Figure 2. Between- versus within-session population coding.
(A) Upper left: illustration of rat wearing MiniLFOV. Upper right: cell contours identified during pre-training (green) and training (red) sessions in one rat; regions of overlap between contours that recurred in both sessions appear yellow. Lower left: target position of GRIN lens over the CA1 layer. Lower right: fluorescence image of lens position from the example rat. (B) Top: rastergram shows normalized calcium fluorescence traces of place cells (one per row, sorted by preferred firing location and direction) during several traversals of the short path during an example session. Bottom: rat’s position (black) with running epochs colored by direction of travel (‘LR,’ left to right, in blue; ‘RL,’ right to left, in red). (C) Individual rat data (lines and symbols) and session means (bars) for the number of subsampled beeline trials (left) and median beeline running speed (right) during pre-training (pre) and training (trn) sessions; subsampled beeline trial counts were lower for trn than pre sessions because only trials from the first 10 min of trn (prior to shock delivery) were included; running speeds were lower for trn than pre sessions because scopolamine (SCP) reduced running speeds, resulting in preferential subsampling of slower beeline trials from drug-free (DF) sessions by the algorithm that minimized running speed differences between training conditions (see ‘Methods’). (D) Bar/line graphs show number of place cells imaged per rat (left) and percentage of all imaged cells classified as place cells (right) during pre and trn sessions. (E) Pie graphs show percentages of place cells imaged per condition (‘n’ gives total number summed over rats) that were spatially tuned in the LR only, RL only, or both LR and RL running directions. (F) Tuning curve properties of place cells imaged during pre and trn sessions. (G) Place cell recurrence ratios (RR) between pre and trn sessions. (H) Top: diagram shows timeline for pre and trn sessions given 48 hr apart. Bottom: tuning curve heatmaps for recurring place cells (from all rats combined, co-sorted by peak locations from the trn1 session) that were spatially tuned in the LR (top) or RL (bottom) running directions; separate heatmaps are shown for pre, trn part 1 (trn1), and trn part 2 (trn2) sessions. (I) Between- (B) and within- (W) session population vector correlation matrices are shown for DF and SCP shock training conditions; middle bar graph shows median place tuning stability (S) for each rat (lines and symbols) and mean over rats (bars) for B and W heatmap pairs. Asterisks in (C) and (D) denote significance for main effect of DF vs. SCP or uncorrected t-test comparing pre vs. trn sessions; asterisks in (E) and (G) denote significance for uncorrected t-tests. †p<0.1; *p<0.05; **p<0.01; ***p<0.001.
Figure 2—figure supplement 1. GRIN lens placements and cell contours for imaged neurons in CA1.
Figure 2—figure supplement 2. Beeline trial counts and running speeds prior to downsampling.

Figure 2—figure supplement 3. Relationship between place tuning versus size and eccentricity of imaged cell contours.
Figure 2—figure supplement 4. Distributions of place cell tuning properties.
Figure 2—figure supplement 5. Pre-training and training session data from individual rats.
Figure 2—figure supplement 6. Between- and within-session place coding in male versus female rats.

Figure 2—figure supplement 7. Shuffled analysis of between- and within-session population coding.

Figure 2—figure supplement 8. Pre-training and training session results from drug-free (DF) rats that failed to retain avoidance and scopolamine (SCP) rats that successfully retained avoidance.





