Skip to main content
. 2023 Jul 12;17:1183391. doi: 10.3389/fnins.2023.1183391

TABLE 3.

The methods of using artificial intelligence for epilepsy-assisted localization in MEG data.

References Moda-lity Problem that was solved in that study Database Data acquisition Source locali-zation Fea-tures Classifi-cation Performance metrics
Sample size Age range Sex
(M:F)
Source Total dura-tion Cha-nnels Seg-ment/
epoch length
Fre-quency samp-ling Pre-process-ing Sensiti-vity
(%)
Specifi-city
(%)
Accu-racy
(%)
Khalid et al., 2016b MEG spike detection 20 Eps / / KFMC 15 min 306 / 1,000 Hz band-pass filter: 1–50 Hz / CSP features CSP-LDA 91.03 94.21 /
Alotaiby et al., 2017 MEG spike detection 30 Eps 14–43 22:8 KFMC 15 min 306 100 ms 1,000 Hz band-pass filter: 1–50 Hz / statistical features KNN 91.75 92.99 /
Khalid et al., 2017 MEG spike detection 28 Eps 14–43 / KFMC 15 min 306 100 ms 1,000 Hz band-pass filter: 1–50 Hz / amplitude threshold-based features Dynamic Time Warping (DTW) 92.45 95.81 /
Chahid et al., 2019 MEG spike detection 8 Eps, 8 HCs / / KFMC 15 min 306 sliding window of size 100 sample-points with a step of 2 sample-points 1,000 Hz band-pass filter: 1–50 Hz / Semi-Classical Signal Analysis (SCSA) method-based features SVM 92.52 89.1 90.88
Chahid et al., 2020 MEG spike detection 8 Eps, 8 HCs / / KFMC 15 min 306 sliding window of size 100 sample-points with a step of 2 sample-points 1,000 Hz band-pass filter: 1–50 Hz / QuPWM-based features SVM 87 97 /
Sdoukopoulou et al., 2021 MEG+
EEG
spike detection 1 Eps 20 female / 8 min 304 400 ms 2,400 Hz band-pass filter: 1–100 Hz / EMEG features (statistical, spectral, functional connectivity metrics) SVM 95.1 90.2 92.8
Kaur et al., 2022 MEG spike detection 20 EPs 15–52 / Magnetoence-phalography Center of Xuanwu Hospital of Capital Medical University 60 min 306 10 s 1,000 Hz band-pass filter: 0.1–500 Hz / Phase locking value (PLV) SVM / / 93.8
Zheng et al., 2019 MEG spike detection 20 focal Eps 10–49 11:9 the Sanbo Hospital of Capital Medical University,
Beijing, China
10 min (90 min) 306 300 ms 1,000 Hz band-pass: 1–100 Hz / / EMS-Net 91.61–99.53 91.60–99.96 91.82–99.89
Hirano et al., 2022 MEG spike detection 375 EPs 0–79 1:1 Osaka University hospital 4 or 5 min 160 2,048 ms 1,000 Hz or 2,000 Hz band-pass filter: 3–35 Hz; downsampled: 1,000 Hz / / SE-ResNet + DeepUNet 79.52 99.71 /
Guo et al., 2018 MEG HFO detection 20 EPs 6–60 1:1 / 60 min 306 2 s 2,400 Hz band-pass filter: 1–70 Hz, 80–250 Hz, 250–500 Hz; down-sample factor: 10 / SSAE model-based features SMO 88.2 91.6 89.9
Guo et al., 2020 MEG HFO detection 20 EPs 6–60 1:1 / 60 min 306 1,000 ms 4,000 Hz band-pass filter: 80–250 Hz, 250–500 Hz / / ARF-AttNN 82.6 92.7 89.3
Liu et al., 2020 MEG HFO detection 20 EPs 6–60 1:1 / 60 min 306 500 ms 2,400 Hz band-pass filter: 80–250 Hz, 80–500 Hz / / MEGNet 94 / 94
Tanoue et al., 2021 MEG HFO detection 16 left mTLE, 19 right mTLE 8–71 2:3 Osaka City University Hospital 5 min 160 10 s 1,000 Hz band-pass filter: 0.3–200 Hz COH algorithms imple-mented in SPM-12, which is similar to sLORETA the laterality index (LI) in SVM 68–75 96 91
Guo et al., 2022 MEG HFO detection 20 EPs 6–60 1:1 / 60 min 306 1 s 2,400 Hz band-pass filter: 1–70 Hz, 80–500 Hz / / TransHFO 92.86 100 96.15