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PENG et al.

1. The cellular composition, spatial location, molecular and functional changes
in primary tumour and paired tumour-draining lymph node microenviron-
ments along with non-small cell lung cancer progression were comprehensively
profiled.
2. Tumour-associated neutrophils (TANs) showed unique spatial and temporal-
dependent prognostic effects.
3. The immunoregulatory roles and evolutionary heterogeneity of TANs during
lymphatic metastasis were demonstrated.
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Abstract
Background: The cellular dynamics in the tumour microenvironment (TME)
along with non-small cell lung cancer (NSCLC) progression remain unclear.
Methods: Multiplex immunofluorescence test detecting 10 immune-related
markers on 553 primary tumour (PT) samples of NSCLCwas conducted and spa-
tial information in TME was assessed by the StarDist depth learning model. The
single-cell transcriptomic atlas of PT (n = 4) and paired tumour-draining lymph
nodes (TDLNs) (n= 5 for tumour-invaded, n= 3 for tumour-free) microenviron-
ment was profiled. Various bioinformatics analyses based on Gene Expression
Omnibus, TCGA and Array-Express databases were also used to validate the
discoveries.
Results: Spatial distances of CD4+ T cells–CD38+ T cells, CD4+ T cells–
neutrophils andCD38+T cells–neutrophils prolonged and theywere replaced by
CD163+macrophages in PT alongwith tumour progression. Neutrophils showed
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unique stage and location-dependent prognostic effects. A high abundance of
stromal neutrophils improved disease-free survival in the early-stage, whereas
high intratumoural neutrophil infiltrates predicted poor prognosis in the mid-
to-late-stage. Significant molecular and functional reprogramming in PT and
TDLNmicroenvironments was observed. Diverse interaction networksmediated
by neutrophilswere found between positive and negative TDLNs. Five phenotyp-
ically and functionally heterogeneous subtypes of tumour-associated neutrophil
(TAN) were further identified by pseudotime analysis, including TAN-0 with
antigen-presenting function, TAN-1 with strong expression of interferon (IFN)-
stimulated genes, the pro-tumour TAN-2 subcluster, the classical subset (TAN-3)
and the pro-inflammatory subtype (TAN-4). Loss of IFN-stimulated signature
and growing angiogenesis activity were discovered along the transitional tra-
jectory. Eventually, a robust six neutrophil differentiation relevant genes-based
modelwas established, showing that low-risk patients had longer overall survival
time and may respond better to immunotherapy.
Conclusions: The cellular composition, spatial location, molecular and func-
tional changes in PT and TDLN microenvironments along with NSCLC
progression were deciphered, highlighting the immunoregulatory roles and
evolutionary heterogeneity of TANs.

KEYWORDS
multiplex immunofluorescence, single-cell RNA sequencing, tumour microenvironment,
tumour-associated neutrophil, tumour-draining lymph node

1 INTRODUCTION

Tumour metastasis is a leading reason of lung cancer (LC)
death globally.1 Despite early-stage non-small cell lung
cancer (NSCLC) patients with 5-year overall survival (OS)
rates ofmore than 80%, the occurrence rate ofmetastasis or
postoperative relapse was up to 21.7%.2 Cancer cells metas-
tasising to lymph nodes (LNs) is the early and crucial event
of metastatic tumours, affecting treatment strategies and
strongly predicting the poor prognosis.3
Tumour cells could acquire the competence of lym-

phatic metastasis in a passive or active manner. Some
tumours, like breast cancer, were skewed to spreading
by the lymphatic system and could passively enter it via
the lymph vessels.4 Another mechanism is that tumour
cells actively rebuild the microenvironment of the pri-
mary tumour (PT) and LNs, which include a range of
molecular, cellular and structural alterations, to form the
pre-metastatic niche for their colonisation and growth.
The lymphangiogenesis process is indispensable and vital
in lymphatic invasion.5 Besides being the gateway for dis-
tant tumour dissemination, LNs also act as the immune
foci that could orchestrate lymphocytes for coordinated
adaptive immunity.6

The immunological roles of tumour-draining lymph
node (TDLN) have renewed scientists’ interest in the
presence and advances of transcriptomic and proteomic
techniques in late years.7,8 For instance, Kim and col-
leagues have profiled the single-cell transcriptomic atlas
of LC in PT, LNs and distant metastatic lesions and
revealed the depletion of T cells and the proliferation of
macrophages along with tumour progression.9 Li et al.10
reported that cancer cells go through metabolic repro-
gramming in the TDLN, facilitating the release of lipids
and other metabolites, which could shift cellular function
and result in immune dysregulation. Recent studies also
showed that TDLN serves as a critical element of immune
checkpoint inhibitor (ICI) treatment efficiency,11 and tar-
geting TDLN mediates a valid anti-tumour immunity in
PT of mouse model.12 And it underscores a potential treat-
ment option for improving patients’ prognosis and calls
for better characterisation of TDLNmicroenvironment for
developing novel immunotherapy strategies.
As a vital element regulating cancer development in

the tumour microenvironment (TME), the dual roles of
neutrophils have beenwell demonstrated.13 Cell content,14
spatial location,15 activation status,16 and surrounding
milieu17 in TME may account for such conflicting roles
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of neutrophils. For instance, Schürch and colleagues18
reported that infiltration of CD4+ PD-1+ T cells in the
neutrophil-dominant cellular community predicted longer
OS in colorectal cancer patients, implying the role of T
cells-neutrophils interactions inmodulating immune reac-
tivity. Concerning different tumour-associated neutrophil
(TAN) subsets, Salcher et al.19 recently reported fourmajor
subtypes in NSCLC by integration of single-cell datasets,
including TAN-1 with activated neutrophil markers, TAN-
2 with AP feature, TAN-3 with proinflammatory function
and TAN-4 with high expression levels of ribosomal genes.
Nevertheless, most of the included samples in their study
were collected from biopsies rather than the tissue block
from lobe excision, thus may lose the information of sam-
pling locations like TN and TS, which has been shown to
affect the functionality of TANs due to different surround-
ing milieu. Moreover, the main analyses were conducted
based on PT, while the immunomodulatory functions of
TANs in TDLN, which is the pivot of immune surveillance
and the initial site that determines anti-tumour immunity,
remain unclear.20 Moreover, systematic evidence concern-
ing the changes in infiltrating and spatial patterns and
the ontogeny of neutrophils during lymphatic metastasis
procedure is still lacking.
In the present work, the cellular composition, spatial

location, molecular and functional changes in PT and
paired TDLN microenvironments along with NSCLC pro-
gression were deciphered by the integrated analyses of
multiplex immunofluorescence (mIF) and single-cell RNA
sequencing (scRNA-seq) data (Figure S1), highlighting the
immunoregulatory roles and evolutionary heterogeneity of
neutrophils.

2 METHODS

2.1 Study design and sample collection

Patients were eligible for inclusion if1: histologically
confirmed stage IA∼IIIB NSCLC21,22,2; no prior sys-
temic chemotherapy3; adequate resected tissues for mIF
detection4; complete baseline and follow-up data. We
excluded patients who1: with in situ LC2; previously
received preoperative neoadjuvant therapy. Disease-free
survival (DFS), the time from radical resection to relapse
or death, was utilised as the endpoint. The last follow-up
date was set for 1 January 2018.
The current research was approved by the ethics

committee of First Affiliated Hospital of Guangzhou
Medical University and executed upon the Declara-
tion of Helsinki.23 Informed consent was obtained per
patient.

2.2 Workflow of mIF detection

The mIF detection was conducted at Genecast Biotech-
nology Co., Ltd. (Beijing, China). Ten immune-related
markers, including FOXP3, CD38, CD4, CD20 and CD66b
in panel 1, and CD8, CD68, PD-L1, CD163 and CD133 in
panel 2 were detected.
A 4 μm thick section from formalin-fixed and paraffin-

embedded NSCLC tissues was utilised for staining each
panel. The sections underwent epitope extraction via boil-
ing for 20 minutes (mins) in Tris–EDTA buffer at 97◦C,
subsequent to dewaxing and rehydrating. Then, endoge-
nous peroxidase was blocked by incubating for 10 mins in
antibody block/diluent while the protein was blocked in
0.05% Tween solution at room temperature for 30 mins.
Subsequently, five antigens per panel were labelled by
cyclic staining, including incubating primary (PAb) and
secondary antibodies (SAb), amplifying and visualising
tyramine signal (TSA) and removing the antibody–TSA
compound in Tris–EDTA buffer by microwave process for
20 mins at 97◦C.24 Each slice was counterstained with
DAPI for 5 mins and mounted in Pro-Long Diamond
Antifade Mountant (Thermo Fisher) after cyclic dyeing.
Information on the reagents used is available in Table S1.
Furthermore, PAb for CD4 and CD133 were incubated

at 4◦C for one night, while CD8, FOXP3, CD20, CD66b,
CD38, CD163, PD-L1 and CD68 were incubated for 1 h at
26◦C. Details of PAb utilised are available in Table S2. For
SAb, anti-rabbit/mouse horseradish peroxidase antibod-
ies were implemented and incubated at 37◦C for 10 mins.
Visualising TSA was realised via the Opal seven-colour
mIF Kit (NEL797B001KT; PerkinElmer), as we reported
previously25,26 (Table S3).
All sections were scanned through the PerkinElmer

Vectra software. Both whole slide images (WSI) and high-
power fields (HPF)were analysed. A 4× objective lens (OL)
to preview the full image of the slice was first used, fol-
lowed by the 20× OL to capture more particulars. Images
of individual fields were eventually spliced to get the full
picture of the slice with high resolution (4028 × 3012 px).
The HPF was set as 20× OL on the PerkinElmer Vectra
system (Vectra 3.0.5; PerkinElmer), under which the tis-
sue structure could be distinguished. A total of five HPFs
were scanned per patient. Multispectral images were sep-
arated from spectral libraries by the inForm Advanced
Image Analysis software. Information on the number of
slides analysed per patient in the mIF test was provided
in Table S4.
First, 25–30 mIF pictures in high resolution were ran-

domly selected (Data S1). Second, a proficient pathologist
(Dr. Bai Xuejuan) depicted the tumoural and stromal fields
on these pictures to train the algorithm in the inForm
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software. Third, the inForm software was made compe-
tent for the detection and segmentation of tissue sections
into tumour nest (TN) and tumour stroma (TS) upon
the morphologies automatically (Figure S2A). Two prac-
ticed pathologists (Dr. Wang Xin and Dr. Bai Xuejuan)
determined each marker’s appropriate positive threshold
‘Z’ separately, and disagreements were solved by consen-
sus. Z, 2Z and 3Z was regarded as the threshold of low,
median and high fluorescence strength (FS), respectively.
The histochemistry score (H-score) was analysed as25:

𝐻−score = (cells with low FS)% × 1

+ (cells with median FS)% × 2

+ (cell with high FS)% × 3

Information on annotating cell types via these 10 mark-
ers is available in Table S5.27

2.3 Identifying, segmentising and
localising cells via deep learning model

Our dataset enrolled over 2700WSIs from 553 NSCLC indi-
viduals. The workflow of the deep learning algorithm to
identify, segment and locate cells is depicted in Figure S2B.
First, we separated the R, G and B colour channels and

extracted the coordinates of fields with fluorescence (CF)
of each pathological picture. Second, DAPI-dyed slides
were analysed using the StarDist deep learning model, the
detailed depiction of which was previously reported,15 to
gain the coordinates of the cell nuclei (CCN). Third, CF
and CCN were intersected to gain the detailed coordinates
of each cell with fluorescence after removing non-specific
fluorescence signal. Ultimately, the Delaunay triangula-
tion approach was employed to connect cell nuclei and
obtain the spatial relationships between different cell
populations in TME.28

2.4 Extracting characteristics to profile
the spatial associations among cells

The connection length between two cells was defined as
the spatial distance between them. Because 10 markers
were detected by mIF in the current study, a combina-
tion of 30 spatial variables was generated in TME for each
patient:

[
𝐶25 + 5 =

5!

2! × (5 − 2)!
+ 5

]
× 2 = 30

The values of spatial variables were averaged if over one
pathological section per patient was available.

2.5 Assessing the performance of the
StarDist model

The threshold of intersection over union (IoU) of the
StarDist model was set at 0.6, as Schmidt et al.29 previously
suggested, which efficiently segments cells of pathological
sections. Ground truth (GT) refers to the manual labelling
of cell nuclei, which is the ‘truth value’ compared with
the ‘predicted’ cell nuclei by the StarDist depth learning
model.30 And nucleus was labelled ‘matched’ when IoU
forGTnucleus> 0.6; otherwise, it was ‘unmatched’.Mean-
while, the proportion between the discriminated and GT
nucleus was regarded as the detection coverage, assessed
by F1-score and pixel accuracy (PA), calculating as:

PA =
correctly segmented number of pixels

total number of pixels

We first manually marked the cells and localised the
nuclei of twenty randomly selected mIF images. Then the
StarDist model automatically segmented cells of the same
batch ofmIF images. Eventually, we analysed the false pos-
itive (FP), false negative (FN) and true positive (TP) values
based onGTnuclei and the nuclei predicted by the StarDist
model. The recall and precision of segmenting cell nuclei
were also counted to analyse the F1-score31:

F1 = 2 ×
precision × 𝑟𝑒𝑐𝑎𝑙𝑙

precision + recall
= 2 ×

⎛⎜⎜⎝
TP

TP+FP
×

TP

TP+FN

TP

TP+FP
+

TP

TP+FN

⎞⎟⎟⎠
2.6 Evaluation of cellular composition
and spatial distribution in the TME

The cellular composition was estimated by the percentage
(%/sight) of them on the mIF image, while the spatial rela-
tionships were evaluated by the physical length between
two cell lineages. Considering proximity between two cells
is requisite for direct and indirect signalling transduction
between them, a shorter distance between two cell popu-
lations suggests closer interplay, whereas a longer distance
indicates the opposite. Eventually, 30 spatial features and
66 cell content features were generated.

2.7 scRNA-seq implementation

Four PT and eight TDLN samples, including five tumour-
invaded TDLNs and 3 tumour-free TDLNs, were extracted
from fresh surgical resections and cryopreserved in
ice-cold H1640 culture media (Gibco, Life Technolo-
gies). Before digesting the tissue with 0.25% trypsin,
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phosphate-buffered saline (PBS) was applied to rinse the
specimens which were cut into 1 mm3 cubic pieces. Spec-
imens were added with dispase (0.6 U/ml) and 10 mL
of digestion medium with collagenase IV (100 U/mL)
after being terminated by culture media supplemented
with 10% foetal bovine serum. With the cells being main-
tained on the ice, the entire process of collecting live cells
was completed in less than 1 h, which involved filtering
the digested samples through a 70 μm nylon mesh, cen-
trifuging the filtered cells at 4◦C and 120×g for 5 mins,
re-suspending the cell pellets with ice-cold red blood cell
lysis buffer, filtering the cells through a 40-μmnylonmesh,
collecting the cells with PBS and calculating the num-
ber of live cells with an automatic cell counter. Using the
Chromium Single Cell 3′ Library, Gel Bead & Multiplex
Kit and Chip Kit (10× Genomics), the single cell sus-
pensions were converted to separate barcoded scRNA-seq
libraries according to the manufacturer’s protocol. Even-
tually, with a paired-end 150–base pair (PE150) reading
strategy (CapitalBio Technology), the scRNA-seq libraries
were built up by the Single Cell 3′ Library Gel Bead Kit
V3 and thereby sequenced on the NovaSeq 6000 platform
(Illumina).

2.8 In-depth sequencing data
procession and cell cluster annotation

Gene expression matrices were generated using Cell
Ranger (10× Genomics) based on the GRCh38 build of
the human reference genome and further processed via
R. The Seurat package was employed to analyse the
output-filtered gene expression matrices. We used the
following quality control steps to classify low-quality
cells: (i) cells expressing >5000 or <200 genes, (ii) >10%
unique molecular identifiers (UMI) or (iii) <500 UMIs
derived from themitochondrial genome. Subsequent anal-
yses were conducted upon the standard workflow of
Seurat.
After normalisation and auto-scaling, the expression

matrix of cells was first summarised by principal com-
ponent analysis, followed by Uniform Manifold Approxi-
mation and Projection approach, thereby generating cell
clusters sharing similar characteristics. For each cluster, a
final list of ranked marker genes was obtained using the
FindAllMarkers function, which ranked the gene expres-
sion of each pairwise comparison by log2 fold change.32
Subsequently, manual annotation was employed based
on classical and widely accepted markers of the cor-
responding cell types.33,34 The entropy-based indicator,
namely ROGUE, was utilised to evaluate the purity of the
identified cell populations.35

2.9 Intercellular and intracellular
communication analyses

To investigate the putative intercellular receptor–
ligand interactome, the CellChat algorithm in R was
employed. The Cell-Cell Contact and Secreted Signaling
databases within CellChatDB36 were selected for the
interaction analyses. The computeCommunProb and
netVisual_bubble functions were implemented to visu-
alise and compare the predicted interactions mediated
by ligand–receptor pairs from a certain cell group to
another. Only interactions occurring in all clusters were
considered. To determine the dominant function of cer-
tain cell types in the TME, ligand–receptor interaction
networks were ranked based on the information flows
using the rankNet function. The iTALK approach, which
can capture the strongly upregulated or downregulated
ligand–receptor gene pairs,37 was also utilised to val-
idate the findings of intercellular networks analysed
by the CellChat algorithm. The iTALK method cate-
gorised the ligand–receptor pairs into four types: immune
checkpoints, growth factors, cytokines and others. The
NicheNet analysis, which could predict the target genes
of the intracellular ligand–receptor communications,
was conducted to further profile the intercellular gene
regulation effects and signal transductions.38

2.10 Gene set enrichment and variation
analysis

Differential gene expression analysis (DGEA), gene set
enrichment analysis (GSEA) and gene set variation anal-
ysis (GSVA) were performed to explore the functional and
pathway differences among different cell lineages.39 Pair-
wise DGEA for each cell type was performed using the
limma package based on the statistical threshold: log2
(fold change) > 1 and Bonferroni-corrected padj< 0.01.40
A comprehensive list of Kyoto Encyclopedia of Genes and
Genomes and gene ontology (GO) gene sets were used for
GSVA and GSEA. Pathways distinguished by a Bonferroni-
corrected padj< 0.05 were considered significant according
to the Euclidean or cosine distance metric.41

2.11 Revelation of cell developmental
trajectory

The differentiation trajectory of cells was inferred via the
Monocle42 with branch points according to gene expres-
sion profiles, which demonstrate that different clades
correspond to cell types with distinct differentiation states.
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Trajectory analysis was also validated by the partition-
based graph abstraction (PAGA) approach via the SCANPY
package.43 After the cell trajectories were constructed,
GSEA was performed to assess the functional enrich-
ment of cells in different states. By comparing expression
profiles, differential analysis was performed along the
pseudotime, and state-specific genes were identified.

2.12 External datasets utilised for
analyses

The scRNA-seq data of NSCLC were obtained from the
Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) and Array-Express (https://www.ebi.ac.uk/
arrayexpress/) database, including the GSE200563,44
GSE12390441 and E-MTAB-614945 cohorts. The clinico-
pathologic characteristics, somatic mutation and bulk
RNA‑seq data of lung adenocarcinoma (LUAD) in the
TCGA–LUAD cohort were extracted from the UCSC Xena
(https://xena.ucsc.edu/) database.

2.13 Evaluation of cell composition and
abundance by bulk RNA‑seq data

CIBERSORT, an algorithm that assessed the abundance
of 22 kinds of immune cell lineages, including T cell, B
cell, NK cell, monocyte, macrophage, dendritic cell (DC),
mast cell, eosinophil, neutrophil and their subtypes, was
adopted to estimate the immune infiltration patterns by
bulk RNA-seq data.46

2.14 Predicting immunotherapy
response by gene expression data

Tumour mutational burden (TMB), defined as the num-
ber of somatic mutations per megabase of genome
interrogated, is a well-established biomarker to predict
immunotherapy responses across solid tumours, and a
higher TMB predicts better ICI response of NSCLC
generally.47,48 The TMB was calculated for each patient in
the TCGA–LUAD cohort via maftools in R based on their
somatic mutation data.49

2.15 Statistical analysis

The Mann–Whitney U test and Wilcoxon t-test were
implemented for two-group data comparison, while mul-
tiple comparisons were evaluated by the Kruskal–Wallis
single-factor analysis of variance. The survival curves

were generated via the Kaplan–Meier method, and the
log-rank test was employed to compare significant differ-
ences. Prognostic factors were analysed by univariate and
multivariate Cox regression analyses. The predictive per-
formance of the risk model was assessed by the receiver
operating characteristic curve and time-dependent area
under the curve (AUC). To confirm the best cutoff point,
the X-tile software, which is outcome-based and can select
the optimal division of the data by selecting the highest
χ2 value, was employed.50 Plots and statistical analyses
were completed in GraphPad Prism, R, SPSS and X-
tile. p < 0.05 was defined as significant across statistical
approaches.

3 RESULTS

3.1 Clinicopathologic features of the
included patients

Surgically resected PT samples from 553 NSCLC patients
were collected from 2009 to 2011, with LUAD as the
majority (69.1%) (Table 1). A total of 126 cases (32.9%)
in the early-stage (IA–IIA) and 114 cases (67.1%) in the

TABLE 1 Clinicopathologic features of patients enrolled in the
present study.

Characteristics
IA–IIA
(n = 383)

IIB–IIIB
(n = 170) *p Value

Age 0.838
≤60 188 (49.1%) 96 (40.0%)
>60 195 (50.9%) 144 (60.0%)

Gender 0.092
Male 224 (58.5%) 101 (59.4%)
Female 159 (41.5%) 69 (40.6%)

Histology 0.218
Lung adenocarcinoma 269 (70.2%) 113 (66.5%)
Squamous cell lung
cancer

92 (24.0%) 39 (22.9%)

Others 22 (5.8%) 18 (10.6%)
Vascular tumour emboli <0.001
Yes 214 (55.9%) 45 (26.5%)
No 169 (44.1%) 125 (73.5%)

Visceral pleural invasion 0.103
PL0 157 (41.0%) 49 (28.8%)
PL1 194 (50.7%) 117 (68.8%)
PL2 32 (8.3%) 4 (2.4%)

Dissected lymph nodes 0.001
0–14 130 (33.9%) 37 (21.8%)
≥15 253 (66.1%) 133 (78.2%)

*p Values of Mann–Whitney U test.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://xena.ucsc.edu/
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mid-to-late-stage (IIB–IIIB) relapsed throughout the
follow-up time, and the median DFS of which was 1780
days and 803 days, respectively. Additionally, patients in
the mid-to-late-stage were more likely to harbour vascular
tumour emboli (VTE) (p < 0.001).

3.2 Segmenting performance of the
StarDist algorithm

The F1-score at object-level precision and PA at pixel-
level precision was 81.39 and 99.996%, respectively. Con-
sequently, utilising the StarDist algorithm to identify,
segment and locate the cell nuclei was accurate and
effective.

3.3 Dynamic changes in cellular
composition and spatial location along
with cancer progression

From IA–IIA to IIB–IIIB stage, infiltration of neutrophils
and CD133+ cancer stem cells (CSCs) was significantly
reduced in TS (Figures 1A and C). Analogously, the con-
tent of CD133+ CSCs was also remarkably reduced in TN.
Conversely, the abundance of CD163+macrophages signif-
icantly increased in TN in the mid-to-late-stage. Despite
without statistical significance, both stromal and intratu-
moural CD4+ T cells, CD8+ T cells and CD20+ B cells
showed a downward trend in infiltration with tumour
progression, implying impaired anti-tumour immune
responses (Figures S3A–B).

F IGURE 1 Dynamic changes of cellular composition and spatial location in the tumour microenvironment along with non-small cell
lung cancer (NSCLC) progression. Radar map comparing the cellular composition (A) and spatial distribution patterns (B) between early and
middle-to-late-stage NSCLC by Wilcoxon t-test, highlighting significant findings. Representative multiplex immunofluorescence graphs
depicting the changes in infiltration patterns (C) of CD66b+ neutrophils, CD133+ cells and CD163+macrophages and spatial distances (D) of
CD4+ T cells–CD66b+ neutrophils, CD38+ T cells–CD66b+ neutrophils and CD4+ T cells–CD38+ T cells between early and
middle-to-late-stage NSCLC within two fields from one tissue section. *p < 0.05.
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Longer spatial distances of neutrophils-CD4+ T cells,
neutrophils-CD38+ T cells, CD4+ T cells-CD38+ T cells
andCD38+T cells-regulatory T cells (Tregs)were observed
in the mid-to-late-stage than the early-stage (Figures 1B
and D). Distances of CD4+ T cells–CD20+ B cells and
CD8+ T cells–CD8+ T cells also demonstrated an insignif-
icant upward tendency (Figure S3C). Taken together, these
results indicated that interactions among immunologic
effector cells were attenuated, and they were gradually
replaced by tumour-associated macrophages (TAMs) with
tumour progression.

3.4 Prognostic effects of infiltrating
cellular contents

Multivariate Cox analysis adjusting for sex, age, T stage,
visceral pleural invasion status and VTE status was con-
ducted to evaluate the prognostic effects of different cell
clusters. Higher infiltrating levels of CD8+ T cells in the
early-stage, irrespective of location, were associated with
better prognosis (intrastromal: HR 0.890, 95%CI 0.812–
0.976, p = 0.013; intrastromal: HR 0.808, 95%CI 0.703–
0.928, p= 0.003),whereas such effectswere insignificant in
themid-to-late-stage (Figure S4A).Moreover, higher intra-
tumoural Tregs infiltrates predicted unfavourable progno-
sis in the mid-to-late-stage (HR 1.039, 95%CI 1.006–1.074,
p = 0.022).
Subgroup analyses were also conducted based on dif-

ferent histological subtypes of NSCLC, including lung
squamous cell carcinoma (LUSC) (Figure S4B) and LUAD
(Figure S4C). Apart from showing similar findings in the
overall group, higher intrastromal CD20+ B cell infil-
trates in the early-stage (HR 0.956, 95%CI 0.918–0.996,
p= 0.032) predicted favourable DFS, whereas higher intra-
tumoural CD68+ macrophages (HR 1.022, 95%CI 1.010–
1.035, p < 0.001) infiltrates predicted the opposite in the
LUAD subgroup. Interestingly, higher infiltrating levels of
intratumoural M2 macrophages in the mid-to-late-stage
were associated with longer DFS in the LUSC group (HR
0.902, 95%CI 0.817–0.996, p = 0.042).
A higher ratio of intrastromal Tregs/CD4+ T cells pre-

dicted better prognosis both in the overall group (HR
0.171, 95%CI 0.044–0.660, p = 0.010) and the early-stage
(HR 0.039, 95%CI 0.003–0.449, p = 0.009) subgroup
(Figure S4E). Subgroup analyses based on different his-
tological types showed similar trends whereas without
statistical significance (Figure S4D).

3.5 Neutrophils showed stage and
location-dependent prognostic effects

We then sought to evaluate the prognostic effects of cells
whose composition or spatial location notably changed

along with cancer progression. Meta-analysis with the
fixed-effects model was employed to pool the prognos-
tic effects of neutrophils with different FS. We found
that higher intrastromal neutrophil infiltrates (HR 0.990,
95%CI 0.981−0.998, p = 0.020), particularly in early-stage
(HR 0.973, 95%CI 0.957−0.989, p= 0.001), predicted signif-
icantly better prognosis (Figures 2A and S4F). In contrast,
higher intratumoural neutrophil infiltrates in the mid-to-
late stage (HR 1.014, 95%CI 1.002−1.026, p = 0.021) corre-
lated with unfavourable prognosis. Neither intratumoural
neutrophil infiltrates in the early-stage nor intrastromal
neutrophil infiltrates in the mid-to-late stage significantly
correlated with prognosis. Moreover, a significantly better
prognosis of patients with tumour-low and stroma-high
than tumour-high and stroma-low neutrophil infiltrates
in the early-stage was observed (Log-rank p = 0.044)
(Figure 2D). A trend of better prognosis in patients with
tumour-low and stroma-high neutrophil infiltrates was
also found in the overall (Figure 2C) and the mid-to-
late-stage groups (Figure 2E), whereas without statistical
significance. In subgroup analyses, high neutrophil infil-
trates in the mid-to-late-stage predicted poor prognosis
both in LUSC (Figure S4G) and LUAD (Figure S4H). The
prognostic effects of infiltratingmacrophages (Figure S3D)
and CD133+ CSCs (Figure S3E) did not significantly
correlate with cellular location or cTNM stages.
Longer distances between neutrophils and CD20+ B

cells predicted unfavourable DFS in the mid-to-late-stage
both in the overall (Figure 2B) and the LUAD (Figure S4J)
but not LUSC (Figure S4I) subgroup. The prognostic sig-
nificance of spatial distances of CD38+ T cells-Tregs and
CD4+ T cells-CD38+ T cells did not display evident
relationships with disease stages (Figure S3F). Overall,
neutrophils showed unique stage and location-dependent
prognostic effects.
We then were interested in investigating the possi-

ble mechanisms underneath the spatial and temporal-
dependent prognostic effects of neutrophils based on
publicly available scRNA-seq datasets of GSE123904,
GSE200563 and E-MTAB-6149 (Figures S5A and B and
Tables S6 and 7). We found that expression of interferon
(IFN)-stimulated gene (e.g., GBP1) of neutrophils was sig-
nificantly down-regulated in the mid-to-late-stage (stages
II–IV) than early-stage (stage I) (Figure 2F). GSVA further
showed that differentially expressed genes (DEGs) of neu-
trophils between early and late stages were enriched into
antigen presentation (AP) and IFN-stimulated pathways
in the early stage (Figure 2G). On the contrary, the DEGs
were associated with angiogenesis and lymphangiogene-
sis processes in the late stages. Moreover, the expression
of VEGFA was significantly higher in the TN, whereas the
IFN-stimulated gene (e.g., ISG15)was higher in the tumour
edge. GSVA further indicated that DEGs of neutrophils
between the tumour core and tumour edge correlated with
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F IGURE 2 Neutrophils showed unique stage and location-dependent prognostic effects in the tumour microenvironment. Forest plots
showing the prognostic effects of infiltrating levels of neutrophils (A) and spatial relationships between neutrophils and other cell types (B),
as evaluated by multivariate Cox regression analyses. Kaplan–Meier curves and log-rank test demonstrating the disease-free survival
differences between tumour-low and stroma-high and tumour-high and stroma-low neutrophil infiltrates in the overall group (C), IA–IIA (D)
and IIB–IIIB (E) subgroups. Different expressing levels of representative genes in neutrophils between different cTNM stages (F) and spatial
location (G) based on re-analyses of GSE123904, GSE200563 and E-MTAB-6149 datasets. Gene set variation analyses estimating the pathway
activity of neutrophils in different cTNM stages (stage II–IV vs. stage I) (H) and spatial location (tumour core vs. tumour edge) (I).
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negative regulation of Th1 type immune response and lym-
phangiogenesis pathways in the tumour core (Figure 2H).
In contrast, the IL-6 mediated signalling pathways were
enriched in the tumour edge.
Spatial transcriptomic analyses based on the GSE200563

dataset indicated that classicalmarker genes of neutrophils
expressed both in TN (e.g., S100A8 and S100A9) and
TS (e.g., CD177 and PGLYRP1). However, the expression
of genes participating in AP (e.g., HLA-DRA/DMB and
CD74) and anti-tumour immunity (e.g., GBP1, IFNG and
TNFRSF9) were significantly higher in the TS, while genes
involved in angiogenesis (e.g., VEGFA) was significantly
higher in TN (Figure 2I).
Collectively, findings from large-scale mIF study and

functional analyses based on scRNA-seq datasets high-
lighted the spatial and temporalmodulation of neutrophils
along with cancer progression, and the distinct prognostic
effects of neutrophils might drive by IFN production and
angiogenesis pathways.

3.6 Microenvironment landscape in PT
and paired TDLNs

Cancer cells metastasising to LNs is the common and early
manifestation along with tumour progression. To profile
the molecular and functional changes of cells and their
roles in modulating cancer development, scRNA-seq on
PT and paired TDLNs was conducted (Figures 3A–C).
After quality filtering, approximately 33.8 million unique
transcripts from 16 459 cells in PT, 31.5million unique tran-
scripts from 19 975 cells in tumour-free TDLN, and 48.0
million unique transcripts from 28 352 cells in tumour-
invaded TDLN were obtained, respectively. Cells could
be classified into fourteen major lineages upon their
canonical markers, including cytotoxic T cells (CTL), T
helper-1 (Th1) cells, Tregs, memory B cells, germinal cen-
tre (GC) B cells, naive B cells, natural killer (NK) cells, DC,
macrophages, neutrophils, epithelial cells (EC), endothe-
lial cells, fibroblasts and mast cells (Figure S5C–G and
Table S8). The ROGUE values of all identified cell clus-
ters in the PT, positive and negative TDLNs were greater
than 0.6, and particularly neutrophils were greater than
0.7, suggesting relatively high purity (Figures S6A–C).
The most abundant cell types were EC, Th1 cells and

memory B cells in PT, tumour-invaded TDLN and tumour-
free TDLN, respectively (Figures 3A–F). Compared with
tumour-invaded TDLN, infiltration of EC, fibroblasts and
macrophages were higher in PT, whereas Th1 cells were
reduced (Figures 3G–I). Neutrophils and naïve B cells
were more abundant, while memory B cells were reduced
in tumour-invaded TDLN than in tumour-free TDLN
(Figures 3H–J). We then explored the activity differences

of these cell types between PT and TDLN microenviron-
ments.

3.7 Molecular and functional
reprogramming in TMEwith tumour
progression

DGEA indicated that 16 genes were up-regulated while
three were down-regulated of Th1 cells in tumour-invaded
TDLN compared with PT (Figure S7A). Higher expression
levels of IFN-γ, GZMA and CXCL13 of Th1 cells in PT than
positive and negative TDLN were observed, suggesting an
active anti-tumour immune response in PT (Figure S7B).51
In contrast, STAT1, a crucial factor for Th1 maturation
and differentiation,52 was more highly expressed in neg-
ative TDLN than in positive TDLN and PT. GSVA of
significant genes showed higher pathway activity in nega-
tively regulating immune activation (e.g., down-regulation
of interleukin (IL)−2 and type-1 IFN signalling pathway)
in tumour-invaded TDLN (Figure S7C). GO results fur-
ther unveiled the DEGs between positive TDLN and PT
were enriched into negatively regulating T cell activation
(Figure S7D).
Tregs expressed higher levels of inhibitory markers,

such as HAVCR2/TIM3 and TIGIT in PT and tumour-
invaded TDLN (Figures S7E and F). GSVA results showed
that down-regulated genes of Tregs in tumour-invaded
TDLNversus PTwere enriched in negatively regulating IL-
18 production, which is an important factor augmenting
anti-cancer immunity (Figure S7G).53 Moreover, signifi-
cant genes in PT and tumour-invaded TDLN correlated
with transforming growth factor-β1 (TGF-β) production
(Figure S7H). Collectively, suppressed Th1 activity and
enhanced immunosuppressive functions of Treg were
discovered in tumour-invaded TDLN.
Activated GC B cell genes like CD83 and CD40 were

highly expressed in tumour-free TDLN, whereas the
expression level of immature B cell markers like CD27
was higher in PT (Figures S7I and J). LAPTM5, a nega-
tive regulator of B cell maturation, was up-regulated in
tumour-invaded TDLN than PT. Further, DEGs of B cells
in tumour-invaded TDLN and PT were associated with
negatively modulating B cell differentiation and activation
(Figure S7K). GO enrichment findings also implied that
altered genes were enriched in regulating B cell activation
process (Figure S7L). Briefly, the formation of GC B cells
was attenuated in tumour-invaded TDLN and PT.
DC intimately communicated with other immune

effectors in TME, and a remarkably different transcrip-
tomic spectrum was found between PT and tumour-
invaded TDLN (Figure S8A), underscoring functional
divergence. Expression of AP genes like HLA-DPA1 and
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F IGURE 3 Microenvironment landscape in the primary tumour (PT) and tumour-draining lymph node (TDLN) of non-small cell lung
cancer. UMAP plots demonstrated the identified cell lineages and cellular composition in PT (A and D) and paired positive (B and E) and
negative (C and F) TDLN microenvironment. Cells in TDLNs were coloured upon the tumour invasion status (G) and cTNM stage (H).
Comparison of cell contents in PT and paired TDLN microenvironment by Wilcoxon t-test (I and J). *p < 0.05; ns, non-significant.

HLA-DPB1 was higher in PT. In contrast, LAMP3, which
showed regulatory function on lymphocytes, was higher in
tumour-invadedTDLN (Figure S8B).54 A significant down-
regulating T and B lymphocytes proliferation pathway and
up-regulating lymphangiogenesis pathway of DCwere elu-
cidated in tumour-invaded TDLN than PT (Figure S8C).
GO enrichment analysis further suggested that the AP
termwas enriched (Figure S8D). Collectively, the AP capa-
bility of DC was attenuated, whereas lymphangiogenesis
was augmented in tumour-invaded TDLN, contributing to
immune incompetence and tumour metastasis.

Fibroblastic reticular cells are the major and vital com-
ponent in LN, which facilitate transporting, priming and
activating of immune cells.55 Enhanced pathway activ-
ity in remodelling blood vessel and lymphangiogenesis
was observed in tumour-invaded TDLN, indicating active
remodelling of stromal structure (Figure S8E–G). Regard-
ing EC, 40 up-regulated and 26 down-regulated geneswere
identified in tumour-invaded TDLN than PT and were
analysed via the GSVA analysis (Figure S8H). Epithelial to
mesenchymal transition and positive regulating migration
pathway activity was higher in tumour-invaded TDLN,
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supported by GO enrichment analysis (Figures S8I and
J). To sum up, the invasion and malignant transformation
ability of EC were enhanced in tumour-invaded TDLN.
Sixty-two up-regulated and thirty-eight down-regulated

genes of mast cells in tumour-invaded TDLN than PT
were identified (Figure S8K), and significant genes were
enriched in activating T cells, B cells and NK T cells
pathways in tumour-free TDLN (Figure S8L). GO enrich-
ment analysis further showed that positively regulating
cell adhesion term was enriched (Figure S8 M). Collec-
tively, mast cells may regulate intercellular adhesion and
stimulate immune response in tumour-free TDLN.
A significant different transcriptomic spectrum of

neutrophils was demonstrated between PT and TDLNs.
Neutrophils in tumour-invaded TDLN highly expressed
AP (CD74 and HLA-DPA1/DQA1), pro-angiogenesis
(VEGFA) and immunosuppressive (TGFBI)-related genes
(Figures 4A–C). Accordingly, a unique functional dis-
tinction that both high activity in immune-stimulating
pathways (e.g., positively regulating AP) and immuno-
suppressive pathways (e.g., negatively regulating type
1 IFN-mediated pathway and NK cell activation) was
observed (Figure 4D). GO enrichment findings further
illustrated the glycerolipidmetabolic process was enriched
in positive TDLN (Figure 4E). Consequently, neutrophils
displayed dual roles along with tumour progression in
tumour-invaded TDLN. Going further, we sought to
explore the differences in communication networks medi-
ated by neutrophils between negative and positive TDLN.

3.8 Neutrophils showed intimate
interplay with Th1 cells and macrophages
in tumour-free and tumour-invaded TDLN,
respectively

With neutrophils as signal transmitters, macrophages
and Tregs manifested significantly stronger interactions
with neutrophils in tumour-invaded TDLN. In contrast,
intimate crosstalk between neutrophils and mast cells,
Th1 cells and CTL were observed in tumour-free TDLN
(Figure 4F). With neutrophils as signal receivers, ECs and
endothelial cells closely communicated with neutrophils
in positive TDLN, while memory B cells and mast cells
showed closer interactions with neutrophils in negative
TDLN (Figure 4G).
We then evaluated the signal pathway activity between

tumour-free and tumour-invaded TDLN. The relative
information flow of CXCL, TGF-β and VEGF was dra-
matically higher in positive TDLN (Figure 4H). More-
over, the leading signal pathways with neutrophils as
signal transmitters were MHC-II, MIF, GALECTIN in
positive TDLN, and MIF, ADGRE5 and MHC-II in

negative TDLN, respectively (Figure 4I). We further
assessed the crosstalk strength mediated by ligand–
receptor pair from neutrophils to other cell types. In
positive TDLN, neutrophils could recruit macrophages
through CCL3/CCL3L1–CCR1 axes and may promote
angiogenesis by VEGFA–VEGFR1/2 through interactions
with endothelial cells (Figure 4J). Signals that inhib-
ited the activation of T and B lymphocytes, such as
LGALS9–CD44/45 and PTPRC–CD22 axes, were also aug-
mented. In negative TDLN, neutrophils mainly commu-
nicated with Th1 cells (HLA−DRA/DQB−CD4) and CTL
(HLA−A/B/C−CD8A) by AP process (Figure 4K).
By the iTALK method, intimate communications

between neutrophils and endothelial cells through growth
factors like VEGFA–ITGB1 and cytokines like CXCL12–
CXCR4 pairs were observed in the tumour-invaded
TDLNs, involving in angiogenesis signal pathways
(Figure S9A).56 Neutrophils may also hinder the activa-
tion of Th1 cells and CTL via immune checkpoints like
CD86–CD28 and CD86–CTLA4 pairs in tumour-invaded
TDLN. On the contrary, closer interactions between
neutrophils and Th1 cells and CTL through B2M–CD3D
and B2M–KLRD1 pairs, involving in the AP pathway were
observed in the tumour-free TDLN (Figure S9B and C).57
The NicheNet method showed that, with neutrophils

as signal transmitters in the tumour-invaded TDLNs,
CCL3/CCL4–CCR1 pairs were also dominant in mediating
the interactions between neutrophils and macrophages,
consistent with the findings of CellChat analysis
(Figures S9D and F). Furthermore, the target genes
of neutrophils-macrophages/endothelial cells interactions
were correlated with angiogenesis (e.g., VEGFA, VCAM1
and MMP14) and epithelial–mesenchymal transition (e.g.,
PDGFD, CXCL12 and IGF1) processes (Figures S9E and
9G).
Collectively, the CellChat, iTALK and NicheNet algo-

rithms were utilised to investigate the intercellular inter-
action networks and intracellular gene regulation effects.
Briefly, in negative TDLNs, neutrophils mainly commu-
nicated with Th1 cells and CTL through the AP pathway
and may stimulate anti-tumour immune reactivity conse-
quently. On the contrary, intimate interactions between
neutrophils and endothelial cells/macrophages correlated
with angiogenesis and epithelial–mesenchymal transition
processes, which may promote tumour progression.

3.9 TANs in tumour-invaded TDLN
consisted of a heterogeneous population

To dissect the heterogeneity of neutrophils, six major clus-
ters were classified upon their distinctive transcriptomic
profiles in tumour-invaded TDLN (Figures 5A and B). The
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F IGURE 4 Differences in the transcriptomic atlas and interaction networks between primary tumour (PT) and tumour-draining lymph
node (TDLN) based on single-cell RNA sequencing data of neutrophils. Volcano plots displaying differentially expressed genes (DEGs) of
neutrophils in tumour-invaded TDLN than PT (A) and tumour-free TDLN (B). Violin plots demonstrating the differences in expression of
representative function genes (C). Gene set variation analyses comparing pathway activity among PT, positive and negative TDLN by
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ROGUE values of these six subpopulations were all greater
than 0.8, implying high purity (Figures S6D–F). TAN-0
highly expressed AP-related genes, like CD1E and HLA–
DPB1. TAN-1 exhibited strong expression levels of IL15 and
CCL19, and costimulatory markers like TNFRSF9. TAN-2
was characterised by higher expression levels of IL10 and
APOE. TAN-3 could be recognised as the classical subset
for its strong expression of canonical markers of neu-
trophils, including S100A8/9 and CTSG. TAN-4 comprised
a pro-inflammatory subtype, which showed high expres-
sion of inflammation-associated markers like CXCR3 and
PLAC8. No subtype-specific characteristics of TAN-5 were
found.
GSVA was subsequently conducted to assess the varia-

tion of pathway activity between different TAN subtypes
(Figure 5C). A significant up-regulation of AP pathway
activity of TAN-0 was observed. Significant genes in
TAN-1 were enriched into IL-2 and IFN-γ-mediated sig-
nalling pathways with immunostimulating competence.
Enhanced pathway activity in the glycerolipid catabolic
process and positively modulating angiogenesis and
macrophage proliferation of TAN-2 was found. TAN-3 and
TAN-4 were similarly correlated with pro-inflammatory
processes like positively regulating macrophage prolifera-
tion.

3.10 Pseudotime trajectories unveiled
the terminally differentiated state of the
pro-tumour TAN-2 subset

To understand the dynamic transitional processes of TANs
in TME, we further performed a pseudotime analysis to
trace the transcriptional trajectory. The trajectory was des-
ignated to start with TAN-1, through TAN-3 and TAN-4 as
the intermediate states and eventually reached a terminal
differentiation state characterised as TAN-2 (Figure 5F).
Features of TAN-0 maintained along the pseudotime
track. Similar findings that TAN-0 was in the initiation
phase, followed by TAN-3 and TAN-4 and terminally
reached TAN-2 state were validated by the PAGA method
(Figures 5Hand I). Expression ofGBP1 andTNFRSF9 grad-
ually decreased along the pseudotime trajectory, whereas
the expression of VEGFA and LGALS3 showed the oppo-
site trend (Figures 5D and E). Then GSVA was conducted

to evaluate the enriched pathways of these genes in the
TCGA–LUAD cohort. Higher expression levels of CD74
and HLA-DRA were associated with higher AP path-
way activity (Figures S10A and B). High expression of
GBP1 was involved in IFN-α and IFN-γ production, and
up-regulation of TNFRSF9 was associated with lympho-
cyte activation, demonstrating immunostimulating effects
(Figures S10C andD). In contrast, up-regulation of VEGFA
was enriched into angiogenesis-related pathways, indicat-
ing pro-tumour effects (Figures 10E and F).
We then identified 934 genes with notable expression

alterations along the trajectory, and they could be classified
into four patterns (Figure 5G). Expression of genes in clus-
ter 1 gradually decreased along the trajectory, which was
enriched in the innate immune reaction of neutrophils,
like mediating acute inflammatory response and regulat-
ing intercellular adhesion, displaying the ontogeny from
peripheral blood leucocytes to TANs.58 Cluster 2 con-
tained genes highly activated in the early stage while
down-regulated in the late stage. They participated in
anti-tumour immune processes like AP, leukocyte acti-
vation and cellular response to IFN-γ. In contrast, genes
in clusters 3 and 4 were activated in the late stage
and were associated with angiogenesis, myeloid leukocyte
chemotaxis and EC proliferation. Moreover, the fatty acid
metabolic process was also augmented. Taken together,
neutrophils were composed of phenotypically and func-
tionally heterogeneous populations in positive TDLN, and
loss of IFN-stimulated function and growing angiogenesis
function with hyperactivated lipometabolism activity were
the important events along the transition track.
Finally, given the dramatic functional divergence among

different neutrophil subpopulations, we were interested
in exploring whether their amounts varied between tis-
sue samples or cTNM stages. A total of 1097, 987 and 801
neutrophils in PT, positive and negative TDLNs,were iden-
tified, respectively. Results showed that the abundance
of TAN-1 significantly reduced in tumour-invaded TDLN
than PT, whereas amounts of TAN-2were strikingly higher
(Figure 6A). Similarly, the abundance of TAN-2 was sig-
nificantly higher in positive than negative TDLN, whereas
amounts of TAN-3 were lower (Figure 6B). We further
found that compared with the early-stage, the abundance
of TAN-2 in positive TDLN increased in the late-stage
(Figure 6C).

enrichment scores (D). Gene ontology analysis showing enriched biological process terms of DEGs in tumour-invaded TDLN than PT (E).
The numbers of remarkable receptor-ligand communications between neutrophils as signal transmitters (F) or receivers (G) and other cell
populations in positive and negative TDLN microenvironments. Comparing the relative (H) and overall (I) information flow of each signal
pathway with neutrophils as signal transmitters between tumour-invaded and tumour-free TDLNs. Depiction of interaction probabilities with
neutrophils as signal transmitters and other cell types as signal receivers mediated by ligand–receptor pairs in positive (J) and negative (K)
TDLN.
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F IGURE 5 Tumour-associated neutrophils (TAN) consist of phenotypically and functionally different subsets in the positive
tumour-draining lymph node microenvironment. Heatmap (A) and violin (B) plot showing the differential transcriptome spectrums of
different TAN subsets. Gene set variation analyses comparing pathway activity among different TAN subtypes by enrichment scores (C).
Two-dimensional plots demonstrating the dynamic expressing levels of antigen presentation-relevant genes (CD74 and HLA-DRA),
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3.11 Prognostic effects of different TAN
signatures

Gene signatures of different TAN subsets were derived
from the scRNA-seq data and were used as the target
gene sets (Table S9). Simple-sample GSEA, an approach
analysing the enrichment score (ES) of the pairing of each
sample and target gene sets, was conducted to calculate
the ES for each TAN subtype per patient in the TCGA–
LUAD cohort.59 The cohort was divided into the high and
low ES groups based on the optimal cutoff value via the
X-tile method. We found that patients with high TAN-0
scores have significantly better OS than low ones (Log-
rank p = 0.005), whereas high TAN-2 scores predicted the
opposite outcome (Log-rank p = 0.040) (Figures 6D–H).
The prognostic effects of TAN-0 signature remained sig-
nificant in the multivariate Cox regression analysis (HR
0.456, 95%CI 0.237–0.876, p = 0.018) (Figure 6I), indicating
the clinical relevance of the TAN signatures.

3.12 Establishment of a polygenic risk
model based on neutrophil differentiation
expression genes

To investigate whether the transcriptional changes of neu-
trophils would lead to a worse prognosis, we evaluated the
prognostic effects of DEGs between PT, positive and neg-
ative TDLNs and built a polygenic risk model, namely the
neutrophil differentiation expression gene score (NDEGS).
Group 1 included 100 genes differentially expressed in

positive TDLN than PT, and the number of significant
genes between positive and negative TDLN in group 2 was
13 (Figure 7A). Eight geneswere intersected between group
1 and group 2, and the combination was 121. The TCGA–
LUAD cohort was split into a training (n = 344) and a
validating (n= 148) cohort at a ratio of 7:3. Then the expres-
sion data of candidate genes were extracted, of which five
genes were absent in the TCGA–LUAD dataset, including
RACK1, SNHG29, YBX3, ATP5MC2 andCXCL8, and hence
were excluded. Eventually, 116 genes were used as the can-
didate genes and were recruited into the Least Absolute
Shrinkage and Selection Operator (LASSO) Cox regres-
sion model to screen out the robust prognosticators in the
training cohort (Figures 7B and C). A total of six genes, of
which five were up-regulated in positive TDLN than PT

(CTSZ, NME2, NPM1, EIF3E and PPIA) and one was up-
regulated in positive than negative TDLN (PLAUR), were
ultimately identified (Figure 7D). Both univariate andmul-
tivariate Cox analyses confirmed their prognostic effects
(Figure S11).
Next, to better comprehend their functions, we investi-

gated the corresponding pathway alterations between high
and low expression of these six genes. A high expression
level of CTSZ predicted better OS (Figure S10G) and was
associated with normal immune responses of neutrophils
like degranulation and respiratory burst (Figure S10M).
Moreover, AP and lymphocyte aggregation processes were
also enriched. Up-regulation of PLAUR was associated
with a dismal prognosis (Figure S10H) and was involved
in lymphangiogenesis and negative regulation of Th1
immune responses (Figure S10N). Strongly expressed
NME2 (Figure S10I) and NPM1 (Figure S10J) correlated
with poor prognosis, and the pathways were enriched into
the assembly of ribosome and proteasome, which were
involved in the growth of cells (Figures S10O and P). High-
EIF3E (Figure S10K) and PPIA (Figure S10L) expression
predicted worse OS and was involved in mitochondrial
function and lipid metabolism pathways (Figure S10Q and
R). Overexpression of PPIA was additionally associated
with cellular copper ion homeostasis.
Then the risk score per patient was determined as:

NDEGS = 0.706 × CTSZExp + 1.225 × PLAURExp + 1.268 ×
NME2Exp + 1.339 ×NPM1Exp + 1.349 × EIF3EExp + 1.555 ×
PPIAExp (Table S10). Upon the optimal cutoff value,
patients were subsequently divided into a high- and
low-NDEGS group. Low-NDEGS ones displayed signifi-
cantly longer OS than those of high-NDEGS (Log-rank
p < 0.0001) (Figure 7E). Multivariate Cox regression
analysis further illustrated that the NDEGS model was
an independent prognosticator of OS (HR 1.895, 95%CI
1.292−2.780, p = 0.001) (Figure 7H), supported by the
validating (Figure S12A–J) (HR 1.783, 95%CI 1.007−3.158,
p = 0.047) and the entire (HR 1.811, 95%CI 1.326−2.475,
p < 0.001) (Figures S12K–T) cohort.
The NDEGS model was also a relatively stable and

strong predictor of NSCLC survival since the AUC
was all greater than 0.65 among the training (AUC
0.661, 95%CI 0.602−0.721), validating (AUC 0.660, 95%CI
0.569−0.751) and entire (AUC 0.661, 95%CI 0.612−0.711)
cohort (Figure 7F). Moreover, the AUC for predicting 1-
year, 3-year and 5-year OS in the training cohort was 0.662,

interferon-γ stimulated gene (GBP1), costimulatory molecular-related gene (TNFRSF9), immune regulation-relevant gene (LGALS3) and
angiogenesis related-gene (VEGFA) along pseudotime trajectory (D and E). The trajectory of TANs along pseudotime in a two-dimensional
space was evaluated by the Monocle approach, with each point corresponding to a single cell (F). Heatmap displaying genes with dynamic
expression levels along pseudotime, among which the differentially expressed genes could be hierarchically clustered into four groups with
distinct enriched pathways (G). The SCANPYmethod validated the pseudotime analysis findings of TANs by the Monocle approach (H and I).
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F IGURE 6 Infiltrating patterns and prognostic significance of different tumour-associated neutrophil (TAN) subclusters in the
non-small cell lung cancer microenvironment. Comparing the contents of different TAN subtypes in different tissue types (A and B) and
cTNM stages (C). Prognostic effects of different TAN signatures as evaluated by the log-rank test (D–H) and multivariate Cox regression (I)
analysis. The proposed model summarises the spatial and evolutionary heterogeneity of TANs (J). TAN-1 with interferon-stimulated function
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0.601 and 0.671, respectively (Figure 7G). Additionally,
patients in the high-NDEGS group tended to be in a more
advanced T stage, N stage and cTNM stage (Figures 7I–N).
Comparable findings were demonstrated in the validating
and entire cohorts. Collectively, the NDEGS model was
effective and stable, with the potential to predict survival.

3.13 Mutation and immune infiltration
landscape between low and high NDEGS
group

A total of 5 genes with significantly higher mutation rates,
including ZNF536 (24.8 vs. 15.3%), TNR (19.9 vs. 15.4%),
OBSCN (19.3 vs. 12.4%), RELN (17.4 vs. 10.9%) and VCAN
(17.1 vs. 10.2%), were found in the low-NDEGS group com-
pared with high-NDEGS group (Figure 7O). And it has
been recently reported that mutation of OBSCN,60 RELN61

and VACN62 favour higher infiltrating levels of immune
cells, which was also an indicator for better immunother-
apy benefit than those of wild-type. CIBERSORT approach
further implied that the abundance of CD4+ T cells and
memory B cells were dramatically higher, while neu-
trophils were significantly lower in the low-NDEGS group
(Figure 7P). Inversely, the abundance of monocytes and
eosinophils significantly increased in the high-NDEGS
group, indicating the TME was dominated by myeloid-
derived suppressor cells (MDSCs) and possibly held an
immunosuppressive milieu.

3.14 Association between the NDEGS
and immunotherapy response

We further estimated the relationship between NDEGS
and ICI efficiency via TMB, awidely adopted immunother-
apy predictive marker. A trend of higher TMB in low-
NDEGSpatients thanhigh oneswas observed (mean value:
7.35mut/Mb vs. 6.32 mut/Mb, p = 0.100) (Figure 7Q).
Then 20mut/Mb was used as the cutoff value to define
TMB-H and TMB-L groups as previously suggested.63 We
found that the proportion of TMB-H patients was signif-
icantly higher in the low-NDEGS group (7.89 vs. 2.82%,
p = 0.038) (Figure 7R). Therefore, with a higher TMB,
patients with low-NDEGSweremore likely to benefit from
immunotherapy.

4 DISCUSSION

In the present work, we comprehensively profiled the
cellular and molecular changes in PT and TDLNmicroen-
vironments along with cancer progression, highlighting
the spatial and evolutionary heterogeneity of neutrophils.
Reduced infiltration of neutrophils, CD4+ T cells and

CSCs with tumour progression was found, accompanied
by increased TAMs infiltration.Moreover, spatial distances
of CD4+ T cells–CD38+ T cells, CD4+ T cells–neutrophils
and CD38+ T cells–neutrophils prolonged at the late-
stage, implying attenuated interactions between them. The
remodelling of immune infiltrating patterns could con-
tribute to immune dysfunction and immune escape of
tumour. Although former studies have reported changes
in cell content along with cancer progression, their find-
ings were concluded based on a small sample64 or indirect
estimation by scRNA-seq data,9 thus raising inevitable
bias. To our knowledge, we depicted the most compre-
hensive cellular infiltration and spatial location changes
in PT between early and mid-to-late-stage NSCLC by a
large-scale mIF cohort.
Then the single-cell transcriptomic atlas of PT and

TDLN was depicted, and molecular and functional alter-
ations of cells were compared, highlighting a series of
crucial modulations along with lymphatic metastasis. The
invasion and malignant transformation ability of ECs
were enhanced in tumour-invaded TDLN. However, the
tumour AP capability of DCs was attenuated, while lym-
phangiogenesis was augmented, contributing to immune
incompetence and tumour metastasis. Augmented neg-
ative immune regulatory functions of Tregs were also
delivered in tumour-invaded TDLN.Moreover, the activity
of Th1 cells, which serve as the key player in initiating and
amplifying adaptive immunity, was suppressed. The for-
mation ofGCB cells, which synergistically control tumour,
was also attenuated in tumour-invaded TDLN and PT.65
Collectively, positive TDLN displayed a highly immuno-
suppressive milieu, which may be more conducive to
tumour cell survival than PT. The impaired anti-tumour
immunity also offered treatment options to reverse the
aberrant factors into productive ones by ICI or targeting
a specific cell lineage.
Intriguingly, neutrophils exhibited unique stage and

location-dependent prognostic effects among various
cell populations. A higher abundance of intrastromal

was abundant in the stroma of primary tumour, while TAN-2 with pro-tumour functions was abundant in the tumour nest. TAN-3 with
classical neutrophil features was the dominant TAN subtype in the negative tumour-draining lymph node (TDLN), while TAN-2 and TAN-0
subtypes were abundant in the tumour-invaded TDLN. The evolutionary trajectory was designated to start with TAN-1, through TAN-3 as the
intermediate states, and eventually reached a terminal differentiation state characterised as TAN-2. Features of TAN-0 maintain along the
trajectory. Comparison of two-group data by Wilcoxon t-test, *p < 0.05; ***p < 0.001; ns, non-significant.
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F IGURE 7 Construction of the neutrophil differentiation expressed gene score (NDEGS) model in the training cohort. Venn plot
demonstrating the intersection and combination of neutrophil differentially expressed genes (NDEGs) among primary tumour, positive and
negative tumour-draining lymph node (A). Six robust NDEGs, including CTSZ, PLAUR, NME2, NPM1, EIF3E and PPIA, were selected by the
LASSO Cox regression model (B and C), with prognostic effects in overall survival (OS) as evaluated by the univariate Cox regression analysis
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neutrophils was associated with a better prognosis in
the early stages. In contrast, higher intratumoural neu-
trophil infiltrates predicted an unfavourable prognosis in
metastatic stages. We further found that the different IFN
production and angiogenesis-related pathway activities
in different disease stages and spatial regions could
account for its dual roles, suggesting the transition from
‘antitumour’ TANs to ‘protumour’ TANs. A recent study
by Hirschhorn et al.66 supported similar hypothesis that
TANs exhibited direct tumouricidal effects in the acute
inflammation setting whereas suppressing anti-tumour
immunity in the chronic inflammation situation. Thismay
also partly explain why most retrospective studies found
that high neutrophil infiltrates were an unfavourable
prognosticator of cancer patients because chronic inflam-
mation is one of the hallmarks of cancers.67 A recent
study also revealed similar prognostic effects of neu-
trophils in a small cohort of head and neck cancer (HNC)
patients.68 However, none of the studies have reported
such phenomenon in LC. Likewise, despite researchers
previously found that neutrophils could active T cells
by presenting tumour antigens69 and releasing IFN-γ70
in PT of early-stage LC, none of them have investigated
the immunoregulatory roles of neutrophils in TDLN,
which centralises lymphocytes for synergistic anti-tumour
immunity.
Therefore, we subsequently parsed the functional

spectrums of neutrophils in TDLN. Strikingly, neu-
trophils in tumour-invaded TDLN elucidated seemingly
conflicting immunomodulatory roles that both immune-
stimulating and immunosuppressive pathways were
enriched. Furthermore, intimate interplays mediated
by ligand–receptor pairs among neutrophils, Tregs and
macrophages were observed in positive TDLN. Likewise,
TANs and macrophages were reported to synergistically
promote hepatocellular carcinoma development and
drug resistance.71 In contrast, intimate crosstalk among
neutrophils, Th1 and CTL, mainly enriching in the AP
pathway, was found in negative TDLN. And it was sup-
ported by the latest evidence in HNC that neutrophils
promote anti-tumour immunity by sampling tumour
antigens in PT and presenting them to T cells through
migration to LNs.68
Going further, five phenotypically and functionally het-

erogeneous neutrophil subsets were identified in positive

TDLN. And several distinct points are noteworthy. First,
the expression of AP-related genes reserved at a high level
across the five neutrophil subtypes in TDLN, different
from previous studies reporting that the AP competence
of neutrophils blunted or even disappeared along with
tumour progression in PT.72 Second, the expression of IFN-
stimulated genes like GBP1 and costimulatory markers
like TNFRSF9 were significantly higher in TAN-1 than in
other subtypes while gradually decreasing along the pseu-
dotime trajectory. In contrast, the expression of VEGFA
was up-regulated within the transition track and was
highest in the terminal state, indicating the terminally
differentiated role of the pro-tumour TAN-2 subpopula-
tion. Third, hyperactivated lipometabolism activity was
observed along the transition track. And overexpressed
fatty acid transport protein-2 has been reported to mediate
the reprogramming of neutrophils into immunosuppres-
sive directions in the murine tumour model, hinting at
the potential therapeutic target.73 Fourth, the depletion
of TAN-1 with IFN-stimulated function in PT and the
emergence of pro-tumour TAN-2 in positive TDLN was
observed, unveiling dynamic cellular composition changes
during the lymphatic invasion. Moreover, the prognostic
efficacy of the TAN-0 and TAN-2 signatures was demon-
strated. Figure 6J summarises the above major findings
concerning the spatial and evolutionary heterogeneity of
TANs.
Zilionis et al.74 and Salcher et al.19 have previously

decoded the diverse neutrophil subsets in PT of LC,
and several common patterns could be drawn. The sub-
set expressing classical neutrophil genes like S100A9
and S100A12 is like TAN-3 as we proposed, while the
subset with AP feature corresponds to TAN-0, and the
pro-inflammatory subset was like TAN-4 in our study.
Except for similarities with prior work, our study showed
that neutrophils in TDLN microenvironment additionally
displayed higher diversity.
In other disease conditions, Xie and colleagues have

previously dissected the heterogeneity of neutrophils dur-
ing bacterial infection and identified eight subpopulations
with different molecular signatures, among which a sub-
type with IFN-stimulated function is found to develop
from mature neutrophils in bone marrow directly.75
Interestingly, such a group of IFN-stimulated TANs has
also been identified in LC74 and pancreatic cancer,72

(D). Kaplan–Meier curve showing the overall survival (OS) rate differences between high and low-NDEGS groups (E). Time-dependent ROC
curves and AUC values evaluate the prognostic performance of the NDEGS model at 1, 3 and 5 years (F and G). Forest plot implying the
prognostic effects of the NDEGS model, as evaluated by the multivariate Cox regression analysis (H). Differences in clinicopathologic features
(I–N), mutational (O) and immune infiltrating landscapes (P) between high and low-NDEGS groups. Tumour mutational burden differences
between low and high-NDEGS groups (Q and R). p Values of the ANOVA and chi-square tests between different groups. *p < 0.05; **p < 0.01;
****p < 0.0001; ns, non-significant.
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suggesting the conserved neutrophil subtypes in differ-
ent disease conditions. Besides, Lecot et al.76 reported
that a subgroup of peripheral neutrophils that bind to
neutrophil–platelet aggregates hold a higher capacity for
chemotaxis and trans-endothelial migration, which pre-
dicts dismal prognosis in solid cancers.
Through in-depth characterising of TAN subsets, our

findings indicated that TANs were highly plastic and the
conflicting roles of TANsmight be attributed to their differ-
ent subsets. Possible mechanisms underneath the transi-
tion between different TAN subtypes have been proposed.
For instance, granulocyte-macrophage colony-stimulating
factor (GM-CSF) released by tumour cells could induce
the formation of immunosuppressive neutrophils via acti-
vating GM-CSF–PD-L1 pathways in gastric cancer.77 In
contrast, GM-CSF is the requisite factor for generating
neutrophils with AP ability in LC.69 Tumour cells could
also hijack neutrophils and drive their pro-tumour func-
tions by secreting TGF-β and chemokines like CXCL5.17,78
Conversely, IFN-β and IFN-γ polarise neutrophils into an
anti-tumour status.79 As TAN-0 and TAN-1 are regarded
as the anti-tumour subtype and TAN-2 as the pro-tumour
subset in the present study, to identify targets that might
block the transition from TAN-0 and TAN-1 into TAN-2 or
reversal the terminal TAN-2 state could be vital for future
researches.
Finally, we developed a six-gene prognostic and predic-

tive model based on the neutrophil differentiation expres-
sion genes, which may provide a reference for clinical
adoption. Among the six robust genes, a higher expres-
sion of CTSZ, a member of the cathepsin family, predicted
better OS. CTSZ also mediates the degranulation and res-
piratory burst of neutrophils. In contrast, high expression
of EIF3E and PPIA were involved in lipid metabolism
pathways, and they were also reported to take part in the
proliferation of tumour cells.80,81 PLAUR is important in
tissue rebuilding and has been shown to facilitate can-
cer metastasis.82 Accordingly, strong expression of PLAUR
was found to associate with unfavourable OS and partici-
pated in negatively regulating Th1 response in the present
investigation. Hence, deepening the understanding of the
biological functions of these genes may pave the way for
future novel therapies targeting TANs. The NDEGS model
incorporating these six genes proposed relatively stable
performance to predict the OS of NSCLC, which needs to
be validated in future studies.
Low-NDEGS patients harboured higher mutation rates

of several genes that favour immune cell infiltration, fur-
ther supported by the CIBERSORT method that the abun-
dance of T and B lymphocytes was significantly higher
while neutrophils were lower, implying a ‘hot’ TME. In
contrast, the TME of high-NDEGS is dominant byMDSCs,
suggesting an immunosuppressive milieu. Low-NDEGS

group also held a higher TMB, suggesting higher immuno-
genicity, and may be more sensitive to immunotherapy
than the high-NDEGS group. It also conformed with the
common patterns that higher neutrophil infiltration pre-
dicted treatment failure of cancers.83 A recent study also
reported that high expression of neutrophil gene signa-
tures was correlated with the dismal treatment benefits of
ICI.19 In this sense, ICI plus targeting neutrophil therapies
like CXCR1 and CXCR2 inhibitors, which antagonise the
formation of neutrophil extracellular traps,may be feasible
to reverse immunotherapy resistance.84,85
Targeting neutrophil therapies, like impeding its recruit-

ment to the tumour and depletion of neutrophils, have
been proposed. For instance, Xue et al. recently reported
that in vivo eliminating the pro-tumour TANs, mainly
CCL4+ or PDL1+ subtypes, by anti-Ly6G antibodies
attenuated liver tumour growth in mice models.86 On
the contrary, activation of neutrophils by certain signals
contributes to their tumouricidal effects and stimulates
immune reactivity. For instance, Gungabeesoon et al.87
reported that IFN Regulatory Factor 1 was requisite for the
tumour clearance effects of neutrophils. Moreover, Linde
and colleagues discovered that combined therapies of
CD40 agonist, tumour necrosis factor and tumour-binding
antibodies induced activation of neutrophils via C5a,
which subsequentlymediated oxidative damage and facili-
tated T cell-independent cancer cell clearance.88 However,
as neutrophils were heterogeneous and several subtypes
proposed AP and IFN-stimulated ability, gross elimination
of neutrophils was unrecommended. Therefore, future
studies should focus on developing means which quanti-
tatively evaluate the effects of the diverse TAN subsets on
anti-tumour immunity and target a specific pro-tumour
subpopulation accordingly. Also, controlling and exploit-
ing the subset with tumour-killing competence may repre-
sent a great prospect. However, the fragility and low RNA
content of neutrophils pose a major technical challenge to
investigating them, and novel approaches are warranted.
Several strengths are worthy of the current study.

First, taking advantage of the large-scale mIF cohort
(n = 553), we comprehensively profiled cellular com-
position and spatial distribution changes in TME from
early to late-stage NSCLC and uncovered spatial and
temporal-dependent prognostic effects of neutrophils. Sec-
ond, scRNA-seq on PT and paired TDLN microenviron-
ments were applied to capture the features and differ-
ences in molecular and functional reprogramming of cells
along with lymphatic metastasis. Third, diverse and con-
tinuously transitional TAN subsets were unveiled and
validated by various bioinformatics analyses. Moreover,
a prognostic and predictive model incorporating robust
TANs differentiation-related genes was established, show-
ing potential for clinical application.
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Simultaneously, we are aware of the limitations. First,
the discrimination of TAN subtypes remains at the ana-
lytic and speculative phase based on transcriptomic data,
whereas mRNA does not strictly correlate with the pro-
tein expressed. Consequently, future in vitro and in vivo
experimental validation is necessary. Moreover, consist-
ing of 2885 cells accompanied by low mRNA counts,
the abundance of neutrophils was relatively lower than
in prior studies, thus may lack robustness to some
extent. Third, the genes used to conduct the NDEGS
model were differentiation-related rather than neutrophil-
specific. Moreover, albeit uncovering the associations
betweenNDEGS and immunotherapeutic response, future
prospective studies are needed to verify whether it could
indeed predict ICI outcomes. Additionally, CD38 and
CD133 used to annotate activated T cells and CSCs were
not specific enough because theymay also express on other
cell types.

5 CONCLUSIONS

In brief, the cellular composition, spatial location, molec-
ular and functional changes in PT and TDLN microenvi-
ronments along with cancer progression were deciphered,
shedding light on the immunoregulatory roles and evo-
lutionary heterogeneity of neutrophils. Our biological
insights may be helpful for precision therapies by targeting
rational elements in TME.
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