phase image (ϕ) in the spatial-frequency
domain [8].

IDPC(u) = H(u) · ϕ(u) (1)

where H(u) denotes PTF and u = (ux, uy) denotes the coordinates in the spatial frequency. To
perform phase retrieval, we measure the pairwise intensity distribution (I1,j, I2,j) along the j-th



Research Article Vol. 14, No. 7 / 1 Jul 2023 / Biomedical Optics Express 3460

Fig. 1. (a) Schematic diagram of quantitative DPC microscopic setup. Illumination patterns
displayed on a TFT panel were used as the pupil, which is located at the front focal (Ff)
plane of the condenser lens, and the specimen is placed at the back focal ((Fb)) plane of
the condenser. Color intensity images of different illumination patterns were captured by
color camera. (b) Flowchart of DL-based single-shot quantitative DPC imaging. The color
intensity images obtained from a radially asymmetric color-encoded illumination pattern were
fed into the first U-Net model which was designed to generate phase images reconstructed
using two radially asymmetric color-encoded illumination patterns. We trained the first
U-Net model, fixed model parameters, and trained the second U-Net model for generating
phase images reconstructed using a linear-gradient pupil with two-axis measurements.

axial direction with complementary illumination and calculate the DPC image (IDPC,j) as follows:

IDPC,j(r) = (I1,j(r) − I2,j(r))/(I1,j(r) + I2,j(r)) (2)

where r = (rx, ry) denotes the spatial coordinates. The phase distribution in Eq. (1) can be
retrieved by one-step deconvolution [8].

ϕ(r) = F −1

{︄∑︁J
j=1 H∗

j (u) · IDPC,j(u)∑︁J
j=1 |H

∗
j (u)|2 + γ

}︄
(3)

where F −1 denotes inverse Fourier transform, H∗
j (u) denotes complex conjugation of PTF along

the j-th axial direction, J is the total number of paired measurements, and γ is the Tikhonov
regularization parameter which is introduced to avoid singularity in PTF inversion.

2.2. DL-based single-shot quantitative DPC imaging

Figure 1(b) shows the flowchart of DL-based single-shot quantitative DPC imaging. The proposed
DL-based model consists of two U-Net models [24]. The first U-Net model is designed to
generate one phase image from its color intensity images. The color intensity images used as the
input images were the raw images obtained from the color camera with one radially asymmetric
color-encoded illumination pattern shown in [21], and the target image was the phase image
reconstructed using two color intensity images (i.e., 2 measurements) obtained with two radially
asymmetric color-encoded illumination patterns. We used the radially asymmetric color-encoded
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pattern simply because it can provide uniform illumination and three intensity distributions in
different directions in a single shot. However, the phase image obtained from the color pupil may
not be the optimal phase image. As a result, we design a second U-Net model that aims to generate
the phase image reconstructed using the linear-gradient pupil with two-axis measurements [22].
The phase image obtained from the linear-gradient pupil was the target image of the second
U-Net model. We trained the first U-Net model, fixed the parameters of the first U-Net model,
and trained the second U-Net model.

As shown in Fig. 2, the U-Net model consists of fifteen two-dimensional (2D) convolutional
layers with a kernel size of 1×1 for the last convolutional layer and that of 3×3 for the remaining
layers. The number of filters is 9, 9, 18, 18, 36, 36, 72, 72, 36, 36, 18, 18, 9, 9 and 1. Each
2D convolutional layer is followed by a rectified linear unit (ReLu) activation function. The
U-Net model has three max-pooling layers with a pool size of 2×2 and three 2D transposed
convolutional layers with a kernel size of 3×3 and stride of 2. The U-Net model includes
three copy-and-concatenate operations that copy the extracted feature maps from the encoder
and concatenate them to the decoder. Both the first and second U-Net models used the same
architecture shown in Fig. 2.

Fig. 2. The U-Net model. The right blue arrow represents a 2D convolutional layer with
a kernel size of 3×3, followed by a ReLu activation function. The number shown at the
top of each blue arrow denotes the number of filters. The downward arrow represents a
max-pooling layer with a pool size of 2×2. The upward arrow represents a 2D transposed
convolutional layer with a kernel size of 3×3 and stride of 2. The black dashed arrow
indicates a copy and concatenate operation. The last layer is a 2D convolutional layer with a
kernel size of 1×1, followed by a ReLu activation function

2.3. Data collection and pre-processing

To evaluate the performance of the proposed method, we prepared thirteen different types of
living cells: astrocyte, macrophage, HK-2, H1299, H1975, CRL-4058, CLS1, CLY1, PC-9,
A549, HFL1, BEAS-2B, and CL152 (Fig. 3). HK-2 is a proximal tubular cell line derived from a
normal human adult male kidney. H1299 and H1975 are cell lines isolated from the lungs of a
nonsmoking female with non-small cell lung cancer. CRL-4058 is an hTERT-immortalized lung
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fibroblast cell, and CLS1 is a lung adenosquamous carcinoma cell line. CLY1, PC-9, and A549
are a lung adenocarcinoma cell line. HFL1 is a fibroblast cell line that was isolated from the lung
of a normal embryo. BEAS-2B is a human non-tumorigenic lung epithelial cell line. CL152 is a
lung squamous carcinoma cell line. The images of the first ten cell types were used for training
the proposed DL-based model. The images of HFL1 were used as validation data. The images
of the last two cell types (i.e. BEAS-2B and CL152) were used to test the performance of the
trained DL-based model. The total number of training, validation, and testing images was 264,
10, and 40, respectively. To optimize the performance of the proposed DL-based model, there are
several pre-processing steps. First, due to the presence of color leakage between the illumination
source and color camera, a color-leakage correction algorithm was implemented to calibrate each
color channel [12]. In brief, the color intensity measurement obtained from the color camera is
modeled as [12]: ⎡⎢⎢⎢⎢⎢⎢⎢⎣
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where ICC
i is the intensity signal measured from the ith channel of the color camera, Iillu

i is the
intensity signal measured from a single color under illumination in one color source, and MCL
is a 3×3 pre-measuring color-leakage matrix. The element Ri

j denotes the detector response of
the color-i channel to the light of color j. In practice, the element of MCL can be obtained by
measuring the signal in the ith channel of the color camera under the illumination of color i
only. Once the MCL is experimentally obtained, the light intensity measurement at each color can
be corrected by solving Eq. (4). Second, owing to inhomogeneous illumination, we record the
background images that take DPC measurements without any sample [8]. Each color-calibrated
intensity image was then divided by the corresponding background image (i.e. the image captured
in a state of no object). Note that the color-leakage correction algorithm was also applied to the
background images. Third, because of the presence of artifacts in the image margin, all input and
target images were cropped to 1800×2400 pixels. Finally, the minimum and maximum values
computed from all target images were used to normalized each target image to the range of 0 and

Fig. 3. Examples of phase images of thirteen different types of cells.
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1. Similarly, all input intensity images were normalized by their minimum and maximum values.
The pre-processing time was about 18 seconds that were mainly spent on correcting the color
leakage.

2.4. Model training and evaluation

In this work, the mean squared error was used as loss function to train each U-Net model. We
used the Adam optimizer (beta1= 0.9, beta2= 0.999, epsilon= 10−8) [25] with the learning rate
of 5×10−3 to minimize the loss function. The number of epochs was 500, and the batch size
was set to 2. The best model was determined from the epoch with the lowest loss value over the
full validation dataset. Model training and prediction were implemented using TensorFlow 2.8.0
and Python 3.8.10 on a workstation equipped with two NVIDIA GeForce RTX 3090 cards. The
total training time of the studied two U-Net models was about 4 hours, and the inference time for
predicting one phase image (1800×2400) from one color intensity image (1800×2400×3) was
about 0.5 seconds.

To evaluate whether the DL-based model can generate phase image from single-shot color
intensity measurements, the DL-based phase images (i.e. output of U-Net 2) were visually
compared with the ground-truth phase images obtained from the linear-gradient pupil with
two-axis measurements [22]. We also computed the SSIM value [23] between the ground-truth
and DL-based phase images. To quantitatively evaluate the proposed method, we drew several
ROIs and computed the phase differences between the ground-truth and DL-based phase images.
Moreover, we compared our results with the phase images reconstructed using the two radially
asymmetric color-encoded illumination patterns (i.e. 2 intensity measurements) [21].

3. Results and discussion

Figure 4 shows a comparison of BEAS-2B phase images obtained from gradient pupil (i.e. ground
truth), color pupil, and DL. It can be observed that the DL-based phase image was visually similar
to the ground-truth phase image. In contrast, the phase image obtained from color pupil appears
noisier visually than both the ground-truth and DL-based phase images. We also found that the
color-encoded illumination method tended to overestimate the phase values. Figure 5 shows the
profile of BEAS-2B phase images obtained from gradient pupil, color pupil, and DL. Similar
results can be observed. Table 1 summarizes the phase values of three ROIs for the BEAS-2B
phase images obtained from gradient pupil, color pupil, and DL. A 10%∼13% error in predicting
phase values was observed from the DL-based phase image as compared with the ground-truth
phase image. However, the color-encoded phase image introduced a positive bias of 14%∼21%.

Table 1. Phase values of three ROIs calculated from three BEAS-2B phase images obtained from
gradient pupil (i.e. ground truth), color pupil, and DL.

Phase from gradient pupil Phase from color pupil DL-based phase

ROI1 1.90±0.12 2.17±0.24 1.71±0.09

ROI2 1.31±0.14 1.57±0.16 1.14±0.09

ROI3 0.44±0.17 0.54±0.18 0.40±0.10

To further evaluate the model performance, the results of the other testing cell type were
presented. Figure 6 shows a comparison of CL152 phase images obtained from gradient pupil,
color pupil, and DL. Figure 7 shows the profile of CL152 phase images obtained from gradient
pupil, color pupil, and DL. Table 2 summarizes the phase values of three ROIs for the CL152
phase images obtained from gradient pupil, color pupil, and DL. The phase difference between
the ground-truth phase image and the DL-based phase image was -7%∼12%. In contrast, the



Research Article Vol. 14, No. 7 / 1 Jul 2023 / Biomedical Optics Express 3464

Fig. 4. Comparison of BEAS-2B phase images obtained from gradient pupil (i.e. ground
truth), color pupil, and DL.

Fig. 5. Profiles (white dashed line) of BEAS-2B phase images obtained from gradient
pupil (i.e. ground truth), color pupil, and DL. The black line represents the ROIs used for
evaluating the phase difference.
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color-encoded phase image had a positive bias of 15%∼34% in predicting phase values. Finally,
we calculated the SSIM index between different phase images, and the mean value averaged
over 40 testing images was presented. The mean SSIM value between the ground-truth phase
image and the DL-based phase image was 0.9865±0.0013. In contrast, the mean SSIM value
between the ground-truth phase image and the color-encoded phase image was 0.9417±0.0015.
The results indicated that compared to the color-encoded phase image, the DL-based phase image
was closer to the ground-truth phase image. Note that the DL-based phase images shown in
Figs. 4–7 were the outputs of U-Net 2. The DL-based phase images obtained from U-Net 1 can
be found in Supplement 1 (Figs. S1 and S2).

Fig. 6. Comparison of CL152 phase images obtained from gradient pupil (i.e. ground
truth), color pupil, and DL.

Fig. 7. Profiles (white dashed line) of CL152 phase images obtained from gradient pupil (i.e.
ground truth), color pupil, and DL. The black line represents the ROIs used for evaluating
the phase difference.

https://doi.org/10.6084/m9.figshare.23300762
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Table 2. Phase values of three ROIs calculated from three CL152 phase images obtained from
gradient pupil (i.e. ground truth), color pupil, and DL.

Phase from gradient pupil Phase from color pupil DL-based phase

ROI1 2.60±0.33 3.48±0.37 2.77±0.21

ROI2 1.02±0.24 1.18±0.23 0.90±0.16

ROI3 1.50±0.39 1.90±0.50 1.46±0.32

As shown in Figs. 4 and 6, no obvious difference along any specific direction was observed.
This indicates that the predicted phase image should be isotropic. Note that the target phase
image reconstructed using a linear-gradient pupil with two-axis measurements was isotropic.
The predicted phase image should be isotropic as well. To further evaluate whether the predicted
phase image has isotropic resolution, we measured the full width at half maximum (FWHM)
along the vertical, horizontal, and diagonal directions in a small and circular lesion. If the
FWHMs of different directions are close, the phase image should be isotropic. As shown in
Supplement 1 (Fig. S3), the predicted phase image had similar FWHMs along different directions
(i.e. horizontal FWHM= 4.50 µm, vertical FWHM= 5.46 µm, left diagonal FWHM= 4.36 µm,
and right diagonal FWHM= 3.88 µm). Note that the small lesion we evaluated may not be a
perfect circle. We expect that the FWHMs of different directions may be slightly different. We
also found that the FWHMs of the predicted phase image were close to those of the target phase
image (i.e. horizontal FWHM= 4.60 µm, vertical FWHM= 5.83 µm, left diagonal FWHM= 5.38
µm, and right diagonal FWHM= 4.17 µm). These results indicate that the predicted phase image
should have isotropic resolution, but further evaluation is required.

The results showed that the two separate U-Net models performed well. However, it is possible
to train an end-to-end network that performs the conversion from color intensity to phase. Based
on our preliminary test, the two separate U-Net models performed better than the end-to-end
network. This is because the end-to-end network not only performs the intensity-phase conversion,
but also considers the effect of sample dispersion [11] and chromatic aberration [26] on the
reconstructed phase image. Using only one neural network may obtain sub-optimal results. As
a result, we implemented two U-Net models. The first U-Net model is designed to perform
the conversion from intensity to phase, and the phase error caused by the sample dispersion
and chromatic aberration is reduced by the second U-Net model. It should be noted that the
two separate U-Net models had the same architecture. Based on our preliminary test, changing
the model parameters (e.g. the number of filters, the kernel size, and the up-sampling and
down-sampling operators) provided limited improvement.

Like the previous studies [11–13], our study proposed a single-shot quantitative DPC imaging
method. The proposed DL-based method only required one intensity measurement for phase
reconstruction. More importantly, the proposed method performed a task of intensity-to-phase
translation. Our study is thus different from the previous study [20] that required two intensity
measurements to perform the task of 1-axis to 12-aixs phase translation. Because the proposed
method requires one intensity measurement, the fast data acquisition for quantitative DPC imaging
is achievable and dependent on camera frame rate. This means that the proposed method allows
data acquisition at the maximum frame rate of the camera (67 fps). Moreover, the inference time
for predicting one phase image (1800×2400) from one color intensity image (1800×2400×3)
was about 0.5 seconds. The inference time may be further reduced by using a powerful GPU
card and optimizing the U-Net model. However, the time of data pre-processing (∼18 seconds
per image) is the bottleneck for real-time quantitative DPC imaging. The high computational
time of pre-processing was due to the pixel-by-pixel color-leakage correction. This problem
exists not only in the proposed method, but also in the previous developed methods [11–13].
Parallel processing based a multi-core processor is one option to reduce the computational time

https://doi.org/10.6084/m9.figshare.23300762
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of pre-processing. In fact, we observed that the color-leakage matrix (MCL) of each pixel was
similar, and the coefficient of variation was less than 3%. This indicates that it is possible to
perform color-leakage correction using the same color-leakage matrix. Therefore, the time of
correcting color leakage can be reduced to about 0.05 seconds. The performance of the proposed
DL-based method based on the fast color-leakage correction will be evaluated in our future work.

Our experimental results showed the feasibility of using DL to produce quantitative phase
imaging from a single-shot intensity measurement. Despite these promising results, there is still
room for improvement. First, the number of images used for model training was 264 which was
small. The model performance may be further improved by increasing the number of training
images. However, we cannot increase the number of training images because of large image size
(i.e., 1800×2400) and limited GPU memory. Alternatively, we can use a patch-based training
method to alleviate the memory problem. However, the patch-based method often suffers from
obvious blocky artifacts. Second, we used color intensity images obtained from the radially
asymmetric color-encoded illumination pattern [21]. This color-encoded pattern may not be the
optimal color pattern. The results obtained from other color-multiplexed illumination patterns
[11–13] should be evaluated. As also shown by previous studies [17,18], it is possible to apply
DL to optimize the single-shot color illumination pattern. Third, most of our images were
obtained from pulmonary cell lines. Although different lung cancer cell lines were evaluated, the
generalization ability of the trained model should be further validated using unseen cell types.
To improve the model’s generalization, increasing the number of different cell types is necessary.

4. Conclusion

We proposed a single-shot quantitative DPC imaging based on the combination of DL and color-
encoded illumination. The color intensities measured from a radially asymmetric color-encoded
illumination pattern were used as input to the DL-based model which was trained to generate
isotropic quantitative phase imaging. This means that the DL-based model is designed to convert
the single-shot intensity measurement into its corresponding phase image. The DL-based phase
images were visually similar to the phase images obtained using the linear-gradient illumination
with two-axis measurements. Our experimental results demonstrate that DL may be an alternative
technique for providing single-shot quantitative phase imaging.
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