Skip to main content
. 2023 Jul 12;17:1183391. doi: 10.3389/fnins.2023.1183391

TABLE 1.

The methods for classifying epilepsy using machine learning in MEG data.

References Moda-lity Problem that was solved in that study Database Data acquisition Source locali-zation Fea-tures Classifi-cation Performance metrics
Sample size Age range Sex
(M:F)
Source Total dura-tion Cha-nnels Seg-ment/
epoch
length
Fre-quency samp-ling Pre-process-ing Sensiti-vity
(%)
Specifi-city
(%)
Accu-racy
(%)
Khalid et al., 2015 MEG EP vs HC 18 EPs, 15 HCs / / KFMC 15 min more than 300 / 1,000 Hz / / Standard deviation LDA 94.4 100 95.7
Khalid et al., 2016a MEG EP vs HC 35Eps, 35HCs / / KFMC 15 min 306 / 1,000 Hz / / Energy of the Delta and Theta component Threshold method 96.66 98.66 /
Matsubara et al., 2018 MEG mTLE vs HCs 25 left mTLE, 14 right mTLE, 32 HCs 20–68 females Kyushu University at least 120 evoked responses were counted 306 / 1,000 Hz band-pass filter: 0.1–330 Hz minimum norm estimate (MNE) software phase-locking factor (PLF) and phase-locking value (PLV) LDA 82.1 81.3 81.7
left TLE vs right TLE 92 92.9 92.3
Wu et al., 2018 MEG left / right TLE vs HCs 15 left/15 right TLEs, 15 HCs 15–62 / Nanjing Brain Hospital, Nanjing Medical University 30 min 275 120 s 1,200 Hz band-pass filter: 1–4 Hz standardized low resolution brain electro-magnetic tomography (sLORETA) was based on minimum-norm estimation (MNE) nodal degree, betweenness centrality, and nodal efficiency RBF-SVM / / 77.38
left TLE vs right TLE / / 88.1
Alotaiby et al., 2019 MEG EPs vs HCs 32 EPs, 32 HCs / / KFMC ≈ 19 min 306 1 min 1,000 Hz band-pass filter: 0.03–330 Hz / 8 statistical features RBF-SVM 99.35 95.47 /
Gautham et al., 2022 MEG left TLE vs HCs 54 TLE, 21 HCs 15–37 36:18 the MEG Research Centre at NIMHANS, Bangalore, India 5 min 306 / 2,000 Hz down-sampled to 500 Hz beamformer phase amplitude coupling (PAC) SVM / / 92.92
right TLE vs HCs / / 93.54
left TLE vs right TLE / / 92.04
Wang et al., 2022 MEG CPS vs SPS 16 SPS, 16 CPS 17–38 13:19 Nanjing Brain Hospital, Nanjing Medical University 40 min 275 120 s 1,200 Hz low-pass filter:70 Hz, high-pass filter: 1,000 Hz, notch-filter: 50 Hz, down-sampled to 100 Hz partial canonical correlation/
coherence (PCC), Fieldtrip
resting state functional connectivity features SVM 81.1 81.54 81.37
Soriano et al., 2017 MEG EPs vs HCs 14 frontal focal EPs,
14 idiopathic generalized EPs,
14 HCs
16–52 1:1 the University General Hospital of Ciudad Real 10 min 306 5 s 1,000 Hz band-pass filter: 0.1–330 Hz / total and relative power ELM 93 86 90
generalized vs focal epilepsy spectral densities (PSD), the phase-locking value (PLV) and the phase-lag index (PLI) 1 86 93
Bhanot et al., 2022 MEG localize the brain region from where the seizure originated 15 EPs 14–34 9:6 the MEG Research Centre at NIMHANS, Bangalore, India 12 min 306 / 2,000 Hz or 50,000 Hz band-pass filter: 0.1–100 Hz, down-sampled to 250 Hz / short-time permutation entropy (STPE), gradient of STPE (GSTPE), short-time energy (STE), and short-time mean (STM) RUSBoost 93 93 93.4

EPs, Epileptic patients; HCs, Healthy controls; TLE, temporal lobe epilepsy; SPS, simple partial seizure; CPS, complex partial seizure; SCI, spinal cord injury patients; NNI, National Neuroscience Institute; KFMC, King Fahad Medical City, Riyadh, Saudi Arabia.