Skip to main content
. 2023 Jul 12;17:1183391. doi: 10.3389/fnins.2023.1183391

TABLE 2.

The methods for classifying epilepsy using deep learning in MEG data.

References Moda-lity Problem that was solved in that study Database Data acquisition Source locali-zation Fea-tures Classi-fication Performance metrics
Sample size Age range Sex
(M:F)
Source Total dura-tion Cha-nnels Seg-ment/
epoch length
Fre-quency samp-ling Pre-process-ing Sensiti-vity
(%)
Specifi-city
(%)
Accu-racy
(%)
Aoe et al., 2019 MEG EPs vs HCs 140 EPs, 26 SCIs, 67 HCs 21–86 123:110 Osaka University hospital 4 or 5 min 160 800 ms 1,000 Hz or 2,000 Hz low-pass filter: 50 Hz, high-pass filter: 1,000 Hz, down-sampled to 1,000 Hz / / MNet / / 63.4 ± 12.7
EPs vs SCIs / / 79.8 ± 11.7
EPs vs SCIs vs HCs / / 70.7 ± 10.6
Gu et al., 2020 MEG SPS vs CPs 32 EPs 20–32 1:1 Nanjing Brain Hospital, Nanjing Medical University 40 min / 2 min 1,200 Hz band-pass filter: 0.03–300 Hz / / MSAM 90.8 90.7 83.6
Fujita et al., 2022 MEG EPs vs HCs 90 Eps, 90 HCs 7–86 93:87 Osaka University hospital 4 or 5 min 160 2,400 ms 1000 Hz or 2,000 Hz low-pass filter: 500 Hz, high-pass filter: 0.1 Hz, bandstop filter: 60 Hz, down-sampled to 1,000 Hz / relative power, functioncal connectivity (FC), phase-amplitude coupling (PAC) MNet (Aoe et al., 2019) 90 90 90