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Nephrotic syndrome (NS) is a clinical entity characterized by proteinuria,

hypoalbuminemia, and peripheral edema. NS affects about 2–7 per 100,000

children aged below 18 years old yearly and is classified, based on the response

to drugs, into steroid sensitive (SSNS), steroid dependent, (SDNS), multidrug

dependent (MDNS), and multidrug resistant (MRNS). Forms of NS that are more

difficult to treat are associated with a worse outcome with respect to renal

function. In particular, MRNS commonly progresses to end stage renal failure

requiring renal transplantation, with recurrence of the original disease in half of

the cases. Histological presentations of NS may vary from minimal glomerular

lesions (MCD) to focal segmental glomerulosclerosis (FSGS) and, of relevance,

the histological patterns do not correlate with the response to treatments.

Moreover, around half of MRNS cases are secondary to causative pathogenic

variants in genes involved in maintaining the glomerular structure. The

pathogenesis of NS is still poorly understood and therapeutic approaches are

mostly based on clinical experience. Understanding of pathogenetic

mechanisms of NS is one of the ‘unmet needs’ in nephrology and represents a

significant challenge for the scientific community. The scope of the present

review includes exploring relevant findings, identifying unmet needs, and

reviewing therapeutic developments that characterize NS in the last decades.

The main aim is to provide a basis for new perspectives and mechanistic studies

in NS.

KEYWORDS
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Introduction

Nephrotic syndrome (NS) is a clinical condition that occurs frequently in children and

manifests with the classical clinical triad of severe proteinuria, hypoalbuminemia, and

diffuse edema (1). Despite homogeneity of the clinical pattern at presentation, NS may

evolve with different outcomes, characterized by unpredictable response to drugs and

development of renal failure, that probably reflect different pathological entities (1, 2).
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Histological patterns of childhood NS vary from minimal

glomerular lesions (MCD) to focal areas of segmental sclerosis

(FSGS). These two histological opposites share the effacement of the

slit diaphragm of podocytes, which effectively sustains the

proteinuria (3). If FSGS represents a subsequent stage of MCD or

if MCD and FSGS are two distinguished histological entities is still

debated (4).

Pathogenesis of childhood NS is largely unknown and,

therefore, it is defined as idiopathic NS (iNS) in cases without a

definite origin, differentiated from secondary NS characterized by

causative mechanisms. An important group of secondary NS has a

genetic origin and is characterized by the association with a

pathogenic variant in genes transcribing for proteins of podocytes

and/or of glomerular structures (5). Causative genetic variants of

NS are identified in 66% of congenital and infantile cases, 30% of

children and, in approximately 10-15% of young adults presenting

with NS (2, 5). A second group of secondary NS occurring in

children (but not limited to young ages) is characterized by the

temporal associations with either virus infections or drug

administration (6, 7).

Therefore, a clear differentiation between iNS and secondary NS

has key clinical importance for prognosis and for the choice of

therapies since genetic NS has, in general, limited response to drugs

(see dedicated part). On the other hand, defying the pathological

mechanisms that may sustain iNS and, in particular, iNS resistant to

drugs, represents one of the major enigmas in nephrology. Several

theories have been developed over the years and the analysis of the

most relevant findings in this field will be the focus of the

present review.
How to define idiopathic nephrotic
syndrome

As previously reported, childhood NS is a clinical condition

characterized by generic signs (i.e. severe proteinuria,
Frontiers in Immunology 02
hypoalbuminemia, and edema (1)) that may occur in secondary

NS and/or in association with several glomerulonephritis common

in adults, such as primary and secondary autoimmune forms (ie.

membranous and lupus nephropathy), metabolic and genetic

conditions (ie. diabetic and hypertensive nephropathy and Alport

syndrome), and many others. iNS may be defined on the basis of the

above typical symptoms combined with the lack of any evidence of a

genetic, infective, inflammatory, or autoimmune cause. Further key

factors contributing to the classification of iNS are age at onset,

response to treatment, and histological patterns.
Age

iNS is a disease that typically affects children and young adults

(1). Genetic NS, resulting frommolecular modifications of podocyte

components, usually manifests in the first 12-24 months of life (30%

of cases) and has the peak of onset between 2 and 18 years (50-60%

of cases); the remaining 10-20% of genetic NS cases present at older

ages (2, 5). NS secondary to viral infections and/or associated with

drugs may occur any age. Among others, secondary conditions

causing NS, such as membranous nephropathy, lupus nephritis, IgA

glomerulonephritis, Alport syndrome, metabolic disorders

including diabetes mellitus and hypertension, and neoplasms such

as myeloma, occur more frequently in adults (8). Therefore, age

represents a key classification element of NS.
Response to drugs

The pharmacology approach to iNS (Figure 1) has been

consolidated over the years and now represents a crucial element

for classification. Corticosteroids represent the first step in the

treatment of iNS (9, 10). Corticosteroid sensitivity occurs in

about 80-90% of new-onset iNS, however, half of them develop

corticosteroid dependance (SDNS) and about 10-20% result in
FIGURE 1

Classification of NS occurring in childhood based on the response to treatments..
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corticosteroid resistance (SRNS). Both SDNS and SRNS require the

administration of the so=called ‘steroid sparing’ drugs, to reduce the

adverse effects correlated with long courses of corticosteroids (11).

Classical ‘steroid sparing’ agents are levamisole, mycophenolate

mofetyl (MMF), cyclophosphamide, and calcineurin inhibitors

(CNI, cyclosporin and tacrolimus) (9, 12). Anti-CD20

monoclonal antibodies have been more recently introduced in

therapeutic schemes (13, 14). In SDNS, the administration of a

single ‘steroid sparing’ agent is usually effective in maintaining

remission, while SRNS may require more than one drug, in which

case NS is defined as ‘multidrug dependent’ (MDNS) (15). Limited

SRNS that are resistant to the association of any agent and are

defined as multidrug resistant (MRNS). These forms account for

around 5-10% of overall cases, and no therapeutic approaches are

effective in limiting proteinuria. Moreover, in MRNS the

progression to renal failure usually occurs in a few years (16, 17).
Genetic backgrounds

Monogenic NS accounts for a significant number of NS (18).

Causative pathogenic gene variants are identified in 66% of

congenital and infantile cases, 30% of children and, in

approximately 10-15% of young adults presenting with SR/

MRNS. So far, more than 70 single gene causes of SRNS/MRNS

have been reported (6). NPHS1 (19q13.12) and NPHS2 (1q25.2)

are, by far, the two main autosomal recessive genes of genetic NS,

while INF2 (14q32.33) and WT1 (11p13) are the leading cause of

autosomal dominant NS. See below for the dedicated section (2).

Genetic NS must, therefore, be taken into account as a classificatory

element in very young patients with NS and in SRNS (see below, the

dedicated section).
Renal pathology

Renal pathology is fundamental to exclude secondary causes of

NS, such as autoimmune and inflammatory forms, that occur more

frequently in adults. There is consensus in considering a renal

pathology approach necessary in NS occurring in adults and in

SRNS. In childhood, kidney biopsy is usually not performed at the

onset of NS and in subjects with SSNS. KDIGO guidelines suggest

limiting kidney biopsy in children to those with a late response to

corticosteroids or to those suspicious of an underlying secondary

renal pathology (3, 11, 19). Recent findings suggested a possible

pathogenetic role of anti-nephrin antibodies in some cases of iNS

(20). Based on these findings, the diagnostic approach to iNS

consolidated over years may be modified and the indication to

kidney biopsy may be revised.

Historically, three major histological patterns have been

associated with iNS and still represent useful tools for classification

of the disease: a) the absence of any glomerular alteration at the

optical microscopy is defined as MCD and transient electron

microscopy reveals effacement of podocytes with alteration of the

slit diaphragm that is considered the reason for proteinuria; b) the

second pattern is more rare and is characterized by mesangial
Frontiers in Immunology 03
expansion with IgM deposit; and c) the third group presents

segmental sclerotic lesions that focally interest glomeruli (FSGS);

proliferation of Bowman epithelia and adhesion of glomeruli with the

capsule, or tip lesions, are variants of FSGS.

For many years, pathology represented the unique classificatory

element of NS until it was proven that FSGS may be the common

histological final step of different renal diseases (21). However, the

pathological mechanisms explaining the sclerotic degeneration of

glomerular tuft common to several glomerulonephritis are

still unknown.

The attempt to correlate the different pathology patterns with

the response to drugs in children with NS (MCD with SDNS and

FSGS with MDNS or MRNS) failed to provide clinical elements for

important overlaps between the different categories (5). A still open

point is, if FSGS is an evolutionary phase of MCD, this seems in

contrast with the reported concept on FSGS as the main feature in

many autoimmune and degenerative glomerulonephritis (4).
Causes of secondary nephrotic
syndrome (1): monogenic NS
susceptibility

Monogenic NS is the first and most unique case in which either

the causes and mechanisms of the disease have been elucidated

(Table 1). Moreover, genetic susceptibility offers the opportunity to

consider mechanisms that predispose to NS where genetics

represents a first hit.
Monogenic NS

The discovery of genetic backgrounds responsible for mendellian

NS has represented a real breakthrough in terms of evolution on

pathogenesis and clinical impact (18). To date, almost 70 genes have

been described in association with autosomal recessive (prevalent)

and dominant (rare) traits of NS including syndromes (22–34) (a

detailed review on genes involved in iNS is outside the scope of this

review). Most mutations are associated with SRNS; six genes involved

in GTPase activity have been recently identified as a cause of SDNS

(27). Many genes involved in SRNS code for proteins of the the slit-

diaphragm, such as nephrin (NPHS1) (35), or are directly linked to

this structure, such as podocin (NPHS2) (29). Others are components

of the cytoskeleton of podocytes such as actinin 4 (ACTN4), myosin,

and inverted formin 2 (INF2) (31, 32, 36). All these molecules are

directly involved in maintaining the sieving properties of the

glomerulus in terms of selectivity towards the charge and

the dimension of circulating proteins. Besides confirming that the

podocyte is the basic cell of the glomerulus involved in proteinuria,

genetic studies have produced progress in the clinical management

since, with the important exceptions of mutations of two

mitochondrial genes coding for Coenzymes Q2 (COQ2) and Q6

(COQ6) (37) and of the transient receptor potential cation channel

subfamily C member 6 (TRCP6) (34), genetic NS are only partially

responsive to drugs (38) and require only symptomatic and ant-
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proteinuric generic interventions (Figure 1). In the former case, ie.

mitochondrial COQ2 and COQ6mutations, oral coenzyme Q10 may

revert the clinical phenotypes (37). In the case of the mutation gain of

function mutations of TRCP6, a Ca+ channel important for muscle

cells functions, Sildenafil down-regulates the channel expression by

reducing the cGMP through a peroxisome proliferator–activated

receptor needed for its synthesis (39, 40). Therefore, it was

suggested that Sildenafil, reducing the activity of TRCP6, could

revert this genetic form of NS.
Susceptibility

The existence of rare familial aggregates of patients with

corticosteroid sensitive iNS (41) has long been reported,

highlighting the possibility of a common risk linked with

susceptibility. The lack of clear inheritance traits supports the

existence of a two-hit mechanism, where a susceptibility gene or

locus is shared by different individuals in the same family and NS is

triggered by a second hit, such as an infectious agent. Familial

susceptibility is supported by findings on the genetic architecture of

pediatric and adult patients. Genome-wide association studies

(GWAS), including a large spectrum of populations in the USA,

Europe, and Asia, identified a risk locus in the HLA Class II

consisting of HLA-DQA1 and HLA-DQB1 and three additional

signals, the Calcium Homeostasis Modulator Family Member 6

(CALHM6), TNF Superfamily Member 15 (TNFSF15), and nephrin

(42–44). The non-HLA loci are linked with expression quantitative

trait loci (eQTLs) of monocytes and T cells supporting the concept

that an immunomodulatory disfunction has a prominent role in

conferring susceptibility to iNS. Large collaborative studies on

many thousands of patients is surely the way to obtain further

solid information that would rebound on pathogenesis.

APOL1 is a susceptibility gene for FSGS (45) linked with race

that has been documented in subjects of West African ancestry.

Adults with this ancestry have, in fact, a 4-5 fold higher risk of

developing FSGS than Europeans. Genetic variants of APOL1 (62,

63) have likely developed in response to (and to protect from)

Trypanosoma brucei rhodesiense and Trypanosoma brucei

gambiense, which are very frequent in all African contexts.
Causes of secondary nephrotic
syndrome (2): viruses and drugs

Viruses and Drugs have been proposed as potential causes of

secondary NS for patients younger than 18 (Table 1). They would

be better defined as associated triggers because the real mechanism

causing NS is unknown or only partially characterized.
Viruses

Despite the numeric impact of viral infections associated with

NS, the clinical importance is limited since they are potentially

reversible (6, 64). Actually, NS has been demonstrated in
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association with SARS-CoV-5 (in children) and with HIV

infections (prevalent in adults).

New episodes of NS were described in two children with acute

SARS-CoV-2 infection, whereas the virus has been reported more

frequently in association with relapses of NS in patients who had

already presented the disease (46). The clinical course has been

good in all cases in terms of response to corticosteroids.

HIV infections have been associated with a severe form of

collapsing FSGS (HIVAN) complicated by extensive tubular lesions

and microcystis (47). In the pre-antiretroviral therapy era, HIVAN

represented an important cause of ESRD in many countries even

though its incidence has declined with the adoption of specific

therapies (48). Studies on mechanisms responsible for HIVAN

(49) have shown a direct infection of HIV of podocytes and tubular

epithelia leads to the dysregulation of cell cycle with inflammation,

alteration of the cytoskeleton, and cell death (50, 51). The high

frequency of two variants of Apolipoprotein A1 (G1 and G2) in

persons of African ancestry predispose to a very high risk of

HIVAN in African Americans and in South Africans with HIV

infection (52, 62).
TABLE 1 Causes of secondary NS.

Genetic NS. Ref

Overall (22–44)

SDNS associated

GTPase (27)

MRNS associated

NPHS1, NPHS2 (29, 35)

ACTN, MYO,INF2 (31, 32, 36)

COQ2,COQ6 (37)

TRCP6 (34)

Susceptibility

HLA-DQ1, HLA,DQB1 (43)

CALHM6,TNFSF15,Nephrin (42, 44)

APOL1 (45)

Virus-associated

SARS-CoV-5 (any age) (46)

HIV (any age) (47–52)

Parvovirus (any age) (53)

Drug-associated

Pamidronate (54)

Lithium (55, 56)

mTOR inhibitors, sirolimus (57, 58)

VEGF block. Bevacizumab: (59)

Aflibercet (59)

tyrosine kinase inhibitor.Ibrutinib (60, 61)
mTOR, mammalian target of rapamycin; VEGF, vascular endothelial growth factor.
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Parvovirus B19 DNA has been isolated in renal tissues of a high

percentage of patients with glomerular diseases, including MCD,

collapsing FSGS, and membranous nephropathy, suggesting a

possible role of the virus in the pathogenesis of the disease (53).

The very high frequency of kidney tissues with Parvovirus, absence

of specificity, and lack of association with clinical signs of

Parvovirus infections speak against a direct involvement in NS.
Drugs

The administration of drugs has been associated with the

development of NS; Pamidronate and Lithium were the first to be

reported (54–56). Pamidronate belongs to the class of

bisphosphonates that are utilized as first-class agents in

osteoporosis and in Paget syndrome. Lithium is a major anti-

psychotic drug widely utilized in psychiatric patients. More

recently, NS has been reported following treatments with three

other categories of drugs, ie. mTOR inhibitors, vascular endothelial

growth factor blocking agents, and irreversible Bruton’s tyrosine

kinase inhibitors. The mTOR inhibitor sirolimus is an anti-rejection

therapy that may substitute other immudepressors in patients with

solid organ transplanationis (57); a mechanism for renal toxicity

linked with mTOR has been proposed based on the block of

podocytes’ compensatory hypertrophy, activated after podocyte

loss (58). Also, the intravitreal vascular endothelial growth factor

blocking agents bevacizumab and aflibercet are widely utilized in

clinical practice, being drugs of choice for macular degeneration

and diabetic retinopathy (59). The irreversible Bruton’s tyrosine

kinase inhibitor Ibrutinib is essential for the treatment of chronic

lymphocytic leukemia (65) and mantle-cell lymphoma (66). Several
Frontiers in Immunology 05
reports describe the occurrence of NS following Ibrutinib, but the

mechanisms are not understood (60, 61).
Mechanisms for idiopathic nephrotic
syndrome (1): membrane selectivity,
oxidative stress, and circulating
factors

The sections below are dedicated to those forms of NS that

usually occur in children without a recognized cause and/or of

pathogenetic mechanisms. Therefore, as previously mentioned,

these forms are defined as iNS. We will summarize the most

relevant pathological theories proposed over the years. Despite

the absence of any definitive demonstration, the proposed

theories may still represent potential future lines of research to be

developed and explored (Figure 2; Table 2).
Glomerular barrier sieving property
modification

The glomerular basement membrane (GBM) is a selective filter

that allows the passage of proteins according to size and electrical

charge: molecules between 10 and 36 Armstrong (A) are filtered in

relation to size (maximal for 10 A) whereas molecules > 36 A are

filtered on the basis of the charge with privilege for those with a

cationic isoelectric point (pI>7) (134, 135). This function is mostly

due to the presence of sialic aid in the external membrane of

podocytes that confers a negative charge to the structure. In
FIGURE 2

Primary and secondary childhood NS. Inherited forms of NS, caused by pathological variants in genes transcribing for the main protein of glomerular
tuft, represent a unique group of NS for which a clear mechanism has been defined. NS associated with either virus infections or drugs are reported
as secondary NS on the basis of both the temporal association and reversibility of proteinuria. All other mechanisms are supposed and require
further confirmatory results..
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accordance with the function of sialic acid, podocyte-specific

ablation of sialylation in mice caused a phenotype resembling

human FSGS (113, 136). Also, sphingolipids play a crucial role in

maintaining renal permeability. In line, previous reports suggest

that their accumulation in podocytes characterize several metabolic

and non-metabolic diseases, including FSGS, and may contribute to

altering glomerular permeability (114, 137).

In normal conditions, urine contains minimal amounts of

proteins since cationic proteins are in trace amounts in serum

and small proteins that cross the glomerular filter are reabsorbed by

proximal tubular cells. Filtered albumin is also almost completely

reabsorbed by proximal tubular cells via endocytosis (138, 139).

iNS is caused by an alteration of the podocyte filtering unit

wherein the capacity to repulse proteins on the basis of size and

charge is only partially maintained and anionic proteins of any size

can pass the filter and are lost into urine. Studies carried out

between 1970 and 1980 showed that the selectivity index
Frontiers in Immunology 06
calculated from urinary excretion and tubular reabsorption

(determined by the direct staining in renal biopsies) of albumin

and IgG correlated with the intensity of pathological lesions (140),

supporting the concomitant reduction in both pore size and density

of GBM in MCD (97).

However, modifications of the charge of circulating proteins

may partially sustain proteinuria and be a further pathogenetic

factor in NS. Studies on charge selectivity were performed

considering albumin as a model of sieving modifications, since it

accounts for 90% of all urinary proteins in MCD. Albumin is a 46A

molecule with anionic charge (pI 4.6). In normal conditions, it is

completely repulsed by the podocyte filtering unit for either size and

charge characteristics. In MCD, about 50% of urinary albumin

isoforms are more cationic compared to serum albumin (4.8-5.2 vs.

4.6) and are also more cationic compared to urinary albumin after

remission of the disease. In FSGS, urinary and serum albumin have

the same charge, suggesting that charge selectivity of albumin is

partially maintained in MCD whereas it is lost in FSGS (98).

Other studies reported that higher cationic isoforms of albumin

are characterized by lower amounts of fatty acids compared to the

anionic compounds (99). This finding makes sense, since fatty acids

that are transported by albumin in serum confer the characteristic

anionic charge to this protein. However, other anionic residues may

be implicated in regulating charge properties of circulating proteins.

Among others, sialic acid is a strong acidic molecule (pK 2.6-2.9)

that is transported in serum by a few proteins such as

immunoglobulins, fibrinogen, and alpha-2-macrogobulin.

Sialidase enzymes regulate the sialylation of transporter proteins

and, in parallel, their charge is anionic for sialylated proteins and

cationic for de-sialylated isoforms. Recent findings demonstrate

that sialylation of immunoglobulins modulate their cell binding and

play an important role in determining a pathological function

(141, 142). One example is rheumatoid arthritis, where the ratio

between de-sialylated and sialylated immunoglobulins directly

correlated with the activity of the disease (143–145). Moreover,

variations in sialic acid of immunoglobulins, and in particular of

IgM, modulate the immunoinflammatory functions of T cells in

MCD (110). Therefore, more extensive analysis to investigate the

possible pathological role of IgM sialydation in iNS is necessary.
Oxidative stress

iNS is commonly associated with a systemic oxidative milieu.

Extensive proteolysis of albumin and a1-antitrypsin has been

documented in the plasma and urine of patients with FSGS (111,

112). a1-antitrypsin is an enzyme with anti-proteolytic activity

whose fragmentation implies increased proteolysis. Albumin is the

principal anti-oxidant in blood: the SH residue of Cys34 is

sulphonated in the presence of an oxidative stress with the

addition of ±48Da molecular weight and changes of the net

charge for the addition of negative residues (146, 147). The

increased amounts of oxidized albumin in FSGS demonstrates the

oxidative stress. Other indirect evidence supports the implication of

oxidants in FSGS. Patients carrying a mutation in the two

mitochondrial genes COQ2 and COQ6 develop FSGS and revert
TABLE 2 Idiopathic Nephrotic syndrome (iNS).

Circulating Plasma Factors/
Two hit mechanisms References

CD40L (67–78)

c-mip (79–84)

uPA/suPAR (85–87)

Angiopoietin-like 4 (88–91)

Hemopexin (92–96)

Cationic albumin (97–99)

B7-1 (CD80) (78, 100–106)

Antibodies/
Regulatory Immunoglobulins

Anti-nephrin (20)

Anti-CD40 (75)

Anti-actin/ATP synthase
Anti- UCHL1
Delville’s group
Sialylated IgM

(107)
(108)
(109)
(110)

Oxidative stress

a1-antitrypsin (111, 112)

Glomerular Basement Membrane

Sialic acid, Sphingolipids (113, 114)

T cells/Interleukins

IL1/IL1R (115, 116)

Th2/IL4, IL5, IL9, IL10, IL13 (117–126)

Th17/IL17 (127)

Regulatory T cells (124, 128–132)

B cell subsets

Switched B cells (133)
This table covers a wide range of potential factors implicated in the pathogenesis of iNS that
should be further confirmed.
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the phenotype after supplementation with Coenzyme Q10 (37). All

experimental models of FSGS utilize oxidative substances such as

adriamycin and puromicin (148, 149). Overall, there is a direct

correlation between oxidation and proteolysis that is able to damage

renal structures.
Circulating permeability plasma factors

iNS and, in particular, FSGS have been considered the results of

circulating plasma factors that bind and permeabilize the filtering

glomerular unit (67, 68, 150). Recurrence of NS in the transplanted

graft is often used as evidence of the existence of a circulating

permeability factor that mediates glomerular injury in around 50%

of patients (69–71). The experience described by Gallon et al. (72)

represents definitive support of this concept. They removed a renal

graft after a few days of transplantation from a subject with FSGS

presenting recurrence of the disease immediately after the kidney

transplant. The graft was then transplanted in a second subject with

ESRF due to a malformative renal disease, observing the recovery of

podocyte effacement previously demonstrated by the renal biopsy

during the first transplant and absence of proteinuria in the

second patient.

The story of pathogenesis of FSGS coincided for many years

with the research of permeability circulating plasma factors. Initial

studies tested the efficacy of several potential molecules in inducing

permeability in an in vitro model with isolated glomeruli (73). A

few molecules emerged as potential plasma factors, however, we are

still far from any definitive conclusion and the nature of the

permeability factor is still pending (67). We here describe some

molecules that have been reported as valuable candidates for

permeability factors.
CD40L
The interest on CD40L and its natural target CD40 derives from

the experimental observation that CD40L promotes redistribution

of nephrin in both podocytes and glomeruli and increases

permeability to albumin (74, 75). CD40L exists as a soluble

circulating factor and CD40 is a costimulatory molecule present

on the surface of cells involved in immunologic response such as B

cells and monocytes/macrophages. CD40 is also constitutively

expressed in podocytes (75). CD40L/CD40 axis promotes

inflammatory events (76, 77) with activation of metalloproteases,

chemokines, urokinase, and the soluble urokinase plasminogen

activator receptor (suPAR). Serum levels of sCD40L are increased

in children with both SSNS and SRNS and in adult patients with

biopsy-proven FSGS compared to healthy subjects (75). On the

other hand, serum levels of CD40L are comparable in children with

congenital NS and in patients with membranous nephropathy.

In vivo studies have shown that CD40 is strongly expressed in

podocytes of patients with both primary and post-transplant

recurrent FSGS and the presence of circulating anti-CD40

antibodies are present in the serum of the same patients (78). It

has been proposed that anti-CD40 antibodies purified from the

serum of patients with recurrent FSGS disrupt the podocyte
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structure by acting on F-actin filaments with the involvement of

the suPAR–b3 integrin signaling pathway (78).

c-Mip
c-Mip (C-maf inducing protein) is an 86 KDa protein with

unclear functions that is upregulated in the podocytes of patients

with NS in association with conditions such as cancer that

predispose the development of NS. c-Mip levels also increase in

concomitance with drugs, such as the angiogenesis inhibitors

sorafenib and sunitinib (79–81) that may associate with NS. In

vivo studies showed that transgenic mice over-expressing c-Mip

develop a disease resembling human MCD (82). However, data on

c-Mip serum levels in patients with NS are not available and no

pathological mechanisms to correlate c-Mip and proteinuria have

been proposed. In the case of inhibitors of angiogenesis that act on

vascular endothelial growth factor-receptor tyrosine kinase (VEGF-

TKIs), it has been hypothesized that the reduction of RelA, a

member of the NFk-B family, is an inhibitor of c-Mip (80). More

generally, one explanation for proteinuria occurring in association

with c-Mip stimulation is that it interacts with factors such as Fyn, a

Src kinase that is involved in nephrin phosphorylation (83) and,

therefore, c-Mip may directly affect the podocyte slit

diaphragm (84).

uPA/suPAR
The possible implication of suPAR in FSGS derives from in vivo

animal models of the disease and does not reflect observation in

humans (85, 86). In fact, serum levels of suPAR are not increased in

NS and simply correlate with renal function (87). This molecule is a

determinant of proteinuria in experimental models of FSGS; mice

lacking uPAR (PLAUR-/-) are protected from developing

proteinuria (85). The plasminogen activator receptor (uPAR) is

expressed by podocytes and it functions to maintain podocyte shape

and sieve properties by modifying the avb3-integrin assembly and

adhesion to extracellular matrix.

Angiopoietin-like 4
ANGPTL4 is a glycoprotein expressed by several tissues and

organs, including glomeruli. It is a known inhibitor of lipoprotein

lipase (an enzyme that catalyzes conversion of triglycerides to

monoglycerides and free fatty acids) and plays a main role in

reducing triglyceride levels in circulation. ANGPTL4 has two

isoforms with elevated (pI >8) and neutral (pI 7) isoelectric point

(88) that are characterized by different sialic acid contents: sialylated

ANGPTL4 (the neutral isoform found in circulation) is secreted in

peripheral organs (mostly skeletal muscle, heart, and adipose tissue)

while the hypo-sialylated isoform is produced by podocyte and

remains restricted to the kidney. Several observations indicate a

potential involvement of ANGPTL4 in NS, but the interpretation of

data is not univocal. In fact, circulating sislylated ANGPTL4 is high

in NS and plays an anti-proteinuric effect by binding avb5 integrin
in glomerular endhotelim (89) whereas the renal hypo-syalilated

isoform determines proteinuria (90). In experimental models of NS,

levels of the two isoforms of ANGPTL4 are under the control, with

an opposite effect, of corticosteroids that up-regulate the expression
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of sialylated isoforms in adipose tissue and increase their circulating

levels while reducing ANGPTL4 expression in podocytes (91).

Therefore, the efficacy of corticosteroids in human NS is likely

linked with the combined ability to reduce a potential mediator of

proteinuria (renal ANGPTL4) and increase circulating levels of

ANGPTL4 that plays an anti-proteinuric effect.
Hemopexin
Plasma hemopexin is a glycoprotein with serine protease

activity (92) involved in iron homeostasis as a binder of free

heme. It is considered an antioxidant protein, mostly expressed

during acute phases of inflammation (93, 94). Rats treated with a

tail infusion of hemopexin developed reversible proteinuria (95). In

humans, plasma and urine levels of hemopexin have been reported

to be decreased in subjects with acute relapse of MCD, compared to

the high levels described in proteinuric subjects with FSGS,

membranous proli ferative glomerulonephrit is , or IgA

nephropathy, suggesting specificity of changes for MCD (96).
Second-hit mechanism (B7-1)

B7-1 (CD80) is a costimulatory ligand expressed on the surface

of antigen-presenting cells (APCs), the binding of which to the T-

cell receptors CD28 and CTLA-4 is essential for activating and

regulating T-cell immunity. Previous findings described the B7

expression on podocytes’ surface of subjects with NS and in post-

transplant recurrence of FSGS (78, 100, 101). The majority of

studies favor the idea that B7-1 may represent a non-specific marker

of proteinuric disease, such as MCD, lupus nephritis, membranous

nephropathy, and diabetic nephropathy, but not in FSGS (102–

105). Therefore, de novo expression of glomerular B7-1 in FSGS

recurrence may be considered as a local tissue response to non-

specific stimuli (ie. oxidants, inflammatory, infectious) (106). The

expression of B7-1 secondary to these stimuli represent a possible

antigen, as part of a second-hit mechanism. Such findings suggest

caution in interpretating the significance of glomerular B7-1

expression in post-transplant FSGS recurrence. The reason why

B7-1 expression is expressed only in limited patients with post-

transplant recurrence of FSGS is unclear. However, such reports

raised the hypothesis that B7 blockade may result in a podocyte-

protective effect with consequent reduction of proteinuria.

Abatacept, a B7-1 inhibitor, was proposed as a specific

therapeutic agent in post-transplant FSGS recurrence, with

discordant results. In the most recent study, Burke III et al. (101),

proposed the administration of abatacept, based on the B7-1

podocytes expression at kidney biopsy, in 12 subjects (median age

12 years old) with NS recurrence after kidney transplant and

resistant to conventional treatments with plasmapheresis and

rituximab. Nine subjects responded to treatment, of whom seven

had a kidney biopsy positive for B7-1, while two were without

biopsy. Of note, of the three patients not responding to abatacept,

one had a kidney biopsy positive for B7-1. Based on these results,

authors suggested that B7-1 podocyte staining may identify subjects

who can benefit from abatacept.
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Mechanisms for idiopathic nephrotic
syndrome (2): complement,
interleukines, and immune cells

C3a/C3aR-IL1b loop

Recent findings suggested that regulation of C3 convertase in

podocytes by CD55, a decay-accelerating factor, is implicated in

determining proteinuria and glomerular sclerosis in mice models of

glomerulosclerosis induced by adriamycin (115). C3a/C3aR

interaction enhances inflammasome activation in podocytes and

the release of active IL-1b that binds IL-1R1 and leads to actin

cytoskeleton rearrangement and podocyte disarrangement.

Proteinuria in these mice prevents the uncoupling of IL-1b/IL-
1R1 signaling, providing a causal link (115). IL-1b is a member of

the interleukin 1 family of cytokines involved in the inflammatory

response that is produced by macrophages, monocytes, and

dendritic cells.

Anakinra, the receptor antagonist binding IL-1 b to IL-1R1,

represents the treatment of choice in several rheumatic diseases.

Based on the in vitro and in vivo findings, Anegelli and co (116).

recently administered Anakinra in two patients with multidrug-

dependent/-resistant NS and in one patient with post-transplant

recurrence of FSGS. They induced a complete and two partial

remissions respectively (116). The limited findings supported the

hypothesis that, in proteinuric disease, C3a acts as a second-hit in

mediating podocyte cytoskeleton rearrangement and that IL-1R1

blockers may limit the damage (116).
T cells/Interleukins

A generic role of T cells was supported by the observation that

supernatants of hybridomes from patients with MCD efface

podocytes and induce proteinuria in rats (117). This finding

reinforced the concept that MCD is caused by T-cell disorder

(118) and stimulated many studies aimed to characterize the T

cell compartment in iNS, without definitive results. Observational

studies documented that concomitant measle infections, which

stimulate a Tcell response, are associated with proteinuria

reduction in iNS patients (119). Similar associations were

reported during type B influenza (120) and ZIKA virus

infections (121).

T helper 2 cells (Th2)
iNS, in particular MCD, is usually characterized by an

increased serum level of several cytokines (IL-4, IL-5, IL-9, IL-

10, and IL-13) that may be indirectly related to the activation of T

helper 2 cells (122, 123). IL13 mRNA is up-regulated in the renal

tissue of children with MCD and is associated with increased

release of IL13 by CD3+ T cells (122). Moreover, in vivo

experiments support a possible role for IL-13 in iNS. Wistar rats

over-expressing IL13 spontaneously develop proteinuria and

podocyte effacement, while Minnesota-Buffalo, a strain of rats

that spontaneously develop proteinuria, have high levels of IL4
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and IL13 that precede proteinuria (124). Anti-IL13 drugs are now

available for human administration and have already been

reported as effective in the treatment of subjects with asthma

(125) and atopic dermatitis (126). Given the safety of the drug, a

small pilot study testing the effectiveness of anti-IL-13 in MCD

would be of interest.

T helper 17 cells (Th17)
IL-17 is produced by T helper 17 cells (Th17) that derive from

naïve CD4+ after stimulation from IL-6 and IL-13. Previous reports

associated high serum levels of IL-17 with glomerulosclerosis in

patients with FSGS (127).

Regulatory T cells (Tregs)
Tregs (CD4+ CD25+ Foxp3+) are a subpopulation of T cells,

stimulated by IL-2, that suppress immune response. Tregs are able

to inhibit T cell proliferation and cytokine production and play a

critical role in preventing autoimmunity. Previous papers reported

that circulating Tregs are reduced in children affected by MCD and

that proteinuria may be reverted by the infusion of Tregs (124, 128)

in several murine models of NS (ie. adriamycin, Buffalo-Mna, and

LPS). Moreover, patients affected by IPEX, an immunodeficiency

hereditary syndrome with polyendocrinopathy and enteropathy

characterized by reduced circulating levels of Tregs due to Foxp3

inactivation, may develop MCD (129). Of interest, the

reconstitution of the entire T cell compartment after bone

marrow transplantation in children with IPEX recover the general

symptoms of the syndrome and also normalize the glomerular

disease (130). Tregs are stimulated and increased by IL-2 (131, 132).

While the data above support a protective effect of Tregs in NS, the

unique report in children with NS treated with IL2 contradicted this

concept. In fact, Bonanni et al. (151) infused IL2 in five children

affected by SRNS who presented lower circulating level of Tregs

compared to healthy subjects and obtained the normalization of

circulating Tregs without any effect on proteinuria.
B cells

For decades, NS has been considered a T cell pathology based

on the efficacy of steroids and on the absence of antibody

deposition in glomeruli. Results obtained with anti-CD20

monoclonal antibodies have modified this belief. Starting from

2010, several randomized studies proved the non-inferiority of the

chimeric anti-CD20 antibody rituximab compared to steroids and

CNI in the treatment of steroid-dependent and resistant NS (13,

14, 16, 152–154). Such clinical results strongly support a possible

implication of B cells in this pathology. It was initially proved that

the positive effect of rituximab is correlated with the depletory

effect on B cells but successive studies have widened the panel of

cells expressing CD20 to B memory cells, which are now

considered the cell effector of rituximab in terms of length of

relapse (155). Through time-of-flight mass cytometry (CyTOF), it

was observed that frequencies of class-switched B cells were

significantly higher in patients who received rituximab and
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relapsed than in non-relapsing individuals (133), a phenomenon

already observed in autoimmune conditions such as myasthenia

gravis, neuromyelitis optica, and rheumatoid arthritis (156, 157).

The phenotype frequently associated with recurrence of NS is

IgDCD27+CD38+CD95+ Ab-secreting where the presence of

CD38 promotes survival in germinal center B cells. The

meaning of B cells and, in particular, of switched B cells

expressing CD38 in NS can be interpreted as the persistent

possibility of secreting antibodies and should be connected

with a potential role of antibodies and, more in general, of

immunoglobulins. More observational and experimental

evidence of an antibody role in iNS is needed since, with the

exception of anti-nephrin antibodies described in MCD (20), NS

patients do not present immune-deposits in glomeruli. This is an

evolving story that started only recently and needs to be developed

in detail (see the section dedicated to antibodies below).
Proposed mechanisms for idiopathic
nephrotic syndrome (3): antibodies
and regulatory immunoglobulins

Antibodies

That auto-antibodies may have a pathological role in iNS is not

a novel thought at all. However, the possible pathological relevance

of auto-antibodies was further considered mostly after the

introduction of treatments with anti-CD20 monoclonal

antibodies. In previous literature, several papers proposed many

possible circulating antibodies as responsible for the disease (see

previous section).

Among others, Musante et al. (107) reported that circulating anti-

actin/ATP synthase beta chain IgM were present in the serum of

around 10% of FSGS patients. Moreover, authors described that

infusion of such antibodies in Sprague Dawley rats induced

proteinuria, which correlated with IgM glomerular deposition. In

2014, Delville et al. (109) proposed a selection of circulating

antibodies with several antigens as targets as biomarkers of post-

transplant recurrence FSGS: protein tyrosine phosphatase receptor O,

TNF receptor superfamily member 6, Chorionic gonadotropin b,
Ribonucleoprotein B, Apoliprotein 2, P2Y purinoceptor 11, Retinoid

orphan nuclear receptor a, Chemokine C-C motif-ligand 19, Myosin

light kinase, and CD40 (109). Antibody anti-CD40 was deeply

investigated. In vitro studies showed that podocytes express CD40

and that treatment with antibody anti-CD40 resulted in morphologic

alterations. Moreover, antibody anti-CD40 induced proteinuria when

administered in wild type mice (75). More recently, Jamin et al. (158)

identified anti-Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1)

IgG in patients with relapsing proteinuria and Ye et al. (108)

described anti-Annexin A2 antibodies in patients with NS with IgG

deposits along with GBM. The most recent study by Watts et al. (20)

described the presence of circulating anti-nephrin IgG in patients

with MCD and also demonstrated their binding to podocytes’

cytoplasm and co-localization with nephrin. Moreover, serum

levels of circulating anti-nephrin antibodies correlated with
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proteinuria and disappeared after remission, suggesting a direct

pathogenetic implication.

Overall, available evidence suggests the existence of circulating

anti-podocyte antibodies that may characterize different subsets of

NS. However, with the exception of anti-nephrin IgG, other studies

did not show the concomitance of circulating antibodies with their

deposition in glomeruli.

Furthermore, the limited efficacy of anti-CD20 monoclonal

antibodies in inducing complete remission, in particular in SRNS,

suggests the need for caution and requires more evidence on the

pathological role of such antibodies.
Regulatory immunoglobulins

Immunoglobulins may play an important role in NS, with

pathological mechanisms different from the classical immune

deposits of glomerulonephritis. Previous studies demonstrated

that IgM may deposit on the surface of T cells. After deposition,

sialylated IgM are internalized differently to non-sialylated IgM,

which remain on surface. The internalization of sialylated IgM

correlate with T cells proliferation and confer more resistance to

steroids (141). Moreover, internalization of IgM and T cells’

proliferation are both associated with relapse of proteinuria in

patients with SDNS (110). Rituximab seems to have more effect

in decreasing the sialylated IgM; therefore we may speculate that the

efficacy of rituximab in SSNS may be partially explained by selective

depletion of sialylated IgM on T cells.
Therapies for nephrotic syndrome

A detailed analysis and comparison of therapies administered in

NS is outside the scope of this review. However, we here present an

overview of the therapeutical progresses of the last two decades,

with the aim to define how the pathological progresses have been

accompanied by therapeutical ones.
Corticosteroids

Steroids still represent the treatment of reference for iNS in case

of occurrence and relapses. Based on the KDIGO Guidelines (159),

prednisone at a dose of 60 mg/m (2) for 6 weeks following 6 weeks

at 40 mg/m (2) is associated with the best outcome in terms of early

relapses and lower incidence of development of SDNS. The

administration of different type of corticosteroids, such as methyl-

prednisolone or deflazacort, is not associated with better outcome

compared to the scheme reported above. Relapse of iNS is treated

with prednisone 40 mg/m (2) every day until normalization of

proteinuria and then the same dose given every other day for 40

days. Longer schemes do not improve the outcome in terms of

relapse of proteinuria.
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Steroid-sparing agents

Long-term complications related to the chronic administration

of steroids in SDNS are commonly reported. Therefore, steroid-

sparing agents (levamisole, cyclophosphamide, alkylating agents,

calcinerin inhibitors, mycophenolate mofetil, and rituximab) are

administered with the aim to limit the overall steroid dose (17,

160). Previous randomized clinical studies showed similar efficacy

among the different steroid-sparing agents (13, 14, 152, 153, 161,

162). Therefore, the choice may depend on the evaluation of

possible side effects and safety (126, 127) and on practical aspects.

As an example, a single infusion of rituximab allows to avoid the

daily administration of therapy. However, several concerns still

remain open on rituximab, such as the missing definition of a

definitive cumulative dose: recent studies compared the efficacy of

different rituximab courses, demonstrating that SDNS patients

receiving rituximab for the third or fourth episode of NS relapse

had longer remission than patients receiving rituximab for the first

release (163). Moreover, circulating levels of memory B cells better

correlate with NS remission (155) than total B cells and may

represent a potential marker for defining the needing of further

rituximab infusion.

Also, the development of anti-rituximab antibodies, due to the

chimeric nature of these antibodies, was proposed as a factor

limiting the efficacy of rituximab (164). In our experience, in a

significant cohort of NS patients who received at least two rituximab

infusions, the development of circulating anti-rituximab antibodies

did not affect the response to the treatment (165).
Multidrug dependence

A subset of patients with NS develop multidrug dependence

(MDNS), defined as the need of more than one drug, usually

calcinerin inhibitors and micophenolate mofetyl, to keep

remission. MDNS is characterized by frequent relapses of NS and

may evolve to MRNS that in extreme conditions, however, a specific

therapeutical approach for these patients has not yet been proposed.
Multidrug resistance

Currently, the treatment of patients affected by multidrug

resistance mostly consist of anti-proteinuric therapies, such as

mineral corticoid antagonists (finrenone) and/or drugs that

influence the angiotensin and the endothelin renal accomodation

(166, 167). The main aim of such conservative therapies is to limit

the progression to end-stage renal disease. Therefore, MRNS

represents one of the most relevant unmet needs in nephrology.

A second generation of humanized anti-CD20 monoclonal

antibodies, such as ofatumumab (154) or obinutuzumab (168), or

therapeutical schemes based on the association of different

biologics, have been recently proposed (169).
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Conclusions

Concrete discoveries

In the last two decades, in the context of childhood NS, the main

findings were represented by the definition of a genetic basis of

mendelian forms and by the demonstrated efficacy of anti-CD20

monoclonal antibodies in SDNS.

When monogenic NS is promptly diagnosed, the therapeutical

approach requires the administration of antiproteinuric treatments,

limiting therefore the immunosuppressive drugs with relative adverse

events. Very recently, cyclosporin was demonstrated to be effective in

reducing proteinuria in selected patients with monogenic NS (38).

Anti-CD20 monoclonal antibodies have modified the

therapeutical approach to SDNS with some advantages over

previous drugs. An important consequence of this finding is the

strong suggestion that B cells may be implicated in iNS. Such

findings provided the bases for new studies on the characterization

of B cell subsets in iNS.
Urgent unmet needs

The most urgent unmet need is the development of effective

therapies in MRNS and in post-transplant NS recurrence. The

definition of the pathological mechanisms causing both drug

sensitive and resistant iNS remain fundamental and should

precede any therapeutic innovation. The efficacy of anti-CD20

has stimulated the research on antibodies and on regulatory

immunoglobulins in iNS. Previous data highlighted the existence

of circulating IgM with variable charge and isoforms with cationic

pI. Whether cationic IgM play a role in iNS and how they are

modified by anti-CD20 drugs is a matter of research. Another point

of interest is the need to better characterize the amount of

immunoglobulins that escape the anti-CD20 effect. New anti-

CD20 monoclonal antibodies may have more efficacy in the

treatment of MRNS and post-transplant recurrence NS.

The association of anti-CD20 with other monoclonal antibodies

targeting long-lived cells producing antibodies, such as plasma cells
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that expressed CD38, represent the proof-of-concept for an ongoing

Phase II study in MDNS, MRNS, and post-transplant recurrence

NS (NCT05704400).
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