Skip to main content
. Author manuscript; available in PMC: 2024 May 20.
Published in final edited form as: Stat Med. 2023 Mar 6;42(11):1802–1821. doi: 10.1002/sim.9700

TABLE 1.

Datasets generated and simulations results for individually randomized trials (IRTs) with missing outcome data based on a single fully observed baseline binary covariate

(a) Datasets generated
Yi continuous, g identity Yi binary, g identity Yi binary, g logit

Scenario 1 2 3 4 1 2 1 2

Parameters π1 0.5 0.5 0.7 0.7 0.5 0.5 0.5 0.5
μ11 0.9 0.62 0.2 0.2 0.9 0.62 0.9 0.62
μ21 0.3 0.95 0.3 0.3 0.3 0.95 0.3 0.95
μ10 0.15 0.63 0.1 0.1 0.15 0.63 0.15 0.63
μ20 0.85 0.74 0.2 0.2 0.85 0.74 0.85 0.74
σ112 0.026 0.41955 0.01 0.01 0.09 0.2356 0.09 0.2356
σ212 0.294 0.026 0.3 0.3 0.21 0.0475 0.21 0.0475
σ102 0.026 0.46795 0.01 0.01 0.1275 0.2331 0.1275 0.2331
σ202 0.229 0.026 0.3 0.3 0.1275 0.1924 0.1275 0.1924
expitβ11 0.7 0.7 0.64 1 0.7 0.7 0.7 0.7
expitβ21 0.9 0.9 1 0.64 0.9 0.9 0.9 0.9
expitβ10 0.75 0.75 0.64 1 0.75 0.75 0.75 0.75
expitβ20 0.85 0.85 1 0.64 0.85 0.85 0.85 0.85
gμ1-gμ0 0.1 0.1 0.1 0.1 0.1 0.1 0.41 0.52

Sample size nstandard 1314 1314 558 468 1288 1012 1306 1034
nIPRW 1150 1412 434 630 1164 1038 1180 1068
nknown 1266 1430 436 634 1280 1056 1298 1088
napprox 1328 1328 582 488 1300 1020 1318 1044

For all scenarios: κ=0.5, π2=1π1
(b) Simulation results
Yi continuous, g identity Yi binary, g identity Yi binary, g logit

Scenario 1 2 3 4 1 2 1 2

Sample size nstandard 1314 1314 558 468 1288 1012 1306 1034
IPRW estimator power (%)gμˆ1-gμˆ0 93 [0.10] 87 [0.10] 96 [0.10] 80 [0.10] 93 [0.10] 89 [0.10] 93 [0.41] 90 [0.52]

Sample size nIPRW 1150 1412 434 630 1164 1038 1180 1068
IPRW estimator power (%)gμˆ1-gμˆ0 90 [0.10] 90 [0.10] 90 [0.10] 90 [0.10] 90 [0.10] 89 [0.10] 90 [0.41] 90 [0.52]

Sample size nknown 1266 1430 436 634 1280 1056 1298 1088
IPRW estimator power (%)gμˆ1-gμˆ0 92 [0.10] 91 [0.10] 90 [0.10] 90 [0.10] 93 [0.10] 91 [0.10] 92 [0.41] 91 [0.52]

Sample size napprox 1328 1328 582 488 1300 1020 1318 1044
IPRW estimator power (%)gμˆ1-gμˆ0 93 [0.10] 88 [0.10] 96 [0.10] 81 [0.10] 92 [0.10] 89 [0.10] 93 [0.40] 90 [0.52]

gμˆ1-gμˆ0 displays the average estimated intervention effect across the 10 000 simulations