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ABSTRACT Ivermectin is an endectocide used widely to treat a variety of internal and
external parasites. Field trials of ivermectin mass drug administration for malaria trans-
mission control have demonstrated a reduction of Anopheles mosquito survival and
human malaria incidence. Ivermectin will mostly be deployed together with artemisi-
nin-based combination therapies (ACT), the first-line treatment of falciparum malaria.
It has not been well established if ivermectin has activity against asexual stage
Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalar-
ial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in
artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro
drug-drug interaction with artemisinins and its partner drugs. The concentration of iver-
mectin causing half of the maximum inhibitory activity (IC50) on parasite survival was
0.81 mM with no significant difference between artemisinin-sensitive and artemisinin-re-
sistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active
than the ivermectin parent compound (P , 0.001). Potential pharmacodynamic drug-
drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone
were studied in vitro using mixture assays providing isobolograms and derived frac-
tional inhibitory concentrations. There were no synergistic or antagonistic pharmacody-
namic interactions when combining ivermectin and antimalarial drugs. In conclusion,
ivermectin does not have clinically relevant activity against the asexual blood stages of
P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or
ACT-partner drugs against asexual blood stages of P. falciparum.

KEYWORDS ivermectin, ivermectin metabolites, drug-drug interactions, antimalarial
drugs, Plasmodium falciparum

In 2021, there were an estimated 247 million malaria cases and 619,000 malaria
deaths worldwide according to WHO estimates (1). Six countries in the Greater

Mekong subregion (GMS)—Cambodia, China (specifically Yunnan Province and the
Guangxi Zhuang Autonomous Region), Laos, Myanmar, Thailand, and Vietnam—have
all pledged to aim for malaria elimination by 2030. Malaria prevention and treatment
in this region relies heavily on safe and effective antimalarial drugs. Artemisinin
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resistance in Plasmodium falciparum has emerged and spread widely throughout the
GMS (2, 3). It has also recently emerged in Rwanda (4, 5) and Uganda (6–8). The spread
of antimalarial drug resistance is one of the most important obstacles to malaria elimi-
nation. New drugs are needed urgently for malaria treatment and elimination.

Ivermectin is a well-established antiparasitic drug with endectocidal properties. The pri-
mary target of ivermectin is the glutamate-gated chloride (GluCl) ion channel in the muscle
and nerves of invertebrates (9–11). Ivermectin binds with high affinity and prevents the clo-
sure of the GluCl channel leading to an influx of chloride with subsequent hyperpolarization
of the cell, leading to flaccid paralysis and potential death. Ivermectin has been used widely
in mass drug administration (MDA) for the eradication of onchocerciasis and lymphatic fila-
riasis. Recently, ivermectin has been proposed for use in MDA for malaria transmission con-
trol as it has potent mosquito-lethal properties against Anopheles mosquitoes (12–16). In
Anopheles, ivermectin at sublethal concentrations delays time to refeeding, decreases loco-
motor activity, reduces fecundity, and inhibits Plasmodium development in the vector
which could further impact transmission (17–21). Using ivermectin as a complementary
approach for vector control can target mosquitoes that have changed their feeding behav-
ior or survive from conventional vector control measures (i.e., indoor residual spraying and
long-lasting insecticidal nets). Ivermectin MDA field trials have shown promising results in
reducing wild Anopheles survival (14, 15, 22) and human malaria incidence (22, 23).

Ivermectin significantly reduces survival of Anopheles malaria vector (21, 24). In vitro
mosquito-killing activity of ivermectin was used to predict mosquito-lethal effect in
humans by pharmacokinetic-pharmacodynamic modeling. The simulated time above
the lethal concentration that kills 50% of mosquitoes (LC50) after single dose administra-
tion of ivermectin (400 mg/kg) was 0.4 and 1.1 days in Anopheles dirus and Anopheles
minimus mosquitoes, respectively (21). However, a clinical trial in healthy Thai adults
showed much greater mosquito-killing activity after single dose ivermectin (400 mg/kg)
treatment compared to in vitro ivermectin-spiked blood (24). This suggests that unchar-
acterized ivermectin metabolites may possess mosquito-lethal effects (24). When eval-
uated using in vitro systems, ivermectin is primarily metabolized by cytochrome P450
3A4. More than 10 ivermectin metabolites, mostly hydroxylated and demethylated, were
identified using human liver microsomes (25, 26). These metabolites; 3”-O-demethyl iver-
mectin (M1), 4-hydroxymethyl ivermectin (M3), and 3”-O-demethyl, 4-hydroxymethyl
ivermectin (M6) were found in human blood (26).

Ivermectin affects Plasmodium development in the Anopheles vector. Laboratory stud-
ies demonstrated that ivermectin at sublethal concentration on Anopheles vector inhibits
P. falciparum and Plasmodium vivax sporogony by reducing oocyst prevalence and inten-
sity (19, 21, 27–29). It has been reported that ivermectin inhibits the liver stages of
Plasmodium berghei, similar to the pre-erythrocytic effects of primaquine (30), and it was
also shown to inhibit the development of liver schizonts and hypnozoites of Plasmodium
cynomolgi when evaluated in in vitro models (31). Ivermectin impaired both the in vitro
sexual and asexual blood stage development in P. falciparum (32–34). However, the effect
of ivermectin against the asexual blood stage showed very different levels of response in
P. falciparum K1 strain when using different assays; IC50 of 8mg/mL (equivalent to 9.1mM)
using the [3H] hypoxanthine incorporation assay (33) and 0.32 mg/mL (equivalent to
0.37 mM) using P. falciparum Histidine-Rich Protein 2 (HRP2) enzyme-linked immunosor-
bent assay (32). It was proposed that ivermectin blocked nucleo-cytoplasmic shuttling of
P. falciparum signal recognition particle components (34, 35). Asexual stage P. vivaxmatu-
ration was impaired when incubated with ivermectin-treated human plasma at 4 h after
200mg/kg ivermectin single dose administration (28).

Ivermectin has been combined with dihydroartemisinin-piperaquine in MDA cam-
paigns against malaria in The Gambia (22). This intervention was shown to be safe, well
tolerate, and effective in reducing the prevalence of malaria in the region. Ivermectin has
also been combined with seasonal malaria chemoprevention in a cluster-randomized trial
evaluating sulfadoxine-pyrimethamine plus amodiaquine in Burkina Faso and reported
no safety concerns (23). Furthermore, a healthy volunteer trial reported a small increase
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in ivermectin exposure of approximately 25% when combined with dihydroartemisinin-
piperaquine but with no effect of primaquine co-administration (24). The lack of substantial
pharmacokinetic drug-drug interactions and safety signals are promising, but there is still a
paucity on the information of possible pharmacodynamic drug-drug interactions. The current
study investigated the effects of ivermectin and its metabolites against asexual blood stages
of artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and the pharmacody-
namic interactions of ivermectin when combined with commonly used antimalarial drugs.

RESULTS

Ivermectin parent compound, ivermectin aglycone, ivermectin monosaccharide,
M1, M3, and M6 (Fig. S1) were selected to study antimalarial effects in this study.
Antimalarial activity of ivermectin and its metabolites on asexual blood stage were
investigated using a standard SYBR green I-based 72 h in vitro assay. Ivermectin parent
compound showed antimalarial activity on asexual blood stage in a dose-dependent
manner with mean (95% confidence interval) IC50 of 0.81 (0.67 to 0.95) mM and 0.81
(0.75 to 0.88)mM when tested against two artemisinin-sensitive and five artemisinin-re-
sistant isolates, respectively (Table 1; Fig. S2). There was no significant difference in IC50

between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The IC50s of
all ivermectin-related compounds, including its major metabolites, were 2-fold to 4-
fold higher than ivermectin parent compound (Table 1). Ivermectin aglycone had the
highest IC50 and all ivermectin metabolites showed less potency compared to ivermec-
tin parent compound against all isolates (P, 0.001).

Ivermectin and antimalarial drug combination activity against P. falciparum was eval-
uated by a checkerboard analysis and presented as isobolograms and FIC indices. Eight
combinations were tested with artemisinin-sensitive and artemisinin-resistant P. falciparum
isolates. Isobologram analysis demonstrated no substantial interaction between ivermectin
and amodiaquine, atovaquone, artesunate, dihydroartemisinin, lumefantrine, mefloquine,
piperaquine, or pyronaridine (

P
FIC. 0.5 and#4) (Fig. 1; Table 2).

The antimalarial activity of artesunate was further studied alone and in combination

TABLE 1 Antimalarial effect of ivermectin and its metabolites on asexual blood stages of P. falciparuma

Parasite
Pfk13
mutation Ivermectin

Ivermectin
aglycone

Ivermectin
monosaccharide

30-O-demethyl
ivermectin (M1)

4-hydroxymethyl
ivermectin (M3)

30-O-demethyl,
4-hydroxymethyl
ivermectin (M6)

Laboratory strain
NF54 Wild type 0.63

(0.46 to 0.80)
2.55
(1.91 to 3.18)

1.88
(1.39 to 2.38)

1.99
(1.69 to 2.29)

1.68
(1.22 to 2.14)

2.57
(2.02 to 3.13)

Artemisinin-sensitive isolates
ARN3G Wild type 0.85

(0.55 to 1.10)
2.72
(2.56 to 2.87)

1.97
(1.56 to 2.39)

1.91
(1.78 to 2.05)

2.33
(1.78 to 2.87)

2.80
(2.42 to 3.18)

ARK1G Wild type 0.76
(0.49 to 1.00)

2.79
(2.14 to 3.43)

2.14
(1.71 to 2.57)

2.02
(1.47 to 2.57)

1.82
(1.61 to 2.02)

2.35
(2.28 to 2.43)

Mean of all artemisinin-
sensitive isolates (n = 2)

0.81
(0.67 to 0.95)

2.75
(2.57 to 2.93)

2.06
(1.87 to 2.24)

1.97
(1.80 to 2.13)

2.07
(1.74 to 2.41)

2.58
(2.30 to 2.86)

Artemisinin-resistant isolates
APL4G C580Y 0.74

(0.66 to 0.81)
3.02
(2.46 to 3.58)

2.01
(1.57 to 2.45)

2.03
(1.65 to 2.41)

1.98
(1.75 to 2.20)

2.66
(2.32 to 3.00)

APL5G C580Y 0.76
(0.47 to 1.10)

4.23
(2.07 to 6.40)

2.97
(1.89 to 4.06)

1.91
(1.60 to 2.23)

2.20
(1.46 to 2.94)

2.85
(1.85 to 3.84)

APS2G R539T 1.06
(0.87 to 1.20)

3.80
(3.53 to 4.06)

3.13
(3.04 to 3.23)

2.49
(2.04 to 2.94)

2.84
(2.60 to 3.08)

3.74
(3.24 to 4.24)

APS9G C580Y 0.79
(0.65 to 0.92)

3.35
(2.60 to 4.10)

2.56
(2.30 to 2.82)

2.29
(1.89 to 2.69)

2.21
(1.98 to 2.44)

3.54
(3.05 to 4.03)

ARN2G G449A 0.78
(0.63 to 0.92)

3.01
(2.25 to 3.78)

2.46
(1.81 to 3.11)

2.00
(1.89 to 2.10)

2.40
(1.96 to 2.84)

3.37
(2.81 to 3.93)

Mean of all artemisinin-
resistant isolates (n = 5)

0.81
(0.75 to 0.88)

3.42
(3.10 to 3.74)

2.58
(2.34 to 2.82)

2.14
(2.00 to 2.28)

2.30
(2.14 to 2.47)

3.23
(2.97 to 3.49)

aAll data are reported as mean IC50 (95% confidence interval), with the unitmM.
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with a fixed dose of 50 ng/mL ivermectin by the trophozoite maturation assay. No dif-
ference was observed in IC50 values of artesunate alone or in combination with iver-
mectin in both artemisinin-sensitive (P = 0.385) and artemisinin-resistant (P = 0.546)
isolates (Fig. S3).

DISCUSSION

The World Health Organization (WHO) has recommended a range of interventions
to achieve the elimination of malaria (36). Ivermectin has a significant mosquito-lethal
effect on many species of Anopheline mosquitoes. (17–19, 21, 28, 37). It has been pro-
posed that ivermectin be used as a complementary malaria vector control tool (38).
Although several studies have reported that ivermectin has a clear concentration-de-
pendent mosquito-lethal effect, resulting in a reduced incidence of malaria, no study
has evaluated the pharmacodynamic drug-drug interactions of ivermectin and the
commonly used antimalarial drugs against the asexual blood stage of Plasmodium par-
asites. The in vitro activity of ivermectin was assessed against P. falciparum laboratory
strains and isolates. Previous reports on the effect of ivermectin on the asexual blood
stage of P. falciparum have reported IC50 values ranging from approximately 0.021 mM
to 9 mM (Table S1) (32–34, 37, 39). Differences in IC50 values between studies may be
due to variations in parasite strains, drug exposure times, and methods of assessment.

FIG 1 Pharmacodynamic interaction analysis. Isobologram analysis of ivermectin and antimalarial drugs against
artemisinin-sensitive (blue circle symbol) and artemisinin-resistant (red square symbol) P. falciparum isolates, illustrated
as fractional inhibitory concentration (FIC). The dashed line represents no interaction between the two drugs.
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In this study, the antimalarial activity of ivermectin was evaluated against artemisinin-
sensitive and artemisinin-resistant P. falciparum isolates; however, there was no corre-
lation between the artemisinin resistance status of the isolate and the ivermectin IC50
(;0.8 mM). A study from Gabon P. falciparum isolates reported relatively low IC50 of
0.14 mM in a chloroquine-sensitive isolate JH26, and 0.021 mM and 0.13 mM in chloro-
quine-resistant isolates JH1 and JH13, respectively. Also, there was no correlation
between the effect of ivermectin and chloroquine resistance (32).

Previous work identified ivermectin metabolites generated by liver microsomes, primary
human hepatocyte, and human blood after ivermectin administration (26). In this current
study, we examined how three primary ivermectin metabolites (M1, M3, M6), as well as iver-
mectin monosaccharide and aglycone, affected both artemisinin-sensitive and resistant par-
asites. Ivermectin was more potent than ivermectin aglycone, ivermectin monosaccharide,
and all ivermectin in vivo metabolites (M1, M3, and M6). The effect of ivermectin aglycone,
which lacks the sugar moiety and has a hydroxy-group at C-13 position, presented .90%
parasite growth at 1 mM concentrations in this study. The reduction of effect due to these
molecular modifications has been shown previously (37, 39).

A single dose of 5 mg/kg ivermectin had no effect on the blood stages of
Plasmodium berghei in rodents, resulting in the same level of parasitemia, gametocyte-
mia, and exflagellation as vehicle control (29). The impact of ivermectin on different
Plasmodium developmental stages has been evaluated, and found to inhibit liver-stage
development of P. berghei (30, 37, 39) and Plasmodium cynomolgi in vitro (31). Three
doses of 10 mg/kg ivermectin inhibited approximately 80% of P. berghei liver infections
and enhanced host survival in 80% of the treated mice (30). However, no causal pro-
phylactic effect of ivermectin was observed for P. cynomolgi infections in macaques
(0.3 to 1.2 mg/kg) (31) or P. falciparum infections in a controlled human malaria infec-
tion model of ivermectin administration at 400 mg/kg (40). Ivermectin inhibited the
sporogony of P. falciparum (27) and P. vivax (19, 21) at sublethal concentrations to
Anopheles vectors by reducing oocyst prevalence and intensity. It remains unclear if
the drug acts on mosquito midgut physiology or interferes with sporogony develop-
ment. Ivermectin and avermectin derivatives showed no activity against gametes.
However, they exhibited inhibitory effects against the late sporogony process of ooki-
nete and oocyst formation in a mosquito-free in vitro assay to study the direct drug
effect on sporogony in Plasmodium berghei (29).

The optimal dosage and regimen of ivermectin are key parameters to maintain
plasma ivermectin concentration at effective levels (41). A standard dose of ivermectin
for onchocerciasis and lymphatic filariasis were 150 mg/kg and 200 mg/kg. In compari-
son, the tested doses of ivermectin trials for malaria transmission control varied from
150 to 600 mg/kg (13–16, 22, 23). Peak concentrations of 56.8 ng/mL ivermectin was
observed after a single dose of 400 mg/kg in healthy Thai adults (24). While peak concen-
trations of 64.1 ng/mL and 105.2 ng/mL were reported in malaria patients after receiving a
3-day treatment of dihydroartemisinin-piperaquine and ivermectin at 300 and 600 mg/kg/
day, respectively (42). At this dosage, plasma ivermectin showed potent mosquitocidal
effects against Anopheline mosquitoes (24, 43). In contrast, the asexual blood stage IC50

observed in this study was approximately 0.8 mM (equal to 712 ng/mL), which is 6-fold to

TABLE 2 Antimalarial effects of ivermectin in combination with antimalarial drugs on asexual blood stages of P. falciparuma

Drug combination
(Drug A – Drug B)

Artemisinin-sensitive isolates (n = 2; NF54, ARN3G) Artemisinin-resistant isolates (n = 3; APL5G, APS2G, ARN2G)

IC50 of ivermectin,
(x103 nM)

IC50 of
antimalarial, nM

P
FIC

IC50 of ivermectin,
(x103 nM)

IC50 of
antimalarial, nM

P
FIC

Ivermectin – Amodiaquine 0.94(0.72 to 1.16) 11.42(7.94 to 14.90) 1.18(1.09 to 1.27) 1.18(0.82 to 1.53) 12.31(10.83 to 13.79) 1.21(1.13 to 1.30)
Ivermectin – Artesunate 0.93(0.77 to 1.10) 3.07(0.72 to 5.41) 1.31(1.18 to 1.44) 1.27(0.98 to 1.56) 3.90(2.24 to 5.57) 1.16(1.06 to 1.26)
Ivermectin – Atovaquone 0.79(0.70 to 0.88) 0.38(0.25 to 0.51) 0.89(0.73 to 1.06) 1.20(0.81 to 1.58) 0.62(0.21 to 1.04) 0.90(0.77 to 1.02)
Ivermectin – Dihydroartemisinin 1.07(0.83 to 1.32) 1.93(1.40 to 2.47) 1.15(1.10 to 1.19) 1.30(1.16 to 1.45) 1.92(1.77 to 2.06) 1.15(1.09 to 1.21)
Ivermectin – Lumefantrine 0.95(0.70 to 1.19) 7.40(2.11 to 12.70) 1.13(1.03 to 1.22) 1.41(0.99 to 1.83) 6.14(3.96 to 8.32) 1.09(0.98 to 1.21)
Ivermectin –Mefloquine 0.78(0.62 to 0.93) 10.96(4.05 to 17.87) 1.15(1.03 to 1.27) 1.13(0.92 to 1.27) 23.08(10.2 to 35.97) 1.14(1.02 to 1.25)
Ivermectin – Piperaquine 0.80(0.66 to 0.95) 12.94(10.09 to 15.78) 1.21(1.10 to 1.31) 1.06(0.84 to 1.27) 12.16(9.46 to 14.85) 1.26(1.15 to 1.37)
Ivermectin – Pyronaridine 0.95(0.83 to 1.07) 4.38(3.21 to 5.55) 1.18(1.11 to 1.25) 1.22(0.84 to 1.61) 2.74(1.88 to 3.59) 1.22(1.11 to 1.34)
aAll data are reported as mean values (95% confidence interval).
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12-fold higher than clinically relevant peak plasma ivermectin concentration at commonly
used doses and regimens. Thus, it is unlikely that ivermectin MDA for malaria transmission
control will impact asexual blood stage malaria parasites. In addition, ivermectin-treated
parasites showed increasing trends of sexual commitment in a transgenic P. falciparum
NF54 strain that expressed endogenous mScarlet-tagged AP2-G, a specific marker for sexu-
ally committed ring stages (44).

During the malaria transmission season, ivermectin MDA alone (14, 15) and in combina-
tion with artemether-lumefantrine (13) or dihydroartemisinin-piperaquine (16, 22, 24) or
albendazole (15, 23) significantly reduced mosquito survival and malaria cases. Although
ivermectin MDA was designed to target mosquitoes that feed on humans, it is important
to address the interaction between ivermectin and antimalarial drugs on asexual blood
stages of P. falciparum. For instance, antagonistic interactions have been observed in vitro
on P. falciparum when combining ivermectin and doxycycline (45). The results presented
here demonstrate that the parasite killing effects of the commonly used antimalarial drugs
is not altered when combined with ivermectin when evaluated in vitro. This suggests that
there is no clinically important pharmacodynamic drug-drug interactions to consider for
possible MDA administrations. However, limited data are available on pharmacokinetic
drug-drug interactions between ivermectin and antimalarial drugs. A healthy volunteer
trial in Thailand showed relatively minor increases in the exposure to both piperaquine
and ivermectin when co-administered, but there was no drug-drug interaction reported
for primaquine (24). The combination of ivermectin and ACTs in MDA campaigns need fur-
ther monitoring of drug efficacy and pharmacokinetic drug interactions in endemic area.

In conclusion, ivermectin and its metabolites showed no antimalarial effects at clini-
cally relevant concentrations, although ivermectin demonstrated stronger antimalarial
activity than its metabolites. Furthermore, neither artemisinin-sensitive nor artemisi-
nin-resistant P. falciparum isolates exhibited pharmacodynamic interactions between
ivermectin and commonly used antimalarial drugs. These findings support that iver-
mectin is unlikely to interfere with the antimalarial activity of the commonly used anti-
malarial drugs.

MATERIALS ANDMETHODS
Parasite culture. Artemisinin-sensitive (n = 2) and artemisinin-resistant (n = 5) P. falciparum isolates

were obtained from clinical studies conducted on the Thailand-Cambodia border (2, 46). All parasite isolates
were mycoplasma free. Parasites were cultured at 5% parasitemia and 5% hematocrit in culture medium.
Culture medium consisted of Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma catalog no.
R6504) containing 50 mg/L hypoxanthine (Sigma catalog no. H9377), 3 mg/L thiamine (Sigma catalog no.
T1270), 6 mg/L L-ascorbic acid (Sigma catalog no. A5960), 30 mg/L CaCl2 (Sigma catalog no. C4901), 26 mg/L
KH2PO4 (Merck catalog no. A681173), 16 mg/L MgSO4 (Sigma catalog no. M8150), 1 g/L d-glucose (Sigma cat-
alog no. G7021), 5.96 g/L HEPES (Sigma catalog no. H3375), 2 g/L NaHCO3 (Sigma catalog no. S5761), and
10% human serum. Culture medium was replaced daily and incubated at 37°C in a 5% CO2 incubator.

Ivermectin, ivermectin metabolites, and antimalarial drugs. Ivermectin parent compound (Sigma,
catalog no. I8898), ivermectin aglycone (Cayman Chemical, catalog no. 19442), ivermectin monosaccharide
(Clearsynth, catalog no. CS-CM-00113) were purchased commercially. The ivermectin metabolite, 4-hydroxy-
methyl ivermectin (M3), was synthesized from parent compound (WuXi AppTec). The 30-O-demethyl iver-
mectin (M1) structure could not be produced by chemical synthesis and therefore bacterial strains were
used to generate the 30-O-demethyl ivermectin (M1) from parent compound, and the 30-O-demethyl, 4-hy-
droxymethyl ivermectin (M6) from M3 (Hypha Discovery). A previously developed LC-MS/MS method was
used to confirm that the synthesized compounds contained the stated metabolites (26). Ivermectin com-
pounds were prepared as stock solutions at 2 mg/mL in DMSO.

Artesunate (Artesunate for Injection; registration no. 1C 3/35 [N], Guilin No.2 Pharmaceutical Factory)
was dissolved in 5% NaHCO3 at 60 mg/mL. Amodiaquine was dissolved in 70% ethanol at 1 mg/mL.
Atovaquone and dihydroartemisinin were dissolved in DMSO at 1 mg/mL. Lumefantrine was dissolved
in absolute ethanol at 1 mg/mL. Mefloquine and piperaquine were dissolved in 0.1 M H3PO4 at 1 mg/mL.
Pyronaridine was dissolved in RPMI 1640 medium at 1 mg/mL. All antimalarial drugs were kindly pro-
vided by Worldwide Antimalarial Resistance Network (WWARN). Stock solutions were kept at 280°C and
diluted with culture medium before the assay was set up.

Drug sensitivity on asexual blood stage. Ivermectin and ivermectin metabolites were prepared by
a 2-fold serial dilution (0.02 to 10 mM) in RPMI 1640 medium supplemented with 0.5% AlbuMAX II
(Thermo Fisher Scientific catalog no.11021045) in flat bottom 96-well plates at 50mL/well. Asexual blood
stage parasites, predominantly at the ring stage, were prepared at 1% parasitemia and 2% hematocrit.
In each well, 50 mL of parasite suspension was added and gently mixed with the compounds. After 72 h
of incubation, SYBR green I staining was used to detect parasite growth (47, 48). Each well was filled
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with 100 mL of 2�SYBR-green I lysis buffer (0.1% wt/vol saponin, Sigma catalog no.47036; 1%vol/vol
Triton X-100, Bio-Rad catalog no. 161-0407; 5 mM EDTA, Sigma catalog no. E7889; and 20 mM Tris-HCl,
Sigma catalog no. T5941). Plates were incubated in the dark for 30 min before the fluorescence signal
was measured on a microplate reader (Synergy H1, BioTek) using a 485-nm excitation filter and a 520-
nm emission filter. Assays were performed for at least three independent biological replicates with tech-
nical duplicates in each isolate. The percentage of parasite growth and IC50 were calculated using
GraphPad Prism version 8. Statistical significance was determined by Student's t test and nonparametric
Mann-Whitney U tests.

Pharmacodynamic drug-drug interactions with antimalarial drugs. The effects of ivermectin par-
ent compound in combination with antimalarial drugs against the asexual blood stage of P. falciparum
were evaluated using the checkerboard technique (49, 50). Briefly, two-dimensional checkerboard titra-
tion was prepared in flat-bottom 96-well plates in a volume of 50 mL. The assay plate was prepared with
combinations of ivermectin (0.05 to 10 mM) and individual antimalarial drugs (0.20 to 100 nM amodia-
quine, 0.10 to 50 nM artesunate, 0.02 to 10 nM atovaquone, 0.1 to 50 nM dihydroartemisinin, 0.39 to
200 nM lumefantrine, 0.78 to 400 nM mefloquine, 0.39 to 200 nM piperaquine, and 0.20 to 100 nM pyro-
naridine). Asexual blood stage parasites, predominantly at the ring stage, were prepared at 1% parasite-
mia and 2% hematocrit. In each well, 50 mL of parasite suspension was added to a final volume of
100 mL and gently mixed with the compounds. After 72 h of incubation, parasite growth was assessed
by DNA content using a SYBR green I-based fluorescence staining (47, 48). Each well was filled with 100 mL
of 2�SYBR-green I lysis buffer. Plates were incubated in the dark for 30 min before the fluorescence signal
was measured on a microplate reader (Synergy H1, BioTek) using a 485-nm excitation filter and a 520-nm
emission filter. The interactions between two compounds were evaluated using isobolograms and derived
fractional inhibitory concentrations (FIC). The sum of FICs (RFIC) were calculated by a fraction of the IC50s in
each drug combination and the IC50s of the single drug according to equation 1.

X
FIC ¼ FICA 1 FICB ¼ IC50A1B

IC50A
1

IC50B1A

IC50B
(1)

where IC50A1B is the IC50 of drug A in combination with drug B, IC50B+A is the IC50 of drug B in combi-
nation with drug A, IC50 A and IC50 B are the IC50 of drug A and drug B alone, respectively. RFIC of #0.5,
0.5 , FIC # 4 and FIC . 4 indicated synergistic, indifferent, and antagonistic effects, respectively (51,
52). The isobolograms and derived mean FIC values were calculated from at least three independent bio-
logical replicates with technical duplicates in each assay.

The antimalarial effect of artesunate when combined with a fixed dose of ivermectin was further
investigated by the trophozoite maturation assay (53). Two-fold serial dilutions of artesunate alone
(0.001 to 1 mM) and artesunate combined with a fixed dose ivermectin at 50 ng/mL, the observed clini-
cal peak concentration of ivermectin after administration of ivermectin (150 mg/kg) (54), were prepared
in flat-bottom 96-well plates. Parasites, predominantly at the ring stage, were prepared at 1% parasite-
mia and 2% hematocrit, and then incubated with the drug for 24 h. Thick and thin blood films were har-
vested and stained with Field’s stain. The staging of parasite development was investigated using a light
microscope, and the numbers of trophozoites were counted per 100 parasitized red blood cells.
Trophozoites were identified by morphology, size, nuclear/cytoplasm ratios, and visible pigment. IC50

was evaluated from the inhibition of the parasite development from ring to trophozoites compared to
parasites in drug-free control wells using GraphPad Prism version 8. Statistical significance was deter-
mined by Student's t test and nonparametric Mann-Whitney U tests.
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