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Summary

Randomized trials are an established method to evaluate the causal effects of interventions. 

Despite concerted efforts to retain all trial participants, some missing outcome data are often 

inevitable. It is unclear how best to account for missing outcome data in sample size calculations. 

A standard approach is to inflate the sample size by the inverse of one minus the anticipated 

dropout probability. However, the performance of this approach in the presence of informative 

outcome missingness has not been well-studied. We investigate sample size calculation when 

outcome data are missing at random given the randomized intervention group and fully observed 

baseline covariates under an inverse probability of response weighted (IPRW) estimating equations 

approach. Using M-estimation theory, we derive sample size formulas for both individually 

randomized and cluster randomized trials (CRTs). We illustrate the proposed method by 

calculating a sample size for a CRT designed to detect a difference in HIV testing strategies 

under an IPRW approach. We additionally develop an R shiny app to facilitate implementation of 

the sample size formulas.
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1 | INTRODUCTION

Randomized trials are established as the gold standard for evaluating the causal effect 

of an intervention because the allocation of intervention versus control is independent of 

participants’ characteristics due to randomization, so that the difference in outcome can 

be attributed to the intervention1,2. Despite concerted efforts in trial design and conduct 

to retain all trial participants, some missing data on the primary contrast of interest are 

often inevitable. There have been several review articles describing the potential biases and 

efficiency loss introduced by missing outcome data in randomized trials, as well as analysis 

techniques that address such missingness1,3,2,4. In 2010, the US National Research Council 

issued a panel report on ‘The Prevention and Treatment of Missing Data in Clinical Trials’5 

followed by a New England Journal of Medicine article summarizing their findings2. The 

report and article highlight that how to account for missing outcome data in sample size 

calculation is an important and neglected design issue, and therefore an area for research.

A standard approach to handle potential missing outcome data in sample size calculation 

is to inflate the randomized trial sample size by the inverse of one minus the anticipated 

dropout probability2,6. For example, if it is expected that 20% of trial participants will 

dropout, the number of participants recruited will be inflated by 1/(1–0.2). The performance 

of this approach in the presence of informative missingness has not been well-studied and 

motivates the work in this paper.

When outcome data are missing at random (MAR), i.e., the propensity of missingness 

depends on observed data7, multiple imputation (MI) and weighted estimating equations are 

commonly used methods to estimate the marginal intervention effect. MI methods impute 

missing outcome data several times based on an imputation model, and average the estimates 

of the marginal intervention effect over the imputations8. Weighted estimating equations 

account for MAR outcome data by weighting participants with a response by the inverse 

probability of being observed given their covariates and randomized intervention group9.

For MI methods, variance estimation is often based on Rubin’s rules that combine the 

within-imputation and between-imputation variability. Zha and Harel10 have described 

power calculation based on Rubin’s rules for a difference in means. For an inverse 

probability of response weighted (IPRW) estimator, variance inflation or reduction has 

previously been studied in the context of survey sampling when weighting by a categorical 

variable11, and asymptotic equivalence between an IPRW and MI approach has been shown 

in special settings when weighting by a categorical variable9. Power and sample size for 

observational studies in the context of weighting for potential confounders by inverse 

probability of treatment weights (IPTWs) has also been studied12, but, to date, sample size 

calculation in the context of IPRWs has not been evaluated.

Other previous literature on sample size calculation in the context of missing outcome data 

for individually randomized trials (IRTs) has either been based on a missing not at random 

assumption7 with principled sensitivity analyses for a binary outcome13, or has incorporated 

repeated measures of the outcome variable. For repeated outcome measures under the 

generalized estimating equation (GEE) framework, methods tend to assume outcome data 
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are missing completely at random (MCAR) 14,15. Otherwise, a hierarchical statistical model 

is usually assumed with outcome data MAR given observed outcomes and the randomized 

intervention group16,17,18.

For cluster randomized trials (CRTs) it is well known sample size needs to be inflated 

compared to IRTs by a design effect to account for the correlation of outcomes in the same 

cluster19. A standard further inflation of sample size for missing outcome data in CRTs 

is less well established. Taljaard et al20 reports simple approaches that inflate the sample 

size by the inverse of one minus the anticipated dropout probability or use the anticipated 

average cluster size, tend to respectively over-estimate or under-estimate the required sample 

size. To the best of our knowledge, variance inflation factors in the design of CRTs when 

employing IPRWs have not been studied.

In this paper, we aim to present sample size calculation methods for IRTs and CRTs with 

missing data for a single outcome measure when the analysis technique will be based on 

IPRWs that incorporate fully observed baseline covariates and the randomized intervention 

group. We focus on uncensored outcomes that are continuous or binary. By stacking 

estimating equations for the parameters needed for the primary contrast of interest with 

those for the IPRWs, we use an M-estimation framework21 to derive large sample variance 

formulas that take into account the fact the weights are estimated from the data. We describe 

a simplification when the paradoxical efficiency gain from estimating the IPRWs from the 

data22,23 is ignored, as well as an approximation that separates the variance of the outcome 

from the weights. We provide simplified formulas when weighting by a single categorical or 

continuous covariate and a description of how pilot data with several weighting variables can 

be used in sample size calculation under the IPRW framework.

The paper is structured as follows: Section 2.1 reviews standard sample size calculation 

methods for IRTs, including a description of the standard inflation to account for missing 

outcome data. Section 2.2 introduces sample size calculation for an IPRW estimator of the 

primary contrast of interest when outcome data are MAR, and describes the simplification 

and approximation to the method when the IPRWs are considered known. Section 2.3 

reviews standard sample size calculation methods for CRTs and Section 2.4 describes 

sample size calculation for an IPRW estimator in the context of CRTs. Further details when 

weighting by a single categorical or continuous covariate are provided in Sections 2.5 and 

2.6 respectively. This is followed by a description of utilizing pilot data for sample size 

calculation based on an IPRW estimator in Section 2.7. Simulation studies are described in 

Section 3. Section 4 provides two examples. The first is a tutorial on performing sample size 

calculation based on an IPRW estimator for a confirmatory CRT, and the second example 

is a case study of an IRT that illustrates how different missingness patterns can influence 

sample size under an IPRW estimator. We conclude with a Discussion (Section 5).

2 | METHODS

2.1 | Review of Standard Sample Size Calculation

In a randomized trial we typically quantify an intervention effect of primary interest by 

a contrast g μ1 − g μ0 , where g μ1  is a function of the population mean outcome under 
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intervention and g μ0  is a function of the population mean outcome under control. When g is 

the identity function the contrast of primary interest is the mean difference for a continuous 

outcome and the risk difference for a binary outcome. For a binary outcome, the marginal 

log odds ratio is often of interest, where g is the logit function. To calculate the required 

sample size, a value for this contrast of primary interest g μ1 − g μ0  is hypothesized, and 

the number of participants needed to be observed to detect such a difference at the specified 

significance level and power is found. The number of participants needed to be observed, 

ncomplete, to detect a difference via the Wald test can be obtained by (Web Appendix A, Chow 

et al24 Sections 3.2, 4.2 and 4.6):

ncomplete = τ z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (1)

where 1 − β is the power, α is the significance level and za represents the ath quantile of the 

standard normal distribution. Letting the random variable Y i represent a continuous or binary 

outcome for each participant i, Zi be 1 if participant i is randomized to the intervention 

group and 0 if participant i is randomized to the control group, and κ = P Zi = 1  be the 

probability a participant is randomized to the intervention group, then,

τ =
{κ(1 − κ)}−1σy

2 if Y i continuous and g identity

κ−1μ1 1 − μ1 + (1 − κ)−1μ0 1 − μ0 if Y i binary and g identity

κμ1 1 − μ1
−1 + 1 − κ μ0 1 − μ0

−1 if Y i binary and g logit

For a continuous outcome we have assumed that the variability of the outcome is the same 

under intervention and control, i.e. E{ Y i − μ1
2 ∣ Zi = 1} = E{ Y i − μ0

2 ∣ Zi = 0} = σy
2. When 

half the participants are randomized to each intervention group, so that κ = 1/2, τ for a 

continuous outcome has the familiar 4σy
2 form25.

Furthermore, let Ri = 1 indicate that participant i has an observed outcome and Ri = 0
indicate a missing outcome for participant i. Then, if ϕ = P Ri = 1  is the anticipated 

probability participant i has an observed outcome, the number of participants recruited 

into the randomized trial is standardly calculated by inflating the the number needed to be 

observed by 1/ϕ (Web Appendix A, Little el al2, Donner6):

nstandard = τ z1 − β + z1 − α/2
2

ϕ g μ1 − g μ0
2 = τstandard z1 − β + z1 − α/2

2

g μ1 − g μ0
2 , where τstandard = τ

ϕ (2)

This formula can be justified by considering the complete-case analysis, that is, estimating 

the difference between the randomized intervention groups g μ̂1 − g μ̂0 , as follows,

g ∑
i = 1

n
RiZi

−1
∑
i = 1

n
RiZiY i − g ∑

i = 1

n
Ri 1 − Zi

−1
∑
i = 1

n
Ri 1 − Zi Y i (3)
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and assuming outcome data are MCAR7, i.e., both that the probability of the 

outcome being observed is the same in the intervention and control group 

ϕ = P Ri = 1 = P Ri = 1 ∣ Zi = 1 = P Ri = 1 ∣ Zi = 0  and the outcome is independent of 

missingness Ri ⫫ Y i .

2.2 | Sample Size Calculation Weighted for Response

Now suppose that Xi represents a vector of fully observed baseline covariates and that 

we will use an IPRW estimator of the primary contrast of interest g μ1 − g μ0  based on 

weighting by the fully observed baseline covariates and the randomized intervention group. 

Then, we can estimate the difference between intervention groups g μ̂1 − g μ̂0  as:

g ∑
i = 1

n
RiZie 1i

−1
−1

∑
i = 1

n
RiZie 1i

−1Y i − g ∑
i = 1

n
Ri 1 − Zi e 0i

−1
−1

∑
i = 1

n
Ri 1 − Zi e 0i

−1Y i

(4)

where ê1i is the estimated probability of Y i being observed in the intervention group and ê0i is 

the estimated probability of Y i being observed in the control group. Assuming outcome data 

are MAR, that is Ri ⫫ Y i ∣ Xi, Zi
7, we can model the probability of Y i being observed in each 

intervention group, as follows,

e1i = P Ri = 1 ∣ Xi, Zi = 1 = expit Xi
⊤β1 , e0i = P Ri = 1 ∣ Xi, Zi = 0 = expit Xi

⊤β0

For notational convenience the same set of covariates Xi is used for each randomized 

intervention group, where the coefficients of those covariates that do not appear in the 

model are zero. Defining θ = λ1, λ0, β1, β0 , where λ1 = g μ1  and λ0 = g μ0 , an M-estimator θ̂ is 

obtained by solving the following estimating equations for θ

∑
i = 1

n
ui Y i, Ri, Zi, Xi; θ = ∑

i = 1

n
RiZie1i

−1 Y i − μ1

Ri 1 − Zi e0i
−1 Y i − μ0

ZiXi Ri − e1i

1 − Zi Xi Ri − e0i

= 0

By M-estimation theory (Web Appendix A, Stefanski and Boos21) we have,

var g μ̂1 − g μ̂0 = n−1 κ−1[E{e1i
−1 Y i − μ1

2 ∣ Zi = 1} − A] ∂μ1

∂λ1

−2
+

(1 − κ)−1[E{e0i
−1 Y i − μ0

2 ∣ Zi = 0} − B] ∂μ0

∂λ0

−2 (5)

where

A = E Ri Y i − μ1 e1i
−1 1 − e1i Xi

⊤ ∣ Zi = 1 E e1i 1 − e1i XiXi
⊤ ∣ Zi = 1 −1E Ri Y i − μ1 e1i

−1 1 − e1i Xi ∣ Zi = 1
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B = E Ri Y i − μ0 e0i
−1 1 − e0i Xi

⊤ ∣ Zi = 0 E e0i 1 − e0i XiXi
⊤ ∣ Zi = 0 −1E Ri Y i − μ0 e0i

−1 1 − e0i Xi ∣ Zi = 0

The variance formula in Equation 5 leads to the following sample size formula accounting 

for IPRWs,

nIPRW = τIPRW z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (6)

where

τIPRW =

κ−1[E{e1i
−1 Y i − μ1

2 ∣ Zi = 1} − A]

+(1 − κ)−1[E{e0i
−1 Y i − μ0

2 ∣ Zi = 0} − B] if g identity

κ−1[E{e1i
−1 Y i − μ1

2 ∣ Zi = 1} − A] μ1 1 − μ1
−2

+(1 − κ)−1[E{e0i
−1 Y i − μ0

2 ∣ Zi = 0} − B] μ0 1 − μ0
−2 if g logit

When compared to Equation 2, this formula provides a relative efficiency due to weighting 

for response of τIPRW/τstandard. The terms A and B in Equation 5 represent the reduction 

in the variance achieved through incorporation of estimating equations for the IPRWs. 

This paradoxical efficiency gain through estimation of the IPRWs from the data has been 

highlighted in previous literature22,23. In the trial planning stage, hypothesizing values for A
and B may be a difficult task, so a conservative approach to sample size calculation could 

consider the following upper bound for var g μ̂1 − g μ̂0 ,

n−1 κ−1E e1i
−1 Y i − μ1

2 ∣ Zi = 1 ∂μ1

∂λ1

−2
+ (1 − κ)−1E e0i

−1 Y i − μ0
2 ∣ Zi = 0

∂μ0

∂λ0

−2 (7)

Equation 7 leads to the following sample size formula assuming the weights are known,

nknown = τknown z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (8)

where

τknown =

κ−1E{e1i
−1 Y i − μ1

2 ∣ Zi = 1} + (1 − κ)−1E{e0i
−1 Y i − μ0

2 ∣ Zi = 0} if g identity

κ−1E{e1i
−1 Y i − μ1

2 ∣ Zi = 1} μ1 1 − μ1
−2 + (1 − κ)−1E{e0i

−1 Y i − μ0
2 ∣ Zi = 0} μ0 1 − μ0

−2 if g logit

The upper bound of the variance formula provided in Equation 7 can be written as,
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n−1 κ−1[γ1 + E e1i
−1 E{ Y i − μ1

2 ∣ Zi = 1}] ∂μ1
∂λ1

−2
+ (1 − κ)−1[γ0 + E e0i

−1 E{ Y i − μ0
2 ∣ Zi = 0}] ∂μ0

∂λ0

−2

where γ1 = cov{e1i
−1, Y i − μ1

2 ∣ Zi = 1} and γ0 = cov{e0i
−1, Y i − μ0

2 ∣ Zi = 0}. By the Cauchy-

Schwarz inequality, we know

γ1 ≤ [var e1i
−1 var{ Y i − μ1

2 ∣ Zi = 1}], γ0 ≤ [var e0i
−1 var{ Y i − μ0

2 ∣ Zi = 0}]

Therefore, a strategy similar to the one taken by Shook-Sa and Hudgens12 in the context of 

confounding adjustment by weighting ignores γ1 and γ0 and approximates var g μ̂1 − g μ̂0

as:

n−1 κ−1E e1i
−1 E{ Y i − μ1

2 ∣ Zi = 1} ∂μ1

∂λ1

−2
+ (1 − κ)−1E e0i

−1 E

{ Y i − μ0
2 ∣ Zi = 0} ∂μ0

∂λ0

−2 (9)

So, by ignoring the correlation between the IPRWs and the squared deviation of the outcome 

from its mean, the approximate number of participants needed to be recruited under IPRW 

is,

napprox = τapprox z1 − β + z1 − α/2
2

g μ1 − g μ0
2

where

τapprox =
σy

2{κ−1E e1i
−1 + (1 − κ)−1E e0i

−1 } if Y i continuous and g identity

κ−1μ1 1 − μ1 E e1i
−1 + (1 − κ)−1μ0 1 − μ0 E e0i

−1 if Y i binary and g identity

κμ1 1 − μ1
−1E e1i

−1 + 1 − κ μ0 1 − μ0
−1E e0i

−1 if Y i binary and g logit

We later explore, in Sections 2.5, 2.6 and 3, the number of participants calculated by this 

approximate formula compared to the other approaches.

2.3 | Review of Sample Size Calculation for CRTs

Suppose instead of randomizing individual participants to the intervention or control group, 

the trial is designed to randomize clusters of individuals. Assuming there are K clusters 

where the probability that a cluster is randomized to the intervention group is κ, and that 

each cluster contains m individuals, then a common approach for sample size calculation 

in CRTs inflates the number of participants required in an IRT by a design effect that 

accounts for the correlation of outcomes from individuals within each clusters, as follows 

(Web Appendix A, Rutterford et al19):
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nC = mK = τC z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (10)

where τC = 1 + m − 1 δ τ and δ = corr Y ki, Y kj ∣ Zk = 1 = corr Y ki, Y kj ∣ Zk = 0  is the 

intercluster correlation under the usual assumption of an exchangeable correlation 

structure and is defined as the correlation of the outcomes for two 

different individuals i and j in cluster k. An approach for CRTs based 

on the complete-case estimator and assuming that outcome data are MCAR, 

i.e. ϕ = P Rki = 1 = P Rki = 1 ∣ Zk = 1 = P Rki = 1 ∣ Zk = 0 , Rki ⫫ Y ki for i = 1, …, m and 

k = 1, …, K, and there is no clustering of missingness, Rki ⫫ Rkj for i ≠ j and k = 1, …, K, 

results in the following sample size formula (Web Appendix A):

nC‐standard = τC‐standard z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (11)

where τC‐standard = 1 + m − 1 ϕδ τstandard = ϕ−1 + m − 1 δ τ.

2.4 | Sample Size Calculation for CRTs Weighted for Response

Now considering a weighted analysis, which weights response by fully observed baseline 

covariates Xki and the randomized intervention group, then the equivalent to Equation 5 for 

CRTs, which assumes Rki ⫫ Y ki ∣ Xki, Zk  and Rki ⫫ Rkj for i ≠ j, is (Web Appendix A):

var g μ̂1 − g μ̂0 = (Km)−1 κ−1[E{e1ki
−1 Y ki − μ1

2 ∣ Zk = 1} + (m − 1)δ

E{ Y ki − μ1
2 ∣ Zk = 1} − A] ∂μ1

∂λ1

−2
+ (1 − κ)−1

[E{e0ki
−1 Y ki − μ0

2 ∣ Zk = 0} + (m − 1)δ

E{ Y ki − μ0
2 ∣ Zk = 0} − B] ∂μ0

∂λ0

−2

(12)

where

A = E Rki Y ki − μ1 e1ki
−1 1 − e1ki Xki

⊤ ∣ Zk = 1 E e1ki 1 − e1ki XkiXki
⊤ ∣ Zk = 1 −1

E Rki Y ki − μ1 e1ki
−1 1 − e1ki Xki ∣ Zk = 1

B = E Rki Y ki − μ0 e0ki
−1 1 − e0ki Xki

⊤ ∣ Zk = 0 E e0ki 1 − e0ki XkiXki
⊤ ∣ Zk = 0 −1

E Rki Y ki − μ0 e0ki
−1 1 − e0ki Xki ∣ Zk = 0

This leads to the following sample size formula accounting for IPRWs in CRTs,
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nC − IPRW = τC − IPRW z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (13)

where

τC − IPRW =

κ−1[E{e1ki
−1 Y ki − μ1

2 ∣ Zk = 1} − A]

+(1 − κ)−1[E{e0ki
−1 Y ki − μ0

2 ∣ Zk = 0} − B]

+(m − 1)δ{κ(1 − κ)}−1σy
2 if Y ki continuous and g identity

κ−1[E{e1ki
−1 Y ki − μ1

2 ∣ Zk = 1} − A]

+(1 − κ)−1[E{e0ki
−1 Y ki − μ0

2 ∣ Zk = 0} − B]

+(m − 1)δ{κ−1μ1 1 − μ1 + (1 − κ)−1μ0 1 − μ0 } if Y ki binary and g identity

κ−1[E{e1ki
−1 Y ki − μ1

2 ∣ Zk = 1} − A]{μ1 1 − μ1 }−2

+(1 − κ)−1[E{e0ki
−1 Y ki − μ0

2 ∣ Zk = 0} − B]{μ0 1 − μ0 }−2

+(m − 1)δ {κμ1 1 − μ1 }−1 + {(1 − κ)μ0 1 − μ0 }−1 if Y ki binary and g logit

Since the component of τC‐IPRW that depends on the correlation between outcomes in the same 

cluster δ  is a separate additional term, a similar approach to that taken in Section 2.2 for 

IRTs would approximate τC‐IPRW by τC‐known or τC‐approx for CRTs (see Web Appendix A).

2.5 | Weighting for a Single Baseline Categorical Variable

Studying each sample size formula for IRTs in the context of weighting by a single fully 

observed categorical variable provides some intuition. Suppose Xi consists of a single 

baseline covariate with c = 1, …, C categories, then var g μ̂1 − g μ̂0  based on Equation 5 

can be written in closed-form (Web Appendix B), as follows:

var g μ1 − g μ0 = n−1 ∑
c = 1

C
κ−1πc

σc1
2

expit βc1
+ μc1 − μ1

2 ∂μ1

∂λ1

−2

+(1 − κ)−1πc
σc0

2

expit βc0
+ μc0 − μ0

2 ∂μ0

∂λ0

−2 (14)

where πc = P Xi = c , σc1
2 = var Y i ∣ Xi = c, Zi = 1 , 

σc0
2 = var Y i ∣ Xi = c, Zi = 0 , expit βc1 = P Ri = 1 ∣ Xi = c, Zi = 1 , 

expit βc0 = P Ri = 1 ∣ Xi = c, Zi = 0 , μc1 = E Y i ∣ Xi = c, Zi = 1  and μc0 = E Y i ∣ Xi = c, Zi = 0 . 

Due to the randomization, πc = P Xi = c = P Xi = c ∣ Zi = 1 = P Xi = c ∣ Zi = 0 . Using the 

variance in Equation 14 in sample size calculation, results in recruiting the following 

number of participants:

nIPRW = τIPRW z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (15)

where
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τIPRW =

∑
c = 1

C
κ−1πc

σc1
2

expit βc1
+ μc1 − μ1

2 + (1 − κ)−1πc
σc0

2

expit βc0
+ μc0 − μ0

2 if Y i continuous and g identity

∑
c = 1

C
κ−1πc

μc1 1 − μc1
expit βc1

+ μc1 − μ1
2 + (1 − κ)−1πc

μc0 1 − μc0
expit βc0

+ μc0 − μ0
2 if Y i binary and g identity

∑
c = 1

C
κ−1 πc

μ1 1 − μ1
2

μc1 1 − μc1
expit βc1

+ μc1 − μ1
2 + (1 − κ)−1 πc

μ0 1 − μ0
2

μc0 1 − μc0
expit βc0

+ μc0 − μ0
2 if Y i binary and g logit

It can be noted that by the law of total variance, 

we can write var Y i ∣ Zi = 1 = ∑c πc{var Y i ∣ Xi = c, Zi = 1 + μc1 − μ1
2} and 

var Y i ∣ Zi = 0 = ∑c πc{var Y i ∣ Xi = c, Zi = 0 + μc0 − μ0
2}, therefore Equation 2 could be re-

written as,

nstandard = τstandard z1 − β + z1 − α/2
2

g μ1 − g μ0
2

where

τstandard =

∑
c = 1

C
κ−1πc

σc1
2 + μc1 − μ1

2
ϕ + (1 − κ)−1πc

σc0
2 + μc0 − μ0

2
ϕ if Y i continuous and g identity

∑
c = 1

C
κ−1πc

μc1 1 − μc1 + μc1 − μ1
2

ϕ + (1 − κ)−1πc
μc0 1 − μc0 + μc0 − μ0

2
ϕ if Y i binary and g identity

∑
c = 1

C
κ−1 πc

μ1 1 − μ1
2

μc1 1 − μc1 + μc1 − μ1
2

ϕ + (1 − κ)−1 πc

μ0 1 − μ0
2

μc0 1 − μc0 + μc0 − μ0
2

ϕ if Y i binary and g logit

This helps to see that when performing a sample size calculation based on the weighted 

estimator, the inflation comes from weighting the within-category variance of the outcome 

by the probability of being observed in that category. Whereas, when performing a sample 

size based on the complete-case estimator we weight the overall variance by the marginal 

probability of the outcome being observed, i.e. ϕ = P Ri = 1 .

It is also instructive to calculate the variance when weighting for a single baseline 

categorical variable using the formula in Equation 7 that ignores the efficiency gained from 

estimating the weights from the data. This results is the following expression:
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var g μ1 − g μ0 ≤ n−1 ∑
c = 1

C
κ−1πc

σc1
2 + μc1 − μ1

2

expit βc1

∂μ1

∂λ1

−2

+ (1 − κ)−1πc
σc0

2 + μc0 − μ0
2

expit βc0

∂μ0

∂λ0

−2 (16)

If the upper bound for the variance is used in sample size calculation, we would calculate 

that we would need to recruit the following number of participants:

nknown = τknown z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (17)

where

τknown =

∑c = 1
C κ−1πc

σc1
2 + μc1 − μ1

2
expit βc1

+ (1 − κ)−1πc
σc0

2 + μc0 − μ0
2

expit βc0
if Y i continuous and g identity

∑c = 1
C κ−1πc

μc1 1 − μc1 + μc1 − μ1
2

expit βc1
+ (1 − κ)−1πc

μc0 1 − μc0 + μc0 − μ0
2

expit βc0
if Y i binary and g identity

∑c = 1
C κ−1 πc

μ1 1 − μ1
2

μc1 1 − μc1 + μc1 − μ1
2

expit βc1
+ (1 − κ)−1 πc

{μ0 1 − μ0 }2
μc0 1 − μc0 + μc0 − μ0

2
expit βc0

if Y i binary and g logit

In this case the inflation comes from weighting both the within-category and between-

category variance in each intervention group by the probability of being observed in each 

category. If the probability of being observed is the same in all categories of Xi for each 

intervention group this sample size calculation reduces to that of Equation 2

Finally, consider the scenario in Equation 9 where a component of the correlation between 

the weights and the outcome is ignored in each intervention group. This would result in 

(Web Appendix B),

napprox = ηapprox z1 − β + z1 − α/2
2

g μ1 − g μ0
2 (18)

where
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τapprox =

∑
c = 1

C
κ−1πc

σy
2

expit βc1
+ (1 − κ)−1πc

σy
2

expit βc0
if Y i continuous and g identity

∑
c = 1

C
κ−1πc

μ1 1 − μ1
expit βc1

+ (1 − κ)−1πc
μ0 1 − μ0
expit βc0

if Y i binary and g identity

∑
c = 1

C
κ−1πc

μ1 1 − μ1
−1

expit βc1
+ (1 − κ)−1πc

μ0 1 − μ0
−1

expit βc0
if Y i binary and g logit

In this case the inflation comes from weighting the overall variance of the outcome in 

each intervention group by the probability of being observed in each category. Again, if 

the probability of being observed is the same in all categories of Xi for each intervention 

group, this sample size calculation reduces to that of Equation 2. This approach ignores the 

heterogeneity of within-category variances.

As a demonstration, Figure 1 displays the sample size calculated using each of the 

techniques when Y i is binary and g is the identity function for a trial where half the 

participants are randomized to the intervention group κ = 1/2  and responses are weighted 

by a baseline binary variable with half the participants in each category in each intervention 

group. By the nIPRW formula the sample size peaks when the within-category variance 

components μc1 1 − μc1  are largest. As expected, the sample size calculated by nknown is 

always higher than that from nIPRW as the efficiency gain from estimating the IPRWs from 

the data is ignored22,23. The sample size from nknown does not curve as the within-category 

probability of the outcome changes, as the expression for τknown divides both the within-

category and between-category variance by the probability of being observed in each 

category. napprox and nstandard are both independent of the within-category probability of the 

outcome, and can result in an over-estimation or under-estimation of the sample size when 

compared to nIPRW.

2.6 | Weighting for a Single Baseline Normally Distributed Variable

A similar exercise was performed for IRTs when Xi and Y i have a bivariate normal 

distribution. In this case, a closed-form expression for var μ̂1 − μ̂0  based on Equation 5 is not 

available as it requires integration over the expit function. Expressions for an approximation 

to var μ̂1 − μ̂0  under Equation 5 using Gauss-Hermite quadrature are available in Web 

Appendix B. Using Equation 7 a conservative expression for var μ̂1 − μ̂0  is obtained as:

n−1σy
2 κ−1expit β01 + μxβ11 − β11

2 σx
2/2 −1 + (1 − κ)−1expit β00 + μxβ10 − β10

2 σx
2/2 −1

+ ρ2σx
2 κ−1β11

2 exp − β01 + μxβ11 − β11
2 σx

2/2 + (1 − κ)−1β10
2 exp

− β00 + μxβ10 − β10
2 σx

2/2
(19)

where σy
2 = var Y i , μx = E Xi , σx

2 = var Xi , ρ = corr Xi, Y i , 

P Ri = 1 ∣ Xi = xi, Zi = 1 = expit β01 + β11xi  and P Ri = 1 ∣ Xi = xi, Zi = 0 = expit β00 + β10xi . 

Due to the randomization, μx = E Xi = E Xi ∣ Zi = 1 = E Xi ∣ Zi = 0 . Using the variance 
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in Equation 19 in sample size calculation, results in recruiting the following number of 

participants:

nknown = τknown z1 − β + z1 − α/2
2

μ1 − μ0
2 (20)

τknown = σy
2 κ−1expit β01 + μxβ11 − β11

2 σx
2/2 −1 + (1 − κ)−1expit β00 + μxβ10 − β10

2 σx
2/2 −1 + ρ2σx

2

[κ−1β11
2 exp − β01 + μxβ11 − β11

2 σx
2/2 + (1 − κ)−1β10

2 exp − β00 + μxβ10 − β10
2 σx

2/2 ]

The variance of the outcome is inflated by the weight at the mean of Xi attenuated by a 

variance factor dependent upon the strength of the association between Xi and the outcome 

being observed in each intervention group, plus a factor that depends on the correlation 

between Xi and Y i.

If the variance approximation in Equation 9 was used instead, we would have the following 

expression for var μ̂1 − μ̂0 ,

n−1σy
2 κ−1expit β01 + μxβ11 − β11

2 σx
2/2 −1 + (1 − κ)−1expit β00 + μxβ10 − β10

2 σx
2/2 −1

The corresponding sample size calculation is (Web Appendix B):

napprox = τapprox z1 − β + z1 − α/2
2

μ1 − μ0
2 (21)

where

τapprox = σy
2 κ−1expit β01 + μxβ11 − β11

2 σx
2/2 −1 + (1 − κ)−1expit β00 + μxβ10 − β10

2 σx
2/2 −1

In this approximation the variance of the outcome is inflated by the weight at the mean of 

Xi attenuated by a variance factor dependent upon the strength of the association between Xi

and the outcome being observed in each intervention group. The correlation between Xi and 

Y i is ignored and assumed to be zero.

As a demonstration, Figure 2 displays the sample size calculated using each of the 

techniques when Xi and Y i have a bivariate normal distribution and g is the identity function 

for a trial where half the participants are randomized to the intervention group κ = 1/2 . As 

expected, for nknown and napprox the sample sizes calculated coincide at ρ = 0, and when ρ ≠ 0, 

nknown is larger than napprox. Additionally, as before, the sample size calculated by nknown is larger 

than nIPRW. nIPRW has a concave shape in the left panel of Figure 2 and is inbetween nknown and 

napprox, whereas nIPRW has a convex shape in the right panel and is below both nknown and napprox. 

nstandard can either over-estimate or under-estimate the sample size as displayed in the right 

panel of Figure 2.
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Sample size formulas in Section 2.5 and 2.6 would also apply to CRTs if the 

term (m − 1)δ[κ−1E{ Y ki − μ1
2 ∣ Zk = 1}}{+(1 − κ)−1E{ Y ki − μ0

2 ∣ Zk = 0}] is added to the τ
component.

2.7 | Utilizing Pilot Data with Several Weighting Variables

Although it is instructive to understand how weighting for response based on a single 

categorical or continuous variable may affect the calculated sample size, in practice several 

variables may be included in the model to estimate the response probability in each 

intervention group. Here, we describe how sample size can be calculated by utilizing pilot 

data. In IRTs, the variance of the primary contrast of interest weighted for response can be 

estimated from pilot data containing npilot individuals with approximately κ on intervention 

using the empirical sandwich variance estimator, as follows:

var g μ̂1 − g μ̂0 = npilot
−1 Â−1ℬ̂ Â−1

1,1

⊤

+ Â−1ℬ̂ Â−1
2,2

⊤

(22)

where Â and ℬ̂ are defined in Web Appendix B. This results in the following sample size 

formula:

nIPRW = τIPRW z1 − β + z1 − α/2
2

g μ1 − g μ0
2 where τIPRW = npilotvar g μ̂1 − g μ̂0

For CRTs, the variance of the primary contrast of interest weighted for response can be 

estimated from pilot data containing Kpilot clusters each with approximately m individuals and 

approximately κ of the clusters on intervention, as follows:

var g μ̂1 − g μ̂0 = Kpilot
−1 ÂC

−1ℬ̂C ÂC
−1

1,1

⊤
+ ÂC

−1ℬ̂C ÂC
−1

2,2

⊤
(23)

where ÂC and ℬ̂C are defined in Web Appendix B. This results in the following sample size 

formula:

nC‐IPRW = τC‐IPRW z1 − β + z1 − α/2
2

g μ1 − g μ0
2 where τC − IPRW = mKpilot var g μ̂1 − g μ̂0

3 | SIMULATION STUDIES

Simulation studies were conducted firstly to verify that the nIPRW and nC‐IPRW formulas resulted 

in sample sizes with the correct statistical power to detect an intervention effect using the 

IPRW estimator under outcome missingness that depended on a single baseline covariate 

as well as the randomized intervention group. Secondly, we compared the power obtained 

when the standard approach (nstandard and nC‐standard) or the approaches that consider the IPRWs 

to be known (nknown, nC‐known, napprox and nC‐approx) were used. Lastly, we assessed the impact of 

estimating parameters needed for the τ component of the sample size formulas from pilot 

trial data.
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3.1 | Dataset Generation

For each scenario specified in Table 1(a) and Table 2(a), 10000 datasets were 

simulated corresponding to the number of participants calculated by the standard, 

IPRW, known and approx approaches to have 90% power to detect an intervention 

effect at the two-sided 5% significance level. For IRTs, half the participants were 

assigned to the intervention group κ = 1/2 . The baseline binary variable Xi  and 

the randomized intervention group Zi  determined outcome missingness. The baseline 

binary variable, Xi, was generated by random draws from a Bernoulli distribution. 

The probability of the outcome being observed, given the Xi covariate and the 

randomized intervention group Zi , was generated from a Bernoulli distribution 

such that P Ri = 1 ∣ Xi = 1, Zi = 1 = expit β11 , P Ri = 1 ∣ Xi = 2, Zi = 1 = expit β21 , 

P Ri = 1 ∣ Xi = 1, Zi = 0 = expit β10  and P Ri = 1 ∣ Xi = 2, Zi = 0 = expit β20 . Some scenarios 

considered Y i to be a continuous outcome; in which case Y i was generated by 

random draws from a normal distribution such that Y i ∣ Xi = c, Zi = 1 N μc1, σc1
2  and 

Y i ∣ Xi = c, Zi = 0 N μc0, σc0
2 , where μc1, μc0, σc1

2  and σc0
2  are given in Table 1 a) for c = 1, 2. 

Other scenarios considered Y i to be a binary outcome; in which case Y i was generated 

by random draws from a Bernoulli distribution such that P Y i = 1 ∣ Xi = c, Zi = 1 = μc1 and 

P Y i = 1 ∣ Xi = c, Zi = 0 = μc0 for c = 1, 2. The scenarios simulated covered heterogeneity 

(scenarios 1 and 2) and homogeneity (scenarios 3 and 4) of intervention effect over values of 

Xi. The simulated scenarios for CRTs are in Table 2(a) and the process used to simulate CRT 

datasets is described in Web Appendix C.

Six of the scenarios in Table 1(a), labeled as scenario 1 and 2 for each combination 

of outcome type and function g , were altered to observe simulation results when the 

amount of missingness ϕ = P Ri = 1  was varied. Specifically, the probability of the 

outcome being observed, ϕ = P Ri = 1 , was varied from 80% to be between 20% and 

90%. This was done by specifying expit β11 = ϕ − 0.1, expit β21 = ϕ + 0.1, expit β10 = ϕ − 0.05
and expit β20 = ϕ + 0.05 as ϕ varied. Additionally, in Web Appendix C other parameters 

were varied for these simulation scenarios to observe results when missingness per 

intervention group, the association between the covariate and the probability of missingness, 

the proportion randomized to the intervention group and the sample size were varied. 

Furthermore, simulations exploring missingness dependent on a single baseline continuous 

covariate are described in Web Appendix C.

Finally, the impact of estimating the parameters needed for the sample size calculation 

from a pilot trial of size npilot  ranging from 50 to 500 was assessed. For each simulation 

iteration, pilot trial data were generated using the underlying true distributions and then 

used to estimate the τ component for each sample size formula for the four approaches: 

standard, IPRW, known and approx. The full trial datasets were then simulated with the 

calculated number of participants based on the pilot data estimates, and analyzed by the 

IPRW estimator.
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3.2 | Analysis Approaches

For all simulation scenarios the IPRW estimator (Equation 4 for IRTs) was used in the 

analysis. As a consequence, unbiased estimation of the primary contrast of interest by the 

IPRW estimator was also verified when outcome data are MAR. A Wald test for the primary 

contrast of interest was constructed using a large sample variance estimator (given in Web 

Appendix C), and the empirical power was calculated as the proportion of times the null 

hypothesis of no intervention effect was rejected.

3.3 | Results

The results for IRTs with missingness dependent upon a single fully observed baseline 

binary covariate are in Table 1(b). The sample averages of the intervention effect estimates 

obtained using the IPRW estimator were virtually identical to their corresponding true 

values. A sample size of nIPRW coupled with the IPRW estimator resulted in 90% empirical 

power. For scenario 1 for each combination of outcome type and function g , the empirical 

power based on nstandard, nknown or napprox and the IPRW estimator was slightly above the target 

of 90%; ranging from 92 to 93%. Whereas, for scenario 2 for each combination of outcome 

type and function g , the empirical power based on nstandard or napprox and the IPRW estimator 

was at or slightly below the target of 90%; ranging from 87 to 90%. For scenario 3, the 

empirical power based on nstandard or napprox was above the target at 96%. For scenario 4, the 

empirical power based on nstandard or napprox was below the target at 80% and 81%, respectively. 

Results for the six scenarios simulated for CRTs were similar (Table 2(b)).

Figure 3 displays the results when the amount of missingness was varied for IRTs. 

Figure 3 (a) displays the six scenarios with the sample size calculated by each method 

as ϕ = P Ri = 1  was varied on the x-axis. Figure 3 (b) displays the empirical power for 

each sample size when the IPRW estimator was used in the analysis. For scenario 1 for 

each combination of outcome type and function g , nIPRW was lower than the sample size 

calculated by each of the other three approaches, with a larger difference when there were 

more missing outcome data. The empirical power for the IPRW estimator when the sample 

size was calculated by the IPRW formula was very close to the target of 90%, whereas the 

empirical power for the other three approaches was greater than 90% with higher power as 

the amount of missing data increased. For scenario 2 for each combination of outcome type 

and function g , nIPRW was lower than the sample size calculated by nknown and higher than 

the sample size calculated by napprox and nstandard, with larger differences when there were more 

missing outcome data. The empirical power for the IPRW estimator when the sample size 

was calculated by the IPRW formula was very close to the target of 90%, whereas the power 

for nknown was greater than 90% and for napprox and nstandard was lower than 90% with lower power 

as the amount of missing data increased.

Figure 4 displays the results when parameters for the τ component of the sample size 

formulas were estimated from a pilot trial. Figure 4(a) displays six scenarios with the 

mean sample size calculated as the size of the pilot trial npilot  was varied on the x-axis. 

Figure 4(b) displays the empirical power for each sample size calculation approach when 

the IPRW estimator was used in the analysis. The empirical power using the IPRW sample 
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size formula gets close to the target of 90% when npilot ≥ 100 for all scenarios. For the two 

continuous outcome scenarios and scenario 2 for the binary outcome with an identity link 

function (g), the empirical power for the IPRW sample size formula is ~85% (lower than the 

target of 90%) when npilot = 50. For the other scenarios the empirical power is closer to the 

90% target when npilot = 50. Furthermore, for scenario 1 when the sample size is calculated 

by the nstandard and napprox approaches using pilot trial data estimates, the empirical power is at 

or above 90%, and for scenario 2 the empirical power is at or below 90%. As expected, 

the nknown formula results in higher empirical power than all other sample size calculation 

approaches.

The differences in sample size calculated by each formula can be explored on an R shiny 

app we developed at https://lindajaneharrison.shinyapps.io/SampleSizeMissing/. Output 

from the R shiny app for scenario 3 and 4 in Table 1 is displayed in Web Figure 14.

4 | EXAMPLES

4.1 | Tutorial on sample size calculation based on an IPRW estimator for a confirmatory 
CRT

The sample size calculation formulas derived in this paper require several parameters. To aid 

researchers to implement these formulas, this tutorial walks through the process of obtaining 

the parameters needed for the sample size calculation from a published CRT that evaluated 

HIV testing strategies among sex workers26. The published trial, which for the purpose of 

this tutorial we will consider as a pilot study, randomized about 50 peer educators (the 

clusters) to direct delivery of HIV self-tests to sex workers and 50 peer educators to refer sex 

workers to standard HIV testing. Each peer educator recruited 6 sex workers (i.e. m = 6), and 

the primary outcome was a binary outcome of whether or not a sex worker reported having a 

HIV test.

We illustrate our methods by proposing a design for a confirmatory CRT to detect a 

difference in HIV testing proportions between the direct delivery and standard testing groups 

based on the observed difference in the ‘pilot’ published study where the planned primary 

analysis for the confirmatory study will be by IPRW estimating equations. The baseline 

binary variable ‘Where do you get healthcare?’ with answer choices of a ‘community 

clinic’ or ‘elsewhere’ that was fully observed in the pilot study will be used in the logistic 

regression model for the probability of observing an outcome response in each randomized 

intervention group.

We firstly need an estimate from the pilot trial of the proportion of sex workers who got 

healthcare at a community clinic. This was 67% (π̂1, see Table 3 for the estimator and 

estimate from the pilot data). The remaining 33% of sex workers got healthcare elsewhere 

(π̂2 in Table 3). Secondly, we need an estimate of the chance of observing the outcome in 

both intervention groups for sex workers receiving healthcare in both settings. In the direct 

delivery group, the probability that the outcome was observed for sex workers who got 

healthcare at the community clinic was 61% [expit(β̂11) in Table 3], whereas for sex workers 

receiving healthcare elsewhere it was 96% [expit(β̂21) in Table 3]. In the standard testing 
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group, the probability that the outcome was observed for sex workers who got healthcare at 

the community clinic was 57% [expit(β̂10) in Table 3, whereas for sex workers who received 

healthcare elsewhere it was 97% [expit(β̂20) in Table 3]. Thirdly, we need an estimate of the 

outcome prevalence in each of the four groups determined by intervention and healthcare. 

As the outcome is assumed to be MAR given the intervention and healthcare group, we 

can obtain these estimates from the unweighted observed data. Eighty-five percent of sex 

workers had a HIV test among those receiving healthcare at a community clinic in the 

standard testing group (μ̂10 in Table 3), whereas in the other three groups the proportion of 

sex workers who had a HIV test was ≥ 94% (μ̂11, μ̂21 and μ̂20 in Table 3). Fourthly, we need 

an estimate of the outcome prevalence in each intervention group. This is obtained from the 

pilot data using the IPRW estimator weighting for where sex workers got their healthcare in 

each intervention group (μ̂1 and μ̂0 in Table 3). For completeness, an IPRW estimate of the 

intercluster correlation of 0.36 was obtained from the pilot data (δ̂ in Table 3). The rationale 

for the IPRW estimator used to obtain the intercluster correlation is explained in more detail 

in Web Appendix D.

Based on parameter estimates obtained from the pilot data, we can calculate τIPRW. It follows 

that a confirmatory CRT would require 2150 sex workers across the two randomized 

groups to detect the difference observed in the pilot trial on the log odds ratio scale at 

a two-sided 5% significance level with 90% power. Therefore, about 360 peer educators 

would need to be recruited with about half the peer educators randomized to each 

intervention group. R code to estimate the parameters for this tutorial can be found at 

https://github.com/lindajaneharrison/missing/releases/tag/v3.0 and output from the R shiny 

app (https://lindajaneharrison.shinyapps.io/SampleSizeMissing/) displaying this calculation 

is in Web Figure 15. Sensitivity analysis varying any of the parameters can easily be 

performed using this app.

As a note, the primary outcome was actually observed for 93% of sex workers in the 

published trial rather than 71% in the above example. We modified the published trial data 

to have a higher proportion of sex workers with missing outcomes in the group getting 

healthcare at a community clinic for illustration. Furthermore, the calculations conducted are 

based on weighting by a single binary variable. If further variables from the pilot data were 

considered, the technique for pilot data with several weighting variables in Section 2.7 could 

be utilized.

4.2 | Case study of an IRT

In Web Appendix D we provide an additional illustration of how different patterns of 

missing outcome data can influence the required sample size under an IPRW estimator 

compared to the standard approach for an IRT. Briefly, the example highlights that the 

relative efficiency of the IPRW versus the standard approach is dependent upon the 

association between the weighting variable and the probability of the outcome being 

observed, as well as the variability of within-category variances of the chosen outcome 

measure when weighting by a categorical variable.
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5 | DISCUSSION

When designing a randomized trial, the number of participants to recruit is an important 

consideration. If outcome data are expected to be MAR and the primary analysis will 

employ corresponding methods to account for this missingness, it would be desirable to 

use sample size calculation techniques that match the analysis method. In this paper, we 

investigate sample size calculation when a single outcome variable is MAR given the 

randomized intervention group and fully observed baseline variables. Our approach uses 

weighted estimating equations to weight participants with observed outcomes by the inverse 

probability of being observed. A weighting technique that employs weight stabilization 

could alternatively be used in the analysis phase. Stabilization adjusts the weights by 

a constant that minimizes the large sample variance27, so in this case our sample size 

technique is likely to be conservative.

The variance formula for the intervention effect estimator under single imputation/simple 

g-computation can be derived (Web Appendix E). When single imputation is based on 

a categorical covariate the variance formula is the same as when employing unstabilized 

IPRWs. Weight augmentation incorporates both an outcome model and a missingness 

model to form a doubly robust estimator of the primary contrast of interest, which will 

be consistent if either the outcome or missingness model is correctly specified. If both 

models are correct, the augmentation approach can be more efficient that unstabilized 

weights or single imputation4,27. For MI, previous power calculation work has focused on 

a difference in means10. While a closed-form formula is available when outcome data are 

MCAR and the outcome and covariates are normally distributed28, derivation of a formula 

when outcome data are MAR is challenging. Extensions to non-linear link function and 

categorical covariate settings would require further derivation and would be an interesting 

area of research.

In randomized trials it is common to adjust for baseline covariates in the outcome model. 

If outcome data are MAR given baseline covariates and the randomized intervention group, 

an outcome model to estimate the difference between the intervention and control groups 

based on the complete cases adjusted for baseline covariates is a valid approach for a 

continuous outcome under a linear model when the intervention effect is homogeneous 

across values of the baseline covariates29. Indeed, sample size calculation formulas based 

on analysis of covariance30 could be further adapted for MAR data settings. However, for 

a binary outcome analyzed with a logit model, due to ‘non-collapsibility’ of the odds ratio, 

adjustment for baseline covariates leads to a different intervention effect estimand. If the 

intervention effect is heterogeneous over values of the baseline covariates, subgroup analysis 

may be of interest. Where resources are available, trials can be designed with enough power 

to detect intervention effects in certain subgroups31. Nonetheless, the marginal causal effect 

of the intervention is often estimated from clinical trial data and is usually of public health 

importance. Since adjustment for baseline covariates as precision variables in randomized 

trials can also be performed via IPTWs32, and combining IPTWs and IPRWs has been 

proposed33, an additional avenue for research could evaluate weighting for both precision 

variables and for missing outcome data in randomized trials.
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Our method could easily be adapted to consider a mean or risk ratio, where g would be the 

log function. Another extension of our work could consider weighted estimating equations 

with repeated measures of the outcome. Under a monotone missingness assumption and 

known IPRWs, Sun34 derived expressions for sample size calculation in this context. We 

extended our sample size formulas to CRTs with a single outcome measure under a weighted 

GEE approach. In our derivation, we assumed no clustering of missingness of the outcome. 

A further adaptation could allow for clustering of missingness within the weighted GEE 

approach by including a missingness indicator correlation parameter in the estimating 

equations, as in Chen et al35.

While this paper provides a way forward to calculate sample size in the study design phase 

when a weighted analysis to account for MAR outcome data is planned, it is unlikely 

that all parameters needed for the calculation will be known at the design phase. In the 

absence of pilot data, a method that weights for a single baseline categorical or normally 

distributed variable could be considered along with sensitivity analysis conducted using our 

R shiny app. In this simplified scenario, the same parameters are required for the IPRW 

approach and the approach that considers the weights as known. Therefore, it would be 

better to use the IPRW approach with the approach considering the weights as known 

as a conservative alternative. The further approximation we explored napprox  that separates 

information needed on the IPRWs from the variability of the outcome measure allows an 

outcome invariant relative efficiency for weighting for continuous outcomes as previously 

described in the context of IPTWs12. Unfortunately, since a component of the correlation 

between the weights and the outcome is ignored, the approximation can be inaccurate when 

both the association of the covariates with the outcome and with the probability of the 

outcome being observed is strong. Therefore, we would not recommend this approach. The 

standard approach could be used for simplicity if it gave a very similar sample size to the 

IPRW approach and the approach that considers the weights as known when utilizing our 

R shiny app. When pilot data are available, an approach to estimate parameters needed 

for the sample size calculation is described in Section 2.7. The accuracy of this approach 

for various pilot trial sizes was explored in our simulation studies. Pilot trials with 100 or 

more participants resulted in empirical power close to the target in the settings evaluated. 

A similar observation has been made by Julious et al36 and Fay at al37 for the standard 

sample size calculation approach for a continuous outcome in the context of accounting for 

the uncertainty in variance estimation from pilot data.

Lastly, we have assumed outcome data are MAR. Cook and Zea13 explored power for a 

binary outcome based on a missing not at random assumption with principled sensitivity 

analyses. They reported dramatic losses of power for certain sensitivity analyses. Future 

research could aim to identify scenarios where power is dramatically reduced for other 

outcome measures under a missing not at random assumption and when covariates are 

incorporated. As sensitivity analyses are recommended to assess the robustness of inferences 

about intervention effects to various missing data assumptions2, this would be important to 

additionally consider in the trial design stage.
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FIGURE 1. 
Sample size calculated to detect a risk difference of μ1 − μ0 = 0.375 − 0.275 with 90% 

power at a two-sided 5% significance level using the nIPRW, nknown, napprox and nstandard

formulas. The within-category prevalence of the outcome in the intervention group (μ11

and μ21 = 2μ1 − μ11) is varied on the x-axis, and within-category prevalence of the outcome 

in the control group is held fixed at the displayed values of μ10 and μ20 = 2μ0 − μ10. 

The probability of the outcome being observed in each category and intervention group 

is as displayed for P Ri = 1 ∣ Xi = 1, Zi = 1 = expit β11 , P Ri = 1 ∣ Xi = 2, Zi = 1 = expit β21 , 

P Ri = 1 ∣ Xi = 1, Zi = 0 = expit β10  and P Ri = 1 ∣ Xi = 2, Zi = 0 = expit β20 .
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FIGURE 2. 
Sample size calculated to detect a mean difference of μ1 − μ0 = 0.375 − 0.275 with 90% 

power at a two-sided 5% significance level using the nIPRW, nknown, napprox and nstandard

formulas. The correlation ρ  between the weighting variable Xi  and the outcome Y i

is varied on the x-axis. The probability of the outcome being observed at each xi

value and intervention group is as displayed for P Ri = 1 ∣ Xi = xi, Zi = 1 = expit β01 + β11xi

and P Ri = 1 ∣ Xi = xi, Zi = 0 = expit β00 + β10xi . nIPRW is approximated by Gauss-Hermite 

quadrature with 100 quadrature points.
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FIGURE 3. 
(a) Datasets generated with the sample size calculated to have 90% power at a two-sided 

5% significance level using the nIPRW, nknown, napprox and nstandard formulas when weighting by a 

baseline binary covariate in an IRT, where the probability of the outcome being observed 

ϕ = P Ri = 1  is varied on the x-axis. (b) Simulation results displaying the empirical power 

for each sample size with the IPRW estimator.
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FIGURE 4. 
(a) Mean sample size of datasets generated with calculation from pilot trial estimates to 

have 90% power at a two-sided 5% significance level using the nIPRW, nknown, napprox and nstandard

formulas when weighting by a baseline binary covariate in an IRT, where the size of the pilot 

trial npilot is varied on the x-axis. (b) Simulation results displaying the empirical power for 

each sample size calculation method with the IPRW estimator.
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TABLE 1

Datasets generated and simulations results for individually randomized trials (IRTs) with missing outcome 

data based on a single fully observed baseline binary covariate

(a) Datasets generated

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 3 4 1 2 1 2

Parameters π1 0.5 0.5 0.7 0.7 0.5 0.5 0.5 0.5

μ11 0.9 0.62 0.2 0.2 0.9 0.62 0.9 0.62

μ21 0.3 0.95 0.3 0.3 0.3 0.95 0.3 0.95

μ10 0.15 0.63 0.1 0.1 0.15 0.63 0.15 0.63

μ20 0.85 0.74 0.2 0.2 0.85 0.74 0.85 0.74

σ11
2 0.026 0.41955 0.01 0.01 0.09 0.2356 0.09 0.2356

σ21
2 0.294 0.026 0.3 0.3 0.21 0.0475 0.21 0.0475

σ10
2 0.026 0.46795 0.01 0.01 0.1275 0.2331 0.1275 0.2331

σ20
2 0.229 0.026 0.3 0.3 0.1275 0.1924 0.1275 0.1924

expit β11 0.7 0.7 0.64 1 0.7 0.7 0.7 0.7

expit β21 0.9 0.9 1 0.64 0.9 0.9 0.9 0.9

expit β10 0.75 0.75 0.64 1 0.75 0.75 0.75 0.75

expit β20 0.85 0.85 1 0.64 0.85 0.85 0.85 0.85

g μ1 − g μ0 0.1 0.1 0.1 0.1 0.1 0.1 0.41 0.52

Sample size nstandard 1314 1314 558 468 1288 1012 1306 1034

nIPRW 1150 1412 434 630 1164 1038 1180 1068

nknown 1266 1430 436 634 1280 1056 1298 1088

napprox 1328 1328 582 488 1300 1020 1318 1044

For all scenarios: κ = 0.5, π2 = 1 − π1

(b) Simulation results

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 3 4 1 2 1 2

Sample size nstandard 1314 1314 558 468 1288 1012 1306 1034

IPRW 
estimator

power 
% g μ̂1 − g μ̂0

93 [0.10] 87 [0.10] 96 [0.10] 80 [0.10] 93 [0.10] 89 [0.10] 93 [0.41] 90 [0.52]

Sample size nIPRW 1150 1412 434 630 1164 1038 1180 1068

IPRW 
estimator

power 
% g μ̂1 − g μ̂0

90 [0.10] 90 [0.10] 90 [0.10] 90 [0.10] 90 [0.10] 89 [0.10] 90 [0.41] 90 [0.52]

Sample size nknown 1266 1430 436 634 1280 1056 1298 1088
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(a) Datasets generated

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 3 4 1 2 1 2

IPRW 
estimator

power 
% g μ̂1 − g μ̂0

92 [0.10] 91 [0.10] 90 [0.10] 90 [0.10] 93 [0.10] 91 [0.10] 92 [0.41] 91 [0.52]

Sample size napprox 1328 1328 582 488 1300 1020 1318 1044

IPRW 
estimator

power 
% g μ̂1 − g μ̂0

93 [0.10] 88 [0.10] 96 [0.10] 81 [0.10] 92 [0.10] 89 [0.10] 93 [0.40] 90 [0.52]

g μ̂1 − g μ̂0  displays the average estimated intervention effect across the 10 000 simulations
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TABLE 2

Datasets generated and simulations results for cluster randomized trials (CRTs) with missing outcome data 

based on a single fully observed baseline binary covariate

(a) Datasets generated

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 1 2 1 2

Parameters μ11 0.9 0.62 0.9 0.62 0.9 0.62

μ21 0.3 0.95 0.3 0.95 0.3 0.95

μ10 0.15 0.63 0.15 0.63 0.15 0.63

μ20 0.85 0.74 0.85 0.74 0.85 0.74

σ11
2 0.026 0.41955 0.09 0.2356 0.09 0.2356

σ21
2 0.294 0.026 0.21 0.0475 0.21 0.0475

σ10
2 0.026 0.46795 0.1275 0.2331 0.1275 0.2331

σ20
2 0.229 0.026 0.1275 0.1924 0.1275 0.1924

g μ1 − g μ0 0.1 0.1 0.1 0.1 0.41 0.52

Sample size nC‐standard 1524 1524 1494 1172 1514 1200

nC‐IPRW 1360 1622 1370 1200 1388 1232

nC‐known 1476 1640 1486 1216 1506 1254

nC‐approx 1538 1538 1506 1182 1528 1210

KC‐standard 306 306 320 236 304 240

KC‐IPRW 272 326 274 240 278 248

KC‐known 296 328 298 244 302 252

KC‐approx 308 308 302 238 306 242

For all scenarios: κ = 0.5, π1 = π2 = 0.5, δ = 0.05, m = 5,
expit β11 = P Rki = 1|Xki = 1, Zk = 1 = 0.7, expit β21 = P Rki = 1|Xki = 2, Zk = 1 = 0.9,
expit ρ10 = P Rki = 1|Xki = 1, Zk = 0 = 0.75, expit ρ20 = P Rki = 1|Xki = 2, Zk = 0 = 0.85

(b) Simulation results

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 1 2 1 2

Sample size nC‐standard 1524 1524 1494 1172 1514 1200

IPRW estimator power % g μ̂1 − g μ̂0 93 [0.10] 89 [0.10] 94 [0.10] 91 [0.10] 94 [0.41] 91 [0.52]

Sample size nC‐IPRW 1360 1622 1370 1200 1388 1232

IPRW estimator power % g μ̂1 − g μ̂0 90 [0.10] 90 [0.10] 91 [0.10] 90 [0.10] 92 [0.41] 91 [0.52]

Sample size nC‐known 1476 1640 1486 1216 1506 1254

IPRW estimator power % g μ̂1 − g μ̂0 92 [0.10] 90 [0.10] 94 [0.10] 91 [0.10] 94 [0.41] 91 [0.52]
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(a) Datasets generated

Y i continuous, g identity Y i binary, g identity Y i binary, g logit

Scenario 1 2 1 2 1 2

Sample size nC‐approx 1538 1538 1506 1182 1528 1210

IPRW estimator power % g μ̂1 − g μ̂0 93 [0.10] 88 [0.10] 94 [0.10] 90 [0.10] 94 [0.40] 91 [0.52]

g μ̂1 − g μ̂0  displays the average estimated intervention effect across the 10 000 simulations
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TABLE 3

Design of a confirmatory cluster randomized trial (CRT) accounting for missing outcome data based on a 

single fully observed baseline binary variable

Estimation of parameters from the pilot CRT data

Xki

1 
community π̂1 = P̂ Xki = 1 = Σk = 1

K Σi = 1
m 1 −1 Σk = 1

K Σi = 1
m I Xki = 1 0.67

2 elsewhere π̂2 = P̂ Xki = 2 = Σk = 1
K Σi = 1

m 1 −1 Σk = 1
K Σi = 1

m I Xki = 2 0.33

Rki, Xki, 
Zk

1 observed, 
1 
community, 
1 direct 
delivery

expit(β̂11) = P̂ Rki = 1|Xki = 1, Zk = 1 = Σk = 1
K Σi = 1

m I Xki = 1 Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 1 Zk

0.61

1 observed, 
2 
elsewhere, 
1 direct 
delivery

expit(β̂21) = P̂ Rki = 1|Xki = 2, Zk = 1 = Σk = 1
K Σi = 1

m I Xki = 2 Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 2 Zk

0.96

1 observed, 
1 
community, 
0 standard 
testing

expit(β̂10) = P̂ Rki = 1|Xki = 1, Zk = 0 = Σk = 1
K Σi = 1

m I Xki = 1 1 − Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 1 1 − Zk

0.57

1 observed, 
2 
elsewhere, 
0 standard 
testing

expit(β̂20) = P̂ Rki = 1|Xki = 2, Zk = 0 = Σk = 1
K Σi = 1

m I Xki = 2 1 − Zk
−1 Σk = 1

K Σi = 1
m RkiI(Xki = 2)(1 − Zk) 0.97

Y ki, Xki, 
Zk

1 HIV test, 
1 
community, 
1 direct 
delivery

μ̂11 = Ê Y ki |Xki = 1, Zk = 1 = Σk = 1
K Σi = 1

m RkiI Xki = 1 Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 1 ZkY i

0.94

1 HIV test, 
2 
elsewhere, 
1 direct 
delivery

μ̂21 = Ê Y ki |Xki = 2, Zk = 1 = Σk = 1
K Σi = 1

m RkiI Xki = 2 Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 2 ZkY i

0.98

1 HIV test, 
1 
community, 
0 standard 
testing

μ̂10 = Ê Y ki |Xki = 1, Zk = 0 = Σk = 1
K Σi = 1

m RkiI Xki = 1 1 − Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 1 1 − Zk Y i

0.85

1 HIV test, 
2 
elsewhere, 
0 standard 
testing

μ̂20 = Ê Y ki |Xki = 2, Zk = 0 = Σk = 1
K Σi = 1

m RkiI Xki = 2 1 − Zk
−1 Σk = 1

K Σi = 1
m RkiI Xki = 2 1 − Zk Y i

0.94

Y ki, Zk
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1 HIV test, 
1 direct 
delivery

μ1 = E Y ki ∣ Zk = 1 = ∑k = 1
K ∑i = 1

m ZkRkie1ki
−1 −1 ∑k = 1

K ∑i = 1
m ZkRkie 1ki

−1Y ki
0.95

1 HIV test, 
0 standard 
testing

μ0 = E Y ki ∣ Zk = 0 = ∑k = 1
K ∑i = 1

m 1 − Zk Rkie0ki
−1 −1 ∑k = 1

K ∑i = 1
m 1 − Zk Rkie0ki

−1Y ki
0.88

δ

intercluster 
correlation δ = corr Y ki, Y kj = ∑k = 1

K ∑i ≠ jRkiRkj(Zke1ki
−1e1kj

−1 + 1 − Zk e0ki
−1e0kj

−1 −1

∑k = 1
K ∑i ≠ jRkiRkj

Zke1ki
−1e1kj

−1 Y ki − μ1 Y kj − μ1
μ1 1 − μ1

+ 1 − Zk e0ki
−1e0kj

−1 Y ki − μ0 Y kj − μ0
μ0 1 − μ0

0.36

Sample size calculation for a confirmatory CRT

IPRW 
design 
component

τC−IPRW = ∑c = 1
2 κ−1 πc

μ1 1 − μ1
2

μc1 1 − μc1

expit(β c1)
+ μc1 − μ1

2

+∑c = 1
2 κ−1 πc

μ0 1 − μ0
2

μc0 1 − μc0

expit(β c0)
+ μc0 − μ0

2

+(m − 1)δ μ1 1 − μ1
−1 + μ0 1 − μ0

−1
2

214.6

number of 
individuals nC − IPRW = τC − PPW z0.9 + z0.975

2/ logit μ̂1 − logit μ̂0
2 2150

number of 
clusters

KC − IPRW = 2 nC − IPRW/2 /m 360

I( . ) is the indictor function.
Xki is the covariate ‘Where do you get your healthcare?’ with answer choices 1 ‘community clinic’ or 2 ‘elsewhere’.

Zk is the intervention group: 1 direct delivery of HIV self-tests to sex workers or 0 refer sex workers to standard HIV testing.
Rki is the observed indicator: 1 sex worker’s HIV testing status is observed or 0 sex worker’s HIV testing status is missing.

Y ki is the outcome: 1 sex worker had a HIV test and 0 sex worker did not have a HIV test.
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