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Abstract In a measurement of isomeric yield-ratios in
fission, the Phase-Imaging Ion-Cyclotron-Resonance tech-
nique, which projects the radial motions of ions in the
Penning trap (JYFLTRAP) onto a position-sensitive micro-
channel plate detector, has been applied. To obtain the yield
ratio, that is the relative population of two states of an iso-
mer pair, a novel analysis procedure has been developed to
determine the number of detected ions in each state, as well
as corrections for the detector efficiency and decay losses.
In order to determine the population of the states in cases
where their mass difference is too small to reach full separa-
tion, a Bayesian Gaussian Mixture model was implemented.
The position-dependent efficiency of the micro-channel plate
detector was calibrated by mapping it with 133Cs+ ions, and
a Gaussian Process was trained with the position data to con-
struct an efficiency function that could be used to correct the
recorded distributions. The obtained numbers of counts of
excited and ground-state ions were used to derive the iso-
meric yield ratio, taking into account decay losses as well as
feeding from precursors.

1 Introduction

The isomeric yield ratio (IYR) of fission products, referring
to the relative independent yield of one of the isomeric states
to the total independent yield of that nuclide, is important
for the modeling of the fission process. The relative yields of
the states also affect nuclear reactor operation and decay heat
calculations, and certain isomeric yield ratios are important
in reactor based studies of the antineutrino mixing angle,
θ13 [1,2]. Another example is the modeling of the r-process
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in stellar nucleosynthesis [3,4] where some isomers, due to
their unusually long lifetime, play an important role.

Penning Trap Mass Spectrometry (PTMS) is a versatile
tool to study fundamental properties of matter via high-
precision atomic mass measurements, utilizing the relation-
ship between the mass (m), charge (q) and cyclotron fre-
quency (νc) of an ion in the magnetic field (B) of the trap:

νc = 1

2π

q

m
B. (1)

One method to determine the cyclotron frequency is the so-
called Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR)
technique [5,6]. Due to the presence of an electric field in
the trap, the cyclotron motion is split into two radial motions
with characteristic frequencies, the reduced cyclotron fre-
quency (ν+) and the magnetron frequency (ν−):

νc = ν+ + ν−. (2)

The two frequencies can be determined from their respective
phase (φ±) acquired in a set accumulation time, by extracting
the ions from the trap and projecting their positions onto a
position-sensitive Micro-Channel Plate (MCP) detector.

With the application of the PI-ICR technique [7] in the
double Penning trap JYFLTRAP [8,9] at the University of
Jyväskylä, a mass resolution of a few ten keV has been
demonstrated for medium heavy ions (at A = 130), using an
accumulation time of 320 ms [10]. Together with the capa-
bility of the Ion Guide Isotope Separator On-Line (IGISOL)
facility to produce fission fragments via particle-induced
fission [11], this provides an opportunity to measure IYRs
through direct ion counting of mass-separated fission frag-
ments. By allowing isomers of the same nuclide to revolve
in the trap with the mass-dependent reduced-cyclotron fre-
quency, the ions will become phase-separated by the ratio of
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mass over charge. After extraction and detection on the MCP
the number of counts in each state can be determined.

Mass-separating techniques have been employed to mea-
sure fission yields for many decades, but not until the intro-
duction of Penning Traps has it been possible to separate iso-
mers by mass and determine the yields by direct ion counting.
Instead, other techniques, for example radiochemical method
and γ spectroscopy [12–14], have been employed to deter-
mine IYRs. However, the nuclides that are accessible with
those techniques are limited by, for example, the availabil-
ity of decay schemes, the half-lives, and the yields. With
the PI-ICR technique, the number of accessible nuclides are
increased since no knowledge of decay schemes are needed
(except for second-order decay corrections) and nuclides
with half-lives down to a few hundred milliseconds can be
studied [10]. Furthermore, it has been successfully demon-
strated that IYR of fission products with yields as low as
0.006% can be measured with this technique [15].

In the previous measurement of IYR with the PI-ICR tech-
nique [15], the analyses of the phase images were performed
by fitting the angular distributions with Gaussian functions.
However, this procedure has proven to be unreliable in cases
where the ion species are not well separated. Here we present
an alternative technique, where a Bayesian Gaussian Mixture
(BGM) model, as implemented in the Sci-Kit package [16],
was trained on the data to obtain the number of nuclei in each
state.

Furthermore, to account for the position-dependent effi-
ciency of the MCP, a dedicated measurement of the efficiency
was performed and modeled using a Gaussian Process [18]
(GP) that was used to correct the extracted count rates.

Based on timing information, the IYRs of the fission prod-
ucts were analytically derived from the obtained number of
ions on the MCP by considering decay losses and feeding
from precursors.

2 Measurement procedure

A 25-MeV proton beam with a current of up to 10 μA
from the K-130 cyclotron was used to induce fission in a
15 mg/cm2 natural uranium target in the IGISOL [19] fis-
sion ion-guide. The fission products that emerged from the
target were thermalized in a helium buffer gas at a pressure
of 300 mbar and extracted from the ion guide with the gas
flow. After post acceleration in the Sextupole Ion Guide SPIG
[11], the ionized fission products were transported to the
downstream dipole magnet for mass-to-charge (A/q) selec-
tion and then collected in the radio-frequency quadrupole
(RFQ) cooler and buncher [20]. From the RFQ, short bunches
of cold ions were extracted and transported to JYFLTRAP
for trapping and identification [7–9].

The typical time from a fission event until the detection
of the mass-separated fission products on the MCP after
JYFLTRAP, including preparation and separation in the Pen-
ning trap, ranges from a few hundred milliseconds to a few
seconds. In some cases, this time is comparable to the half-
life of either of the studied states and/or their precursor. In
these cases, the decay losses and feeding have to be accounted
for.

The beam-lines and relevant techniques for mass measure-
ments have been thoroughly described in previous publica-
tions [7–9,11,15,20,21]. Here only a brief description will
be presented in order to outline how the time spent in each
stage was estimated for the decay correction.

Thermalization The thermalization of the fission products
in the helium gas is several orders of magnitude faster than
the transportation of the ions out of the gas cell with the gas
flow. Therefore, this time can safely be neglected in the decay
correction.

Drifting After the thermalization, the fission products are
carried by the gas flow toward the exit of the ion guide. The
average ion drifting time is estimated to be about 100 ms
[21].

Transport The fission products are extracted from the ion
guide by a sextupole ion guide (SPIG) [11] and accelerated
to 30q keV (where q is the charge state of the fission product)
for further transport to a dipole magnet for isobar selection.
This transportation is fast (tens of microseconds) and can be
neglected in the decay correction.

RFQ After the isobar selection in the dipole magnet, the
ions are injected into a gas-filled RFQ cooler and buncher.
The RFQ is filled with ions at a constant rate for a time
defined by the opening and closing of a potential set by the
electrodes of the cooler. In order to avoid space charge effects
in the Penning traps [21], the opening time of the RFQ is set
to obtain a suitable number of ions per bunch, and hence
depends on the fission rate and yield of the nuclei of interest.
Typically, the filling takes up to a few hundred milliseconds.

Trap 1 In the next step, the bunched ions are transported to
the purification trap of JYFLTRAP where the nuclei of inter-
est are separated from the rest of the isobar chain by employ-
ing the sideband cooling technique [7,8,22]. The purification
typically also takes a few hundred milliseconds.

Trap 2 In the precision trap of JYFLTRAP the ground state
and the long-lived excited state (s) are separated by the mass-
to-charge ratio. Before that, a second cleaning, which takes
about 120 ms, is performed to remove any remaining isobars.
The separation is then obtained by allowing the ions to freely
rotate with the mass-dependent reduced cyclotron frequency
until they are separated by a phase Δφ which is determined
by
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Table 1 The time the ions
spend in each stage of the
measurement cycle. tacc is the
phase accumulation time which
is part of the time the ions spend
in Trap 2

Ion tacc Drifting RFQ Trap 1 Trap 2
ms ms ms ms ms

129In+ 99 100 200 260 227

157 100 260 260 284
129Sn+ 1010 100 35 260 1267
129Sb+ 24 100 10 260 152

39 100 10 260 167

39 100 10 260 167

Δφ = 2π taccΔν, (3)

where tacc is the so-called phase-accumulation time, and
Δν is the difference in reduced cyclotron frequencies of the
two states. The phase-accumulation time is preferably set to
obtain a maximum phase difference of π radians. Typical
values in this experiment range between tens of milliseconds
up to more than one second. From the phase-accumulation
times the corresponding phase separations are predicted and
presented in Table 3 together with corresponding observed
separations. Additionally, a 2 ms conversion pulse is applied
in the trap to convert the cyclotron motion into the slow mag-
netron motion before the ions are ejected from the trap and
their positions projected onto the MCP detector [7].

Table 1 summarises the time the ions of interest in this
work spend in each stage of the measurement cycle.

Figure 1 shows examples of phase images of the mass
spectra of the fission product 129Sb+, for which the excited
state has an excitation energy of 1924.3 keV and a half-life
of 17.7 min [23]. In order to eliminate a small background
of ionized rest gas molecules, a gate on the ions’ flight time
from Trap 2 to the MCP detector was used. This TOF gate
was set to ensure that all ions of interest are kept.

To demonstrate how the phase difference depends on the
phase accumulation time, two different times, 24 ms and
39 ms, are shown. Since the direction of the cyclotron motion
is known to be counterclockwise, this allows identification of
the two states. In this case, the green spots in Fig. 1 represent
the ground state of 129Sb+, while the red spots represent the
excited state. Visible in the images are also counts in blue.
These are believed to be contaminant ions leaking from trap 1
or ions from either state that for some reason lost their phase.
These events are treated as background in the analysis.

3 Data analysis

3.1 Fitting of the angular distribution

In the case of 129Sb+ ions, due to the relatively high exci-
tation energy, the long-lived excited state is well separated
from the ground state even for a short phase accumulation

time. In cases like these, the count rates of the two states
could be determined simply by selecting a region around
each center. However, to better account for the background,
and to be able to determine the number of counts also when
the states overlap, the analysis has previously been performed
by transforming the data into polar coordinates and fitting the
angular distributions with two (or more) normal distributions
[15], see Fig. 2.

However, in some cases, the excitation energies are so
small that this method of separation becomes unreliable.
An example is 129Sn+ ions for which the energy difference
between the excited state and the ground state is 35.15 keV
[23]. As a demonstration, the method of separation by angu-
lar fitting was performed for both 129Sb+ and 129Sn+. The
lower panel of Fig. 3 shows the result of the fitting for 129Sn+.
In this case, the two states are not separated even for a phase
accumulation time of 1010 ms.

In the separation by angular fitting the radial information
is disregarded. Gating on the radii could in principle be an
additional constraint but, considering that there are very few
background events in the phase image, such a gate would
have a negligible impact on the angular distribution.

Furthermore, it has been observed that the selection of bin
width of the histogram, as well as the determination of the
center for the coordinate transformation, could have a sig-
nificant impact on the fitting, and subsequently on the deter-
mined number of counts. While the center could in principle
be determined through a dedicated measurement, the binning
problem is more difficult to address. Figure 4 shows the cal-
culated ratios from angular fits to histograms with different
bin widths and centers. As seen in the figure, the choice of
bin widths and center positions have significant impacts on
the determination of the IYR.

3.2 Bayesian Gaussian Mixture (BGM) model

As an alternative to the fitting of the angular distribution, a
method to separate the two states based on BGM has been
developed. BGM is a variant of the Gaussian mixture model,
which models the data points with a mixture of a finite num-
ber of Gaussian distributions, to which a variational inference
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Fig. 1 Typical phase images of the reduced cyclotron motion for
129Sb+ ions obtained with the PI-ICR technique. The color mixture of
each point represents the probabilities of belonging to the excited state
(red), the ground state (green), and the background (blue). The deter-
mined number of nuclei in each component from the phase image is esti-
mated by the BGM model. In the upper panel the phase-accumulation
time is set to 24 ms, while in the lower panel it is 39 ms. Contour lines
illustrate the normal distributions of the components of the BGM model

algorithm is added [16]. In the initialization of the model,
hyperparameters, such as the number of components, the con-
vergence threshold, and the maximum number of iterations,
are set. For example, in the case of 129Sn+ the component
number was set to 3, the convergence threshold to 10−12,
and the maximum number of iterations to 1000. Then the
initial model is trained with the position data. After the train-

Fig. 2 Histogram in the polar coordinate for 129Sb+ ions with a phase
accumulation time of 30 ms and fitting of the angular distribution with
a double normal distribution

ing, three components: the excited state (es), the ground state
(gs), and the background (b), with amplitudes significantly
greater than zero were obtained from the model. Increas-
ing the number of components results in components with
amplitudes close to zero, demonstrating that the data is best
described by three components. From the model, informa-
tion on the amplitude, the center position, and the covariance
matrix of each component could be obtained. The possibility
to use the Gaussian Mixture Model to determine the center
positions of the event clusters for mass measurements has
been demonstrated by Weber et al. [17]. The Gaussian dis-
tribution of each component is reflected by the contour lines
in Fig. 1 and in the upper panel of Fig. 3.

The BGM model also estimates the probabilities of each
data point belonging to either components: Pes , Pgs and Pb.
In Fig. 1 and in the upper panel of Fig. 3, these probabilities
are indicated by a color mixture using the RGB color system.
Thus, the number of nuclei in the excited state (Nes) can be
estimated from the sum of probabilities Pes . In the same
way, the number of nuclei in the ground state (Ngs) and the
background (Nb) is estimated from Pgs and Pb.
To estimate the uncertainty in the number of counts, the sta-
tistical method Bootstrapping [24], which samples from a
replacement raw data set, has been applied 10,000 times. By
applying the BGM model on the 10,000 samples, the standard
deviations of Nes and Ngs were obtained.

3.3 Comparison of the methods

In Table 2, the ratios of the excited state over the total, as
obtained from the angular fits and the BGM model before
applying any correction, are presented. In the case of 129In
the population of the excited state is much lower than that of
the ground state. Considering that the fission product 129In

123



Eur. Phys. J. A (2023) 59 :169 Page 5 of 11 169

Fig. 3 Upper panel: The phase image of the reduced cyclotron motion
for 129Sn+ ions obtained with a phase accumulation time of 1010 ms.
The color mixture of each point represents the probabilities of belong-
ing to the excited state (red), the ground state (green), or the background
(blue). The determined number of nuclei in each component from the
phase image is estimated by the BGM model. Contour lines represent
the normal distributions of the components of the BGM model. Lower
panel: The angular distribution of the data. The solid red curve shows
a least square fit of the angular distribution with a double normal dis-
tribution. The dashed lines show the excited state and the ground state
component of the fitted distribution

has a low fission yield, very few events of the excited state
were recorded. In cases like this, where one state is much less
populated, the procedure of fitting the angular distribution
becomes sensitive to the binning of the histogram. This is
reflected by the larger-than-expected deviation between the
two results for the angular fit. The same discrepancy is not
observed using the BGM model. In the case of 129Sb, for
which the ratio is close to 0.5 and the excited state is well

Fig. 4 Ratios of 129Sn that are obtained from the angular fittings to the
histograms with different bin widths and centers

Table 2 Ratios of the counts of the excited state over the total counts
in the cases of 129In+, 129Sn+, and 129Sb+. The ratios were calculated
from the fits to the angular distributions and from the BGM model,
respectively

Nuclide tacc (ms) Ratios from Ratios from
angular fit BGM

129In 99 0.117 (8) 0.208 (18)

157 0.167 (5) 0.185 (8)
129Sn 1010 0.58 (7) 0.757 (20)
129Sb 24 0.532 (9) 0.529 (10)

39 0.503 (5) 0.504 (7)

39 0.610 (6) 0.606 (7)

separated from the ground state, the two analysis methods
agree within uncertainties.

For 129Sn, where the two peaks are overlapping, the angu-
lar fitting becomes sensitive to the determination of the center
of the polar system, as well as to the angular binning. In cases
like these, the BGM model seems to give more reproducible
results, as training the model on the 129Sn data with different
hyper-parameters results in the same converged model.

3.4 Homogeneity of the MCP

Before the population of the states can be determined the rel-
ative detection efficiency at different positions of the MCP
detector has to be corrected for. To obtain this, the surface
of the MCP detector was scanned with 133Cs+-ions in a cal-
ibration measurement. Figure 5 shows the number of counts
per bin at each beam position.

Based on this, the count distribution is modeled by a Gaus-
sian Process [18] (GP) using the corresponding module from
Sci-Kit [16]. The top panel of Fig. 6 shows the predicted
number of counts, which represent the relative efficiency, at
different positions. The lower panels of Fig. 6 present angu-
lar distributions of the predicted number of counts for the

123



169 Page 6 of 11 Eur. Phys. J. A (2023) 59 :169

Fig. 5 Two-dimensional histogram of the number of counts in a cali-
bration run with 133Cs+-ions

radii 13, 11, and 8 mm. As can be observed, the detection
efficiency is not homogeneous and has to be corrected for in
the data analysis.

An area with significantly lower efficiency can be noticed
around x = 5 mm, y = 8 mm in the upper panel of Fig. 6.
The area corresponds to the significant drop of the relative
number of counts around 50 deg in the bottom panel of Fig. 6.
This is the result of radiation damage to the detector due to
an extended exposure time.

To correct for the variation in the efficiency of the MCP,
every event in the Bootstrap sampling was
weighted by

wi = 1

εi
, (4)

where εi is the relative efficiency at the corresponding posi-
tion. To account for the uncertainty in the efficiency, εi was
sampled from a normal distribution with mean and standard
deviation obtained from the GP.

The result of the Bootstrapping procedure is 10,000
efficiency-corrected samples of the population of the states.
The mean and standard deviation of the number of nuclei in
each state from the 10,000 samples are hence the best esti-
mates of the efficiency-corrected number of events.

As a consistency check, rather than weighting the points
during the sampling with Bootstrapping, the weights were
instead included in the training of the BGM model. Both
methods give the same results, including uncertainties.

3.5 Decay correction

In some cases, such as for 129Sb, where the half-lives of
the long-lived excited state, the ground state and the precur-

Fig. 6 The top panel shows the relative detection efficiency as modeled
with a GP. The lower panels show the predicted relative efficiencies with
uncertainties at 95% confidence level for the radii 13 mm, 11 mm, and
8 mm, respectively

sor are much longer than a measurement cycle, the isomeric
yield ratio could be directly calculated from the efficiency-
corrected number of counts at the MCP:

R ≡ Yes
Yes + Ygs

= Nes

Nes + Ngs
, (5)

where Yes and Ygs are the fission yield of the excited state
and the ground state, respectively.

In other cases, for example 129In and 129Sn, the measured
numbers of nuclei have to be corrected for the decay of the
fission products and/or the feeding from the precursors before
the isomeric yield ratio can be calculated.

To estimate the impact the decay of the fission products has
on the isomeric yield ratio in every step of the measurement,
a simplified decay scheme, as shown in Fig. 7, is used. Here,
the spins, parities and half-lives from the literature [23,25–
27] are marked beside each level. 129In also has two excited
states at 1650 keV (23/2−) and 1941 keV (29/2+) [23] with
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Fig. 7 Part of the decay scheme of 129Cd with the isomers of 129In.
T ∗

1/2 is the combined β decay half-life of the ground state and the excited

state of 129Cd [27]. κY represents the direct production rate from the
ion guide without taking decays into account

halflives longer than 100 ms that should, in principle, be
included in the correction. However, their impact on the yield
ratio between the excited state 1/2− and the ground state was
estimated to be negligible, and are therefore not presented in
Fig. 7. The ground state and the excited state of 129Cd are
not clearly identified in the ENSDF database [25]. Hence, the
combined β decay half-life of both states was adopted from
the most recent measurement [27]. Since all other states have
much shorter half-lives they are assumed to decay instantly.

In the following, the combined effects in the ion guide;
including transportation efficiency in the target, stopping
efficiency in the helium gas, loss due to collisions with the
walls, and so on, are assumed to be the same for all nuclei
of the same isobar [28]. Due to charge exchange interactions
between the fission products and impurities of the helium gas
in the ion guide, element-dependent variations in the charge-
state distribution of the extracted ions are expected [21]. This
so-called chemical effect is not fully understood; however,
it does not affect the isomeric yield ratio directly. Instead, it
appears as a possible second-order contribution to the decay
correction. Because of this, and for simplicity, the chemical
effect is ignored in the analysis of the yield data. All nuclide-
independent losses can be combined into a constant κ , so
that the production rate of any nuclei (ignoring decays) can
be written κY , where Y is the fission product yield of interest.

Drifting For any nuclide, taking the decay loss into account
during the drifting through the buffer gas in the ion guide,
the corresponding production rate is governed by:

P = κYe−λtdri f t , (6)

in which Y is either the fission yield of the fission product of
interest YFP or the cumulative yield of its precursor Yprec. λ is
the decay constant, and tdri f t is the duration of the drifting.

In addition to the direct production from fission, any
nuclide that is the daughter of a long-lived state gets fed via
decay. The production governed by the decay is described

by:

dPd
dt

= λp Pp(t) − λd Pd(t), (7)

where the first term, consisting of the decay constant λp

and the production rate Pp of the parent nuclide, describes
the feeding from the parent nuclide while the second term
accounts for the decay losses by multiplying the decay con-
stant λd with the time-dependent production rate Pd of the
daughter nuclide.

Substituting Pp in Eq. (7) with the expression in Eq. (6),
the general solution of the feeding and decay effect on the
production of the daughter nuclide can be expressed as:

Pd = κYpλp
e−λd tdri f t − e−λptdri f t

λp − λd
≡ κYp · Dp2d , (8)

where the parent-to-daughter feeding factor Dp2d has been
introduced. Depending on the decay mode, the feeding factor
will describe either the β-decay (β) or isomeric transition
(I T ). It is worth noticing that Eq. (8) is similar to the well-
known Bateman equation [29].

From Fig. 7, the production rate of the excited state of
129In can be expresses as:

Pes = R · κYFPe
−λes tdri f t + β · κYprecD

es
β , (9)

where the first term represents the production directly from
fission, R is the to-be-derived isomeric yield ratio, and YFP =
Yes + Ygs is the total yield of the two states of the fission
product of interest, i.e. 129In. The second term, in which
Yprec is the accumulative yield of precursor 129Cd and β is
the β-decay branching ratio of 129Cd to 129mIn, represents
the contribution from the decay of 129Cd.

If available, the value of β is taken from the ENSDF
database [25]. If not, it is instead uniformly sampled from an
interval based on the branching ratios of β decays of neigh-
boring nuclei.

For the ground state of Indium, taking both the decays
from the precursor (129Cd) and from the excited state (129m In)
into account, the result is:

Pgs = (1 − R) · κYFPe
−λgs tdri f t + (1 − β)κYprecD

gs
β

+I T · κYes D
gs
I T . (10)

Here Dgs
β is the feeding factor of 129Cd to the ground state

of 129In. I T is the branching ratio of the isomeric transition
from the excited state as obtained from ENSDF [25], thus
Dgs

I T is the feeding factor of the isomeric transition from
129mIn. The second-order effect of the decay-chain feeding
from the precursor via the excited state to the ground state
has been neglected.
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RFQ The RFQ is filled with ions at a constant rate which,
assuming the transportation efficiency from the ion guide

to the RFQ is the same for all fission products, is the produc-
tion rate (P) obtained in the previous step.

In general, when no feeding from precursors is considered,
the accumulated number of nuclei of a radioactive nuclide N
is calculated by integrating the filling rate over the opening
time of the RFQ gate tRFQ .

N = P
∫ tRFQ

e−λ(tRFQ−t)dt = PDRFQ, (11)

where DRFQ is the decay factor that represents the integral
decay effect over the filling time. For instance, Eq. (11) is
applied to calculate the accumulated number of nuclei of
129Cd.

For a daughter nucleus with zero filling rate, that is only
fed by the decay of the precursor, the accumulation of the
number of nuclei Nd is described by the equation:

dNd

dt
= λpNp(t) − λd Nd(t), (12)

where Np(t) is the time-dependent number of the parent
nuclide.
By inserting the time-dependent number of the precursors
governed by Eq. (11) into Eq. (12), the solution of the accu-
mulated number of the daughter nuclei is:

Nd = Pp

[
1 − e−λd tRFQ

λd
− e−λd tRFQ − e−λptRFQ

λp − λd

]
= Fp2d Pp,

(13)

where Fp2d represents the parent-to-daughter factor of which

p2d will be replaced by β or I T once the decay mode is
specified.

In the case of 129mIn, the accumulated number of nuclei
in one bunch is obtained by summing the number obtained
from Eq. (11) with those obtained from the decay of 129Cd
which is governed by Eq. (13),

N RFQ
es = Pes DRFQ + βFes

β Pprec, (14)

where Fes
β is the feeding factor of the β decay of 129Cd to

129mIn. Similarly, in the case of the ground state of 129In,
the number of nuclei in one bunch N RFQ

gs is obtained from
the filling rate Pgs , the decay of the precursor 129Cd, and the
decay of the excited state 129mIn to the ground state.

The feeding factor of the decay-chain from the precursor
via the excited state to the ground state is ignored also here.
It is worth noticing that the decay factor and the parent-to-
daughter factor in Eqs. (11) and (13) are constant when the
filling time is known. This means that the number of nuclei in
the bunch is a linear combination of the obtained production
rates and hence linear with respect to the fission yields.

Trap 1 In the purification trap, when no precursor is consid-
ered, the number of radioactive nuclei NT 1 is described in a
general way by:

NT 1 = N RFQe−λtT 1 , (15)

where N RFQ is the number of nuclei in a bunch transported
from the RFQ and tT 1 is the duration in trap 1.

The integrated feeding effect to a daughter nucleus from
a parent nucleus in the trap is governed by the well-known
Bateman equation [29]:

NT 1
d = λpN

RFQ
p

e−λd tT 1 − e−λptT 1

λp − λd
= N RFQ

p PT 1
p2d , (16)

where PT 1
p2d is the parent-to-daughter feeding factor for a

decay. When tT 1 is fixed, the decay factor in Eq. (15), as well
as the parent-to-daughter feeding factor PT 1

p2d in Eq. (16), is
constant.

By applying Eq. (15) and Eq. (16) to the excited state
and the ground state of the fission product of interest, their
numbers in trap 1, NT 1

es and NT 1
gs , could be calculated.

Trap 2During the second cleaning in trap 2, the feeding from
the excited state to the ground state is taken into account using
Eq. (16). After that, it is assumed that the nuclei at the excited
state and the ground state would start separating in a short
time. Thus only the decay losses of the states were taken into
account:

NT 2 = NT 1e−λtT 2 , (17)

where tT 2 is the duration in trap 2 and NT 2 is the number of
counts of each state when ions are being ejected.

Due to the time of flight of ions from trap 2 to the MCP
detector being about 45 μs, the decay loss in this process is
negligible. The calculated number of nuclei in trap 2 equals
the determined numbers from the phase image on the MCP
detector NMCP which was corrected for detector efficiency.

NT 2
es = NMCP

es (18)

NT 2
gs = NMCP

gs (19)

Combining equations from (6) to (19) results in two equa-
tions with three unknown variables: the cumulative yield of
the precursor (Yprec), the summed fission yield of the excited
state and the ground state (YFP ), and the to-be-derived iso-
meric yield ratio (R).

If Yprec is replaced with ηYFP, where η is the ratio of the
cumulative yield of the precursor over the summed yield of
the measured fission product, the system can be solved ana-
lytically to obtain the isomeric yield ratio, R. The value of
η is calculated from the fission yields obtained from the fis-
sion model GEF 2023/1.2 [30]. The fission yields from GEF
were assumed to have an uncertainty of 5% and hence η is
assumed to have an uncertainty of 7%.

123



Eur. Phys. J. A (2023) 59 :169 Page 9 of 11 169

Since the combined equations from (6) to (19) are too
complex to do error propagation, the uncertainty estimation
of the isomeric yield ratio was conducted by sampling the
parameters and repeating the calculations 10,000 times.

The numbers of counts of states were sampled from nor-
mal distributions with means and standard deviations as
obtained in section 3.4. All parameters with available uncer-
tainties, for example the half-lives and η, were also sampled
from normal distributions. When the branching ratio is not
available directly, its value was sampled uniformly from an
interval based on the incomplete decay scheme and the β

decays of neighboring nuclei in ENSDF [25]. The drifting
time was uniformly sampled from an interval [50, 150] ms.
Applying every set of sampled parameters to the equations,
10,000 isomeric yield ratios were obtained. From this, the
mean and the standard deviation were adopted as the iso-
meric yield ratio and the corresponding uncertainty.

Figure 8 presents histograms of the obtained ratios for
129In with two different accumulation times. The dotted lines
show the ratios before applying the decay correction, while
the solid lines are the corrected IYR. In the decay scheme
of Fig. 7, the branching ratio of the isomeric transition of
129mIn is below 0.3% [25], and the branching ratios from
129Cd to the excited state and the ground state of 129In are
32 (12)% and 68 (12)% [31]. Considering the average η is
0.01 which means the feeding from 129Cd is negligible, the
decay losses of the isomer and the ground state of 129In are
the dominant contributions to the decay correction. Thus,
it makes sense that the ratios decreased significantly after
the decay correction because the excited state of 129In has a
longer half-life than the ground state.

From Fig. 8, it can be observed that the absolute uncer-
tainties of the ratios are reduced after the decay correction.
However, the relative uncertainties increased from 4 % to
5 % and 9 % to 10 % since more sources of uncertainty were
included.

It is worth mentioning that the decay scheme used for
the correction becomes more complicated when more long-
lived states have to be taken into account. For example, in the
decay correction for 129Sn both the 129Cd and 129In decay
schemes, as well as the derived isomeric yield ratio of 129In,
have to be included. This means more terms have to be added
in Eqs. (6)–(19), while the number of unknown variables stay
the same.

4 Results and discussion

Table 3 presents the corrected isomeric yield ratios of 129In,
129Sn, and 129Sb from different measurements. Compared to
the values obtained before the correction (Table 2) the dif-
ferences between the derived values for the same nuclide are
reduced, an indication that the corrections are going in the

Fig. 8 Dotted histograms show the ratios of the determined number of
counts of 129In before applying the decay correction for the measure-
ments with the accumulation time of 99 ms (red) and 157 ms (black).
Solid-line histograms show the IYRs considering the decay loss and
feeding effect due to radioactive decays

right direction. However, for 129Sb the obtained ratio from
the third measurement still does not agree with the two oth-
ers within uncertainties. This measurement was performed
with the positions of the states rotated 180◦ compared to the
second. The reason for the discrepancy is therefore likely
to be an insufficient efficiency correction or unknown sys-
tematic uncertainties in the calibration. To some extent, the
discrepancy has been addressed by making the PI-ICR mea-
surements at two orientations, which allows an averaging of
the two. However, in future measurements, more orientations
could be added in order to even out any variation in the effi-
ciency. Also, if possible a more homogeneous MCP should
be used and more effort should be put into the efficiency
calibration.

From the obtained center positions of the components of
the BGM model, the angular separation between the states is
obtained and listed in Table 3. Predicted separations calcu-
lated from the mass ratios and the phase accumulation times
approximately agree with the observed angular separation,
except in the case of 129Sn. In this case, the small relative
mass difference between the two states makes the required
phase accumulation time larger than one second. This is
already close to the typical upper limit of the phase accu-
mulation time of about 1.2 s [33], which could explain the
discrepancy. Other possible explanations include the space
charge effect, imperfection of the magnetic and/or electric
fields of the Penning trap, and incomplete conversion from
the cyclotron motion to the magnetron motion before the
extraction. All these effects have been identified as possible
sources of uncertainties in PI-ICR mass measurements [33].

5 Conclusions

A complete analysis routine, from the analysis of the phase
image to the estimation of decays of fission products, for
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Table 3 Results of the isomeric yield ratios (IYR) of 129In, 129Sn, and
129Sb from different measurements. Relevant information on the fission
products from the literature and the settings of the measurements are
included. The literature data are from Ref. [23] unless stated otherwise.

The determined angular separation of the states is also listed and com-
pared to the value predicted based on the literature mass values [23,32]

Nuclide Ground state Excited state IYR tacc Determined Predicted

T1/2 Spin Energy T1/2 Spin from (ms) separation separation
(keV) this work (deg) (deg)

129In 0.57 (1) s [26] (9/2+) 447 (13) [32] 1.23 (3) s (1/2−) 0.136 (14) 99 104.6 (92) 110.6 (32)

0.113 (6) 157 178.3 (5) 175.4 (52)
129Sn 2.23 (4) m 3/2+ 35.15 (5) 6.9 (1) m 11/2− 0.777 (20) 1010 51.5 (42) 88.7 (4)
129Sb 4.366 (26) h 7/2+ 1851.31 (6) 17.7 (1) m (19/2−) 0.514 (10) 24 118.8 (3) 111.0 (1)

0.515 (7) 39 189.7 (2) 180.4 (1)

0.576 (7) 39 189.2 (2) 180.4 (1)

determining the isomeric yield ratio has been developed. In
this process, machine learning methods were applied to anal-
yse the phase images obtained with the PI-ICR technique.
The BGM model shows excellent capability in modeling
scatter points in two dimensions with little prior informa-
tion. By automating the procedure, manual biases, for exam-
ple bin width selection and center of the polar coordinate
system used in the angular distribution analysis, are avoided
in the data analysis. Such biases have been shown to have sig-
nificant impacts on the determined ratios in cases with low
statistics (129In) or overlapping peaks (129Sn). The homo-
geneity of the MCP efficiency is reproduced with the GP and
is implemented in the analysis routine. The efficiency cor-
rection reduces the deviation between the IYRs from multi-
ple measurements of the same pair. However, the correction
seems to be insufficient to eliminate all discrepancies and
further investigations into the homogeneity of the MCP are
necessary.

The decay of fission products and the integral feeding from
the precursors in every step are analytically estimated with
only few assumptions and initial input from the literature.
The isomeric yield ratio of short-lived fission products is
obtained from the observed counts on the MCP detector using
analytical equations.

Acknowledgements This work was supported by the Swedish research
council Vetenskapsrådet (Ref. No. 2017-06481), the European Com-
mission within the Seventh Framework Programme through Fission-
2013-CHANDA (Project No. 605203), the Swedish Radiation Safety
Authority (SSM). A. Kankainen and D. A. Nesterenko acknowledge the
funding from the European Union’s Horizon 2020 research and innova-
tion program under grant agreement No. 771036 (ERC CoG MAIDEN).
T. Eronen acknowledges the funding from Academy of Finland (Project
No. 295207). We thank Georg Schnabel and Joachim Hansson for fruit-
ful discussions on applying machine learning methods.

Funding Open access funding provided by Uppsala University.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: All data included in this manuscript
are available upon request by contacting with the corresponding author.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. A.A. Sonzogni, T.D. Johnson, E.A. McCutchan, Phys. Rev. C 91,
011301(R) (2015). https://doi.org/10.1103/PhysRevC.91.011301

2. V. Guadilla et al., Phys. Rev. Lett. 122, 042502 (2019). https://doi.
org/10.1103/PhysRevLett.122.042502

3. M. Arnould, S. Goriely, K. Takahashi et al., Phys. Rep. 450, 97
(2007). https://doi.org/10.1016/j.physrep.2007.06.002

4. T. Kajino et al., Prog. Part. Nucl. Phys. 107, 109 (2019). https://
doi.org/10.1016/j.ppnp.2019.02.008

5. S. Eliseev et al., Phys. Rev. Lett 110, 082501 (2013). https://doi.
org/10.1103/PhysRevLett.110.082501

6. S. Eliseev et al., Appl. Phys. B 114, 2014 (2014). https://doi.org/
10.1007/s00340-013-5621-0

7. D.A. Nesterenko et al., Euro. Phys. J. A 54, 154 (2018). https://
doi.org/10.1140/epja/i2018-12589-y

8. T. Eronen et al., Euro. Phys. J. A 48, 46 (2012). https://doi.org/10.
1140/epja/i2012-12046-1

9. V.S. Kolhinen et al., Nucl. Instrum. Methods A 528, 776 (2004).
https://doi.org/10.1016/j.nima.2004.05.029

10. D.A. Nesterenko et al., Phys. Lett. B 808, 135642 (2020). https://
doi.org/10.1016/j.physletb.2020.135642

11. P. Karvonen et al., Nucl. Instrum. Methods B 266, 4794 (2008).
https://doi.org/10.1016/j.nimb.2008.07.022

12. G.P. Ford, K. Wolfsberg, B.R. Erdal, Phys. Rev. C 30, 195 (1984).
https://doi.org/10.1103/PhysRevC.30.195

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevC.91.011301
https://doi.org/10.1103/PhysRevLett.122.042502
https://doi.org/10.1103/PhysRevLett.122.042502
https://doi.org/10.1016/j.physrep.2007.06.002
https://doi.org/10.1016/j.ppnp.2019.02.008
https://doi.org/10.1016/j.ppnp.2019.02.008
https://doi.org/10.1103/PhysRevLett.110.082501
https://doi.org/10.1103/PhysRevLett.110.082501
https://doi.org/10.1007/s00340-013-5621-0
https://doi.org/10.1007/s00340-013-5621-0
https://doi.org/10.1140/epja/i2018-12589-y
https://doi.org/10.1140/epja/i2018-12589-y
https://doi.org/10.1140/epja/i2012-12046-1
https://doi.org/10.1140/epja/i2012-12046-1
https://doi.org/10.1016/j.nima.2004.05.029
https://doi.org/10.1016/j.physletb.2020.135642
https://doi.org/10.1016/j.physletb.2020.135642
https://doi.org/10.1016/j.nimb.2008.07.022
https://doi.org/10.1103/PhysRevC.30.195


Eur. Phys. J. A (2023) 59 :169 Page 11 of 11 169

13. B.S. Tomar et al., Phys. Rev. C 38, 1787 (1988). https://doi.org/10.
1103/PhysRevC.38.1787

14. H. Naik, S.P. Dange, R.J. Singh, Phys. Rev. C 71, 014304 (2005).
https://doi.org/10.1103/PhysRevC.71.014304

15. V. Rakopoulos et al., Phys. Rev. C 99, 014617 (2019). https://doi.
org/10.1103/PhysRevC.99.014617

16. F. Pedregosa, et al. Journal of Machine Learning Research 12, 2825
(2011). http://www.jmlr.org/papers/volume12/pedregosa11a/
pedregosa11a.pdf

17. C.M. Weber et al., Nucl. Instrum. Methods A 1027, 166299 (2022).
https://doi.org/10.1016/j.nima.2021.166299

18. C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for
Machine Learning (the MIT Press, 2006) 248. https://www.
GaussianProcess.org/gpml

19. I.D. Moore et al., Nucl. Instrum. Methods B 317, 208 (2013).
https://doi.org/10.1016/j.nimb.2013.06.036

20. A. Nieminen et al., Nucl. Instrum. Methods B 2003, 563 (2003).
https://doi.org/10.1016/S0168-583X(02)02133-X

21. H. Penttilä et al., Eur. Phys. J. A 44, 147 (2010). https://doi.org/
10.1140/epja/i2010-10936-8

22. G. Savard et al., Phys. Lett. A 158, 247 (1991). https://doi.org/10.
1016/0375-9601(91)91008-2

23. F.G. Kondev et al., Chinese Phys. C 45, 030001 (2021). https://doi.
org/10.1088/1674-1137/41/3/030001

24. B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap (1st
ed) (Chapman and Hall/CRC, 1994) 456. https://doi.org/10.1201/
9780429246593

25. From ENSDF database as of April 05, 2022., Version available at
http://www.nndc.bnl.gov/ensarchivals/

26. G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015). https://doi.
org/10.1103/PhysRevLett.114.192501

27. O. Hall et al., Phys. Lett. B 816, 136266 (2021). https://doi.org/10.
1016/j.physletb.2021.136266

28. Z. Gao et al., Eur. Phys. J. A 58, 27 (2022). https://doi.org/10.1140/
epja/s10050-022-00676-z

29. H. Bateman, Proc. Camb. Philos. Soc 15, 423 (1910). http://www.
biodiversitylibrary.org/item/97262

30. K.H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016). https://
doi.org/10.1016/j.nds.2015.12.009

31. Y. Saito et al., Phys. Rev. C 102, 024337 (2020). https://doi.org/
10.1103/PhysRevC.102.024337

32. C. Izzo et al., Phys. Rev. C 103, 025811 (2021). https://doi.org/10.
1103/PhysRevC.103.025811

33. D.A. Nesterenko et al., Eur. Phys. J. A 57, 302 (2021). https://doi.
org/10.1140/epja/s10050-021-00608-3

123

https://doi.org/10.1103/PhysRevC.38.1787
https://doi.org/10.1103/PhysRevC.38.1787
https://doi.org/10.1103/PhysRevC.71.014304
https://doi.org/10.1103/PhysRevC.99.014617
https://doi.org/10.1103/PhysRevC.99.014617
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1016/j.nima.2021.166299
https://www.GaussianProcess.org/gpml
https://www.GaussianProcess.org/gpml
https://doi.org/10.1016/j.nimb.2013.06.036
https://doi.org/10.1016/S0168-583X(02)02133-X
https://doi.org/10.1140/epja/i2010-10936-8
https://doi.org/10.1140/epja/i2010-10936-8
https://doi.org/10.1016/0375-9601(91)91008-2
https://doi.org/10.1016/0375-9601(91)91008-2
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1201/9780429246593
https://doi.org/10.1201/9780429246593
http://www.nndc.bnl.gov/ensarchivals/
https://doi.org/10.1103/PhysRevLett.114.192501
https://doi.org/10.1103/PhysRevLett.114.192501
https://doi.org/10.1016/j.physletb.2021.136266
https://doi.org/10.1016/j.physletb.2021.136266
https://doi.org/10.1140/epja/s10050-022-00676-z
https://doi.org/10.1140/epja/s10050-022-00676-z
http://www.biodiversitylibrary.org/item/97262
http://www.biodiversitylibrary.org/item/97262
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1016/j.nds.2015.12.009
https://doi.org/10.1103/PhysRevC.102.024337
https://doi.org/10.1103/PhysRevC.102.024337
https://doi.org/10.1103/PhysRevC.103.025811
https://doi.org/10.1103/PhysRevC.103.025811
https://doi.org/10.1140/epja/s10050-021-00608-3
https://doi.org/10.1140/epja/s10050-021-00608-3

	Applying machine learning methods for the analysis of two-dimensional mass spectra
	Abstract 
	1 Introduction
	2 Measurement procedure
	3 Data analysis
	3.1 Fitting of the angular distribution
	3.2 Bayesian Gaussian Mixture (BGM) model
	3.3 Comparison of the methods
	3.4 Homogeneity of the MCP
	3.5 Decay correction

	4 Results and discussion
	5 Conclusions
	Acknowledgements
	References




