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Spatial Reconstruction of Oligo and Single Cells by De Novo
Coalescent Embedding of Transcriptomic Networks

Yuxuan Zhao, Shiqiang Zhang, Jian Xu, Yangyang Yu, Guangdun Peng,
Carlo Vittorio Cannistraci,* and Jing-Dong J. Han*

Single cell RNA-seq (scRNA-seq) profiles conceal temporal and spatial tissue
developmental information. De novo reconstruction of single cell temporal
trajectory has been fairly addressed, but reverse engineering single cell 3D
spatial tissue organization is hitherto landmark based, and de novo spatial
reconstruction is a compelling computational open problem. Here it is shown
that a proposed algorithm for de novo coalescent embedding (D-CE) of
oligo/single cell transcriptomic networks can help to address this problem.
Relying on the spatial information encoded in the expression patterns of
genes, it is found that D-CE of cell–cell association transcriptomic networks,
by preserving mesoscale network organization, captures spatial domains,
identifies spatially expressed genes, reconstructs cell samples’ 3D spatial
distribution, and uncovers spatial domains and markers necessary for
understanding the design principles on spatial organization and pattern
formation. Comparison to the novoSpaRC and CSOmap (the only available de
novo 3D spatial reconstruction methods) on 14 datasets and 497
reconstructions, reveals a significantly superior performance of D-CE.
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1. Introduction

Cell identity transition is precisely con-
trolled and ordered, this implies that
individual single cells are genetically fin-
gerprinted and genomically programmed
to evolve toward a 3D spatial tissue con-
tinuum. Single cell technologies—such
as single cell RNA-seq (scRNA-seq) that
simultaneously profile thousands and more
single cells—have becoming powerful tools
to capture such continuous spatiotemporal
changes during development.[1] Based on
single cell profiles, the transition paths to
the differentiated cells (or the developmen-
tal time trajectories) can be reconstructed
by calculating transcriptomic similarities
or dissimilarities between single cells.
Various computational tools based on this
assumption have been established to model
the developmental time trajectories.[2] For
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instance, Monocle reduces the data dimensionality and uses the
minimum spanning tree to model the developmental paths.[3]

Diffusion pseudotime, which is based on diffusion-like ran-
dom walk distances, is used to map developmental branch-
ing decisions.[4] Spatial distribution and patterning of cells are
not only essential for development but also for disease diagno-
sis and prognosis.[5] Patterning and morphogenesis during de-
velopment, injury or regeneration are processes of cell move-
ments and organizations guided by three major forces: small or
macromolecule morphogen gradient, bioelectric voltage gradi-
ent and mechanical force gradient, forming local environment
or spatial domains, and program or reprogram the cells at the
epigenome and transcriptome levels.[6] Thus, transcriptomic-
based computational reverse engineering of 3D tissue distribu-
tion in a “pseudospace” could be potentially achieved.[7] A bench-
mark cell population timer/clock has been proposed to test the
performance of pseudotime algorithms to approximate the real
developmental time of each single cell.[8] Similarly, a benchmark
microdissection-based 3D transcriptome, termed Geo-seq,[9] can
be used to evaluate algorithms to approximately map single cells
onto in vivo positions.[1] While technologies to generate spatially
resolved transcriptomes are still evolving and not yet achieving
single cell resolution or in 3D space, the vast majority of the mil-
lions perhaps billions of scRNA-seq can benefit from de novo sin-
gle cell level 3D reconstruction. Currently, there exist only two
algorithms (novoSpaRC[10] and CSOmap[11]) to do so computa-
tionally, that is to de novo reconstruct the spatial cell distributions
and spatial transcriptomes, with encouraging yet highly variable
results. Thus, de novo spatial reconstruction is still a compelling
computational open problem.[12] Some landmark-based compu-
tational approaches, such as Seurat and Halpern et al.’s method,
have been proposed to reconstruct spatial distribution of single
cell transcriptomes in zebra fish embryos and mouse liver based
on preselected or verified spatially expressed landmark genes.[13]

But, these approaches are not de novo reconstruction methods
because the landmark genes are ad hoc expressed in certain spe-
cific 3D spatial positions of the considered in vivo tissue, and
act as surrogate labels for the positions when revealed and in-
put to the algorithms. So far, effective, universally (tissue-wide)
applicable, completely de novo approaches have yet to be devel-
oped, and only recently the first template structure constrained
approach named novoSpaRC was proposed by Nitzan et al.[10]

with encouraging yet variable results highly dependent on the in-
put template. CSOmap based on ligand–receptor interactions is
another de novo method recently developed,[11] but performs no
better than novoSpaRC.[14] To address the de novo reconstruc-
tion of oligo and single cell 3D spatial tissue ordering and lo-
calization, we design a novel algorithm termed De Novo Coa-
lescent Embedding (D-CE) according to the network-based con-
ceptual framework of Coalescent Embedding (CE), which is a
model-free unsupervised machine intelligence methodology for
network geometry embedding.[15] However, D-CE is remarkably
different from previous CE algorithms, which were designed for
hyperbolic embedding.[15] Although it shares with them the ra-
tionale to exploit the phenomenon of network coalescence,[15]

D-CE is innovative because it introduces for the first time a de
novo network-based strategy in spatial pattern reconstruction of
oligo and single cells (Figure 1a) and also because, it simultane-
ously provides a de novo spatial marker gene nomination algo-

rithm for self-generated markers, which can further guide cus-
tomizable template-based reconstruction. The D-CE algorithm is
based on the same principle/assumption of all single cell posi-
tion mapping methods given gold standard transcriptome of po-
sitional landmark samples, that is, the single cells or oligo cells
from the same spatial position/domain have similar transcrip-
tome profiles, which have been demonstrated in our and others’
previous works,[1,9,16] except that spatial position/domain here is
the hidden variables in our algorithm, while they are the input
variables the mapping algorithms.

2. Results

2.1. De Novo Coalescent Embedding (D-CE): A Novel
Network-Based Algorithm for Cells Spatial Pattern
Reconstruction

CE encloses under its name a class of machine intelligence al-
gorithms for efficient embedding of large real networks to the
latent geometric space, which have been proven to impact hy-
perbolic big-network-data analysis in biology, neuroscience, and
social science.[15] For instance, CE showed to boost the detection
of community structural organization in social networks[15] and
to reliably capture the original geometry of macroscale structural
brain connectomes.[17] The name coalescent embedding derives
from “angular coalescence,” which is a term proposed to indi-
cate that, as a result of this methodology of embedding, the indi-
vidual network nodes geometrically aggregate together (from the
Latin verb coalēscō: to join, merge, amalgamate single elements
into a single mass or pattern) forming a pattern that is progres-
sively ordered along the geometrical angular coordinates.[15] In
CE algorithms, the node angular coordinates are ordered accord-
ing to latent relations of topological homophily (similarity) be-
tween the network nodes,[15] instead the node radial coordinates
according to latent relations of topological hierarchy between the
network nodes[15] (Figure 1a). Our core assumption in D-CE, in
line with the literature in this field,[6a,d] is that local environment
programs the transcriptome to form discernable local cell–cell
network neighborhood, and our innovation is that the D-CE cell–
cell network embedding captures co-occurrent transcriptomic re-
lation between the cells in the local environment and map their
geometrical relations within and in between accordingly.

The network embedding step, is designed according to topo-
logical machine learning theory,[18] and it aims for the preserva-
tion of the shortest-path network connectivity[18] in the 3D recon-
struct space by means of the singular value decomposition (SVD)
decomposition of the centered shortest-path kernel obtained
from the transcriptome-similarity network. The result of this net-
work embedding procedure is the angular coalescence[15] that is
an angular similarity pattern which preserves the mesoscale net-
work structure of cell-assemblies (which are network communi-
ties: cohort of cells with higher intrasimilarity in respect to the
rest of the network) and the relationships among cell-assemblies,
and these relationships map the relative locations of the cell-
assemblies and entities within.

There is so far no genome wide single cell 3D spatial tran-
scriptomics technology or datasets exist, which underscores the
urgent need to develop accurate computational de novo recon-
struction methods. As Geo-seq is the only 3D genome-wide oligo
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Figure 1. D-CE method of spatial reconstruction of 3D localizations. a) Overview of spatial structure reconstruction by D-CE, which consists of angular
and radial reconstruction. Angular reconstruction is based on dimensionality reduction by singular value decomposition (SVD), radial reconstruction is
based on the strength-dependent hierarchy. Pearson distance and SQRT (square root of each element of the matrix) were applied to all expressed genes
to construct an association network for D-CE. Maximum EOC (expression order correlation) were calculated for all expressed genes in all directions by
rotating the reconstructed structure at 12° per step in two orthogonal directions, respectively. If a position template is available with or without using
marker genes, the D-CE reconstructed coordinates were serially one-to-one mapped to the template after optimal transport to D-CE-t reconstructions.
The top EOC genes on the 2 and 3 orthogonal directions are use as marker gene 1, 2, and 3 for 2D and 3D template fitting, respectively. b) Then ordering
index (OI), angular separation index (ASI), and projection separability index of Matthews correlation coefficient (PSImcc) to the original sample layer
order were used to assess the accuracy of spatial reconstruction of samples’ positions.
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cell spatial transcriptome with known ground-truth spatial do-
main labels,[1,9] in this study, we first use this dataset to estab-
lish our 3D reconstruction D-CE method (Figure 1). We then val-
idate D-CE on other independent 2D or 3D oligo cell or single cell
transcriptomic datasets that contain gold standard labels at either
the spatial domain level (from microdissection) or at template
level (from 1D or 2D genome-wide spatial transcriptomes or 3D
imaging of a small number of spatially distributed genes, where
each sample’s position on a template is known) (Figure 1a). As
spatial templates are known for the template level datasets, we
further developed a template constrained D-CE (D-CE-t) to allow
the fitting of D-CE embedding to an existing or customized spa-
tial template (Figure 1a). This is done by first solving an optimal
transport problem between samples and D-CE reconstructed po-
sitions, then one-to-one mapping each sample to a specific spatial
position on the template.[19]

Additionally, D-CE also uncovers top spatially distributed
genes (some might be potential morphogens) as marker genes.
The expression patterns of these self-nominated marker genes,
when used, can further enhance the accuracy of spatial template-
fitting. This is no longer a mere de novo reconstruction, but
rather a self-generated (because the makers are self-generated by
D-CE and not indicated by previous knowledge in scientific liter-
ature) marker-based reconstruction (Figure 1a). The introduction
of a self-generated marked-based spatial reconstruction repre-
sents another important computational innovation of our study,
and a major advance in the field. This is done by selecting the
top spatially expressed marker genes at the two predominant but
orthogonal spatial orientations according to the correlation be-
tween gene expression level and the spatial order of the samples
(Expression Order Correlation, EOC). When the expression levels
of the marker genes at each position of the template is revealed
to the mapping algorithm, the expression levels of the markers
are used to weight the cost to transport from each sample to each
position[19] (Figure 1a). In fact, due to the importance of spatial
marker genes, algorithms such as Trendsceek[20] were developed
to specifically search for spatially expressed genes, which can also
be used as markers in this step depending on users’ preference.

2.2. Testing D-CE on Domain Annotated Oligo and Single Cell
RNA-seq Data

Data normalization and distance metric exploration are routine
preprocessing steps in computational biology.[21] We investigated
the impact of different normalization strategies and distance
metrics on the performance of the considered algorithms (our
proposed and the ones used for comparison), which are then
fairly compared by considering the best of these settings. In or-
der to appraise the extent to which different normalization meth-
ods and distance metrics would affect the performance of D-CE,
we considered Geo-seq samples[9] whose 3D domain labels are
known and can be used as gold standards to evaluate the reli-
ability of a de novo 3D reconstruction algorithm. Each Geo-seq
sample is not a single cell but a portion of tissue constituted by
a cohort of ≈10–20 single cells, however this genome-wide 3D
labeled dataset is an ideal dataset to design and to test D-CE per-
formance. We considered the sample–sample transcriptome dis-
tance matrix (weighted network) using each of 12 normalization

methods (Table S1, Supporting Information) and each of 5 dis-
tance measures (Figure 1a), resulting in a combination of candi-
date association networks to test, and embedded each of them
separately using the proposed D-CE algorithm (Figure 1a, Ex-
perimental Section). Specifically, we considered 5 distance mea-
sures, including: Spearman distance[22] (1-Spearman rank coef-
ficient (RCC)), Pearson distance (PD) (1-Pearson correlation co-
efficient (PCC)), Euclidean distance (ED), and PCC and RCC fil-
tered by connectivity specificity index (CSI),[23] named PCC-CSI
and RCC-CSI (Figure 1a and Experimental Section; and Figure
S1, Supporting Information).

We tested each of these 60 D-CE candidate strategies on a
number of gene sets, including all expressed genes, or anno-
tated developmental, signaling genes, and transcription factors,
to spatially reconstruct the Geo-seq data of different germ lay-
ers in mouse early embryo development gastrulation stage (E6.5,
E7.0, and E7.5). To evaluate the accuracy of the reconstruction,
we grouped the Geo-seq samples into four groups: 1–2) proxi-
mal anterior and distal anterior (pA and dA); 3–4) proximal pos-
terior and distal posterior (pP and dP) (Figure 1b). Angular sep-
aration index[15] (ASI, ranging from 0 to 1 with 1 being perfect
separation, see the Experimental Section for details) is used to
test how well the four groups are separated according to angu-
lar coordinates in the embedding space. Projection separability
index-Matthews correlation coefficient (PSImcc, ranging from 0
to 1 with 1 being perfect separation on the optimal projection line,
Experimental Section) is used to evaluate the group separability
and relative orientation in geometrical space. Ordering Index (OI,
ranging from −1 to 1 with 1 being perfect agreement between the
original order and the reconstructed order) to evaluate the accu-
racy of ordering the layers from distal to proximal (e.g., layer 1–
11 in E7.0 embryo, Figure 1b and Experimental Section). Finally,
to evaluate with one unique value for each of the 60 embedding
strategies on various gene sets (Figure S1, Supporting Informa-
tion), we consider the maximum rank of these three indices for
each embedding,[19] this means that a method that ranks 1 for
each of these three indices will be the perfect candidate to be se-
lected, because it has the lowest maximum ranking across the
three possible indices. Indeed, the lowest maximum rank will in-
dicate the best reconstruction of both the anterior and posterior
localization and the order of layers (Figure S2g, Supporting In-
formation), and the best strategy to perform D-CE turns out to
be based on square root of Pearson distance for the network con-
struction, which works especially well on all expressed genes, and
works best on the intersection of developmental genes, signaling
genes, and transcription factor genes with a total of 639 genes.
The D-CE reconstruction showed a very high correspondence to
the original geometric domains of the samples in the mouse em-
bryo from where the Geo-seq samples were derived (Figure 2a–
c). The anterior and posterior samples of different germ layers in
different stages are well separated into the opposing directions
of the 3D space, similar to its original distribution in the devel-
oping mouse embryo, so are the proximal and distal samples, as
evidenced by the high ASI separating the pA, dA, pP, and dP sam-
ples with all germ layers combined together at stage E6.5, E7.0,
and E7.5, or each germ layer separately (Figure 2a–c; and Figure
S2a–f, Supporting Information). In the reconstructed structure,
samples are not separated by different germ layers, indicating
that the samples are not distributed according to lineage (Figure
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S3, Supporting Information). That the left and right samples of
the same layers are aggregated together (Figure 2a) is expected
because they are highly symmetric and have no expression dif-
ferences as previously observed.[1]

After evaluating the D-CE algorithm on Geo-seq data, we test
D-CE on other datasets. Apparently, cell type labels cannot be
used as spatial or position labels, as cells of the same cell type
often distributed in very different spatial domains, and one spa-
tial domain often contain many different cell types. For this rea-
son, we confined the testing of reconstruction to only two types
of data, one is the oligo or single cells microdissected from spa-
tial domains, thus have definitive domain labels, and two is the
template-based spatial transcriptomes at oligo or single cell reso-
lution, with definitive position label for each sample in a spatial
template (Table S2, Supporting Information). These result in 14
datasets and 497 reconstructions: 43% (6 in 14) of the datasets
or 8% of the reconstructions (39 in 497) are single cell data, as
shown in Table S2 (Supporting Information), the rest are spa-
tial transcriptome samples consisting of 10–40 cells per sample
(Table S2, Supporting Information).

We first examined whether D-CE can be applied to three
scRNA-seq datasets with annotated domain labels, that is,
scRNA-seq of spatial domain microdissected samples. The hu-
man embryonic brain frontal and parietal lobe scRNA-seq
datasets contain the brain region labels from which the single
cells are dissected (Figure 2d,g), we thus used these labels as
ground-truth domain labels. As the annotated ordering of the re-
gions is a bit artificial, to unbiasedly examine these datasets, we
examined whether our reconstruction can reveal more spatially
expressed genes than the annotated ordering, i.e., the relative 3D
locations of several brain regions. Indeed, D-CE and NovoSpaRC
reconstructed structures both give higher EOC values to gene ex-
pressions than the simple artificially annotated ordering (Figure
S4a, Supporting Information). Interestingly, only the D-CE re-
constructed EOC marker genes show an enrichment for oxygen
binding, but not the manually labeled order related EOC corre-
lated genes (Figure S4b,c, Supporting Information). Oxygen gra-
dient is known to play a role in directing cell differentiation and
pattern formation, including the brain pattern.[24] This biologi-
cal finding further demonstrates the necessity of a reliable re-
construction method, which is even more accurate than man-
ual labeling and annotations. D-CE could still accurately distin-
guish spatial orders when brain frontal and parietal lobe samples
are combined, with its superior performance more distinguished
form the other methods than for frontal lobe alone, but less than
parietal lobe alone (Figure S5, Supporting Information).

Using ASI, OI, and PSImcc as performance measures on the
Geo-seq data and the domain labeled scRNA-seq data, we com-
pared D-CE versus 5 methods: 3D-PCA, 3D-tSNE, 3D-UMAP
that are 3 state-of-the art dimensionality reduction methods; and
NovoSpaRC[10] and CSOmap[11] that are the only two existing
de novo reconstruction methods. Apparently, NovoSpaRC and
CSOmap rarely perform better than the 3 popular dimension-
ality reductions methods, whereas D-CE always performs the
best whether compared to these de novo reconstruction meth-
ods or the dimensionality reduction methods (Figure 2b,e,h). The
advantage of D-CE over the other methods can be also easily
observed on the microsurgical mouse brain oligo cell RNA-seq
dataset with 1D domain labels, each corresponding to one cortex
layer (Figure S6, Supporting Information).

To understand why the D-CE is superior to other methods for
spatial reconstruction, we investigated why other methods failed.
One possible reason is that based on sample–sample similarities
only, the other methods are unable to distinguish similarity as a
result of lineage, or as a result of responding to common regional-
ization or patterning cues, which in turn might be encoded in the
nonlinear manifold similarities estimated by a network-driven
approach such as D-CE. Indeed, for the Geo-seq data—where
samples are known for both their spatial domains and germ
layers—only D-CE can well separate and reconstruct spatial posi-
tions of samples from the same germ layer (lineage), while other
methods, in particular PCA and UMAP mostly separate samples
based on germ layers rather than spatial domains (Figure 2j).
The fact that standard linear and nonlinear dimension reduction
methods (whose category includes PCA and UMAP) mainly sep-
arate transcriptomic samples by germ layers was already discov-
ered in our past studies,[9,22] therefore our results are reliable and
represent a further confirmation of this evidence. However, the
relevant finding that D-CE is the only method able to discover
both spatial and germ layer information suggests that the first
D-CE step is indeed able, by network-reconstruction, to better
capture the latent transcriptomic manifold modes of the complex
biosystem that generates the data.

Similarly, for the mouse brain parietal region scRNA-seq data,
for which both the brain domain labels and the cell type labels are
known, only D-CE can well separate and reconstruct spatial posi-
tions of single cells from the same cell type (lineage), while other
methods, in particular PCA and t-SNE mostly separate samples
based on cell types rather than spatial domains (Figure 2k). These
biological evidences gained by D-CE support the notion that cell–
cell similarities (like trait similarity between human individuals)
are a result of both lineage and spatial environment effects, and

Figure 2. Reconstruction of spatial domain labels from oligo or single cell RNA-seq data with by D-CE, novoSpaRC, CSOmap, PCA, t-SNE, and UMAP.
a) Illustration of 4 spatial domains pA, dA, pP, and dP in mouse embryo E7.5. b) Barplot of OI, ASI, and PSImcc for D-CE, novoSpaRC, CSOmap, PCA,
t-SNE, and UMAP reconstructions. c) Reconstructed structure of D-CE, novoSpaRC, CSOmap, PCA, t-SNE, and UMAP. d–f) The same layout as panel
(a) to (c) for human embryonic frontal lobe. Six regions from frontal lobe, CMF (caudal-middle-frontal), PRC (precentral), PAO (pars orbitalis), PO
(pars opercularis), RMF (rostral-middle-frontal), and PAT (pars triangulars), are used as domain labels of the scRNA-seq data. As only microglia cells
contain >3 cells per region, they are the only cell type used for reconstruction. OI is calculated between the known domain order and the reconstructed
coordinates of PAO, PAT, PO, and PRC (ordered from 1–4). g–i) The same layout as panel (a–c) for human embryonic parietal lobe. 3 regions from
parietal lobe (PC (postcentral), SM (supra-maginal), and IP (inferior parietal)) as domain labels. OI is calculated between the known order and the
reconstructed coordinates of PC, SM, and IP (ordered from 1 to 3). For panels (b, e, and h) the percentage of improvement by D-CE over the second-best
method is labeled for each index. j) ASI (left panel) and PSImcc (right panel) for spatial domain separation and reconstruction of Geo-seq samples from
the same germ layer, as indicated (≈1–3 columns), or for the separation of different germ layers (the last column) by each reconstruction method. k)
ASI (left panel) and PSImcc (right panel) for spatial domain separation and reconstruction of single cells in the brain parietal region scRNA-seq data in
panel (g), within each cell type that contains >3 cells per region, as indicated (≈1–4 columns), or the separation of different cell types (the last column).
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highlights the importance of appropriate network embedding in-
stead of mere dimension reduction to decipher the local connec-
tivity and neighborhood structure for spatial reconstructions.

2.3. Testing D-CE on Template-Based Position Labeled Oligo and
Single Cell RNA-seq Data

Next, we investigated whether D-CE is also applicable to other
spatial transcriptomic data with gold standard position labels in
a template for each sample, either at oligo cell or single cell reso-
lutions.

We first compared our spatial reconstruction with novoSpaRC
on the 3D gene expression dataset BDTNP,[25] on which was
novoSpaRC developed and optimized. As only the expression
data of 84 Drosophila embryo development regulating TFs are
measured (no ligand and receptor genes), CSOmap, which only
accepts human or mouse data and using ligand and receptor
genes for reconstruction, is not applicable on this dataset. All the
84 genes were used for D-CE reconstruction. We found that, in-
stead of PD (as before), its local-threshold-variation named PCC-
CSI (which is a distance obtained by local threshold of Pearson
correlation using CSI) performs the best for spatial reconstruc-
tion among all 5 distance options (Figure S7, Supporting In-
formation). This difference in comparison to the Geo-seq data
might be attributed to the large number of nodes in this network
(3039 in BDTNP vs <100 in Geo-seq and other domain labeled
datasets). A gradient down-sampling of the BDTNP to data in-
deed shows that PD performs better than PCC-CSI when the
sample number is <150, beyond that PCC-CSI performs better
as shown by ASI and PSImcc (Figure S7, Supporting Informa-
tion). OI is not evaluated because in the down-sampling, sam-
ples are randomly selected and hence rarely from a straight line
along the x, y, or z axis, and this disrupts the original distribution
of the samples on 3 axes, making the OI inapplicable to the ran-
domly sampled networks for evaluating the spatial reconstruc-
tion of down-sampled samples.

D-CE reconstructed spatial order is highly similar to the orig-
inal 3D coordinates on the embryos structure (Figure 3a,b).
For novoSpaRC, using the dot product of the optimal sam-
ple and location probabilistic coupling matrix Tm × n inferred by
novoSpaRC and the original location Ln × 3 (position template)
as the reconstructed locations for each sample,[19] we visualized
its spatial reconstructions based on 0, top 1 or top 2 marker
genes used. Consistent with the visual appearances, judged by
the quantitative parameters of OI, ASI, and PSImcc, the de novo
reconstruction by D-CE is much closer to the annotated original

gold standard structure than that by NovoSpaRC (Figure 3b), and
have overall higher EOCs among all input genes or the top 5%
EOC genes (Figure 3c). The spatial marker genes identified by
D-CE according to EOC, indeed recovered well-known spatially
expressed genes in the fly embryo, such as Ilp4 (top marker 1) and
tsh (top marker 2) (Figure 3b). These marker genes can be further
used as references to refine the reconstruction, in which case the
reconstruction is no longer de novo, but self-generated marker
based (Figure 3b). Using D-CE’s one to one positioned template
mapping (D-CE-t), we observed the template-fitted reconstruc-
tion even without any marker genes (D-CE-t 0 marker, still de
novo) can reconstruct the sample orders on the x-axis, although
fitting to the y and z axis seems to require markers on these di-
mensions. In fact, with only one marker (top 1 marker) identi-
fied by D-CE allows D-CE-t fully reconstruct the sample distribu-
tion on all 3 dimensions (Figure 3b). These results are further
confirmed by the expression patterns of 4 spatially distributed
TF genes, sna, Kr, eve, and ken (Figure S8, Supporting Informa-
tion). Visually without markers, D-CE is much better than the
novoSpaRc, and when 1 or 2 markers are used, they both look
good (Figure S8a, Supporting Information), but when more pre-
cisely quantified by OI, D-CE-t is better than novoSpaRc with 0, 1,
and 2 markers (Figure S8b, Supporting Information). D-CE com-
pletely reconstructed the ventral expression pattern of the sna
gene and the vertical bi-stripe pattern of Kr, recovered 6 out of 7
strips of eve and both stripes of ken with nonperfect placement.
Whereas the de novo novoSpaRC without any marker gene only
partially reconstructed the pattern of ken, but completely failed to
recover the sna expression pattern, wrongly aggregated 7 stripes
of eve into one broad stripe and recovered one of the two stripes
of Kr (Figure S9, Supporting Information). It should be noted
that novoSpaRC by default only provides a 2D-grid template, thus
only 2D reconstruction can be performed, and it selects markers
randomly, so for a favorable comparison for novoSpaRC, we used
the best among 100 random marker-based reconstruction results
to represent its performance (Figure 2b; and Figure S10, Support-
ing Information).

To further test whether D-CE can reconstruct spatial gene
expression patterns of different cells directly using scRNA-seq
data, we applied it to a Drosophila embryo scRNA-seq dataset[10]

(Figure S9, Supporting Information) and a zebrafish embryo
blastoderm cap scRNA-seq dataset[13a] (Figure S10, Supporting
Information). In the reconstructed Drosophila embryo, the ex-
pression pattern of dorsal/ventral specific gene (such as ush, twi,
and sna) are highly correlated with the FISH images downloaded
from BDGP[26] dataset, with OI > 0.5. For anterior/posterior spe-
cific genes (such as ImpE2 and Adgf-1), the pattern is not as good

Figure 3. Comparison of spatial reconstruction of BDTNP dataset using D-CE and novoSpaRC. a) Illustration of Drosophila embryo segmentation for
ASI and PSImcc and the OIx, OIy, and OIz calculation. The embryo was divided into 4 groups along the x and z coordinates (a, middle) by spatial
locations for ASI and PSImcc calculation. Each coordinate was sorted and divided into 10 groups (a, right) and OI was calculated based on the gold
standard original spatial coordinate. b, Original spatial positions (row 1) in Drosophila embryo examined by the BDTNP dataset, which is colored by
spatial coordinates on x (left), y (middle), and z-axis,[42] respectively. Reference coordinates of x, y, and z axis are labeled in ascending order with a color
gradient from blue to red, which is also used to paint the samples in the reconstructed structures to visualize their 3D orders in the following panels.
D-CE and novoSpaRC spatial reconstruction of BDTNP (row 2 and 3). D-CE-t and NovoSpaRC spatial reconstruction of BDTNP dataset with 0 marker
(row 4 and 5), 1 marker (row 6 and 7) and 2 markers (row 8 and 9) visualized by sample color code designated by the gold standards (top panel) for
X, Y, and Z axis, respectively. Indexes of spatial reconstruction evaluation are shown as a column scaled heatmap next to each reconstructed embryo.
NovoSpaRC randomly selects 1 or 2 markers for marker-based template fitting, the best result among 100 trials is used for novoSpaRC. c, Density plot
of all expressed genes to the D-CE and novoSpaRC reconstructions’ coordinates. The dashed line indicates the EOC position of top 5% genes in each
distribution. Student’s t-test was used to compare the distribution difference between D-CE and the other two methods. ****p-value < 2.2e-16.
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as dorsal/ventral pattern. For zebrafish embryo blastoderm cap,
D-CE well reconstructed the dome shape of the blastoderm cap,
while NovoSpaRC only captured the top outline (Figure S10, Sup-
porting Information). The gene expression patterns of 9 spatial
specific genes show high correlation (OI> 0.5) with the FISH im-
ages (downloaded from the ZFIN database[27]). Compared with
novoSpaRC, D-CE reconstructed gene expression patterns have
significantly higher OI to the FISH images (Wilcoxon signed
rank test p = 0.03 and 0.04 for the 6 and 9 spatially expressed
Drosophila and zebrafish genes previously tested[10]). Again, as
CSOmap accepts only human or mouse data as input, is not ap-
plicable to datasets of other species.

One of the human spatial 2D template-based datasets is can-
cerous prostate spatial transcriptome. For 2D tissue section spa-
tial transcriptome datasets like the cancerous prostate dataset,
where annotated domain labels are not available, four artificial
domains obtained by dividing the samples at the midpoints of
x and y coordinates are used as golden standard. The de novo
reconstruction not only revealed the best performance by D-CE
based on OI, ASI, and PSImcc (Figure 4a,b), but also higher
EOCs in general and among the top 5% EOC genes compared
to the other two methods (Figure 4c). The biological processes
and pathways enriched among the top EOC genes from D-CE
reconstructions are very different from CSOmap, but similar to
those from NovoSpaRC, except with higher level of enrichment
(Figure 4d,e). Yet only D-CE, but not NovoSpaRC and CSOmap
identified the tight junction that are known to play key roles
in spatial patterning[6a,d] (Figure 4d,e). As D-CE and CSOmap
are template-free algorithm for spatial reconstruction, for better
comparison, we use a rectangle grid for novoSpaRc reconstruc-
tion (novoSpaRc-r). Since D-CE-t does use template information,
we compare it directly to novoSpaRc, instead of novoSpaRC-r. Us-
ing the top 1 or 2 EOC genes in orthogonal orientations as mark-
ers, further allow for a better marker-based template fitting by D-
CE-t (Figure 4f). These marker genes indeed are highly spatially
expressed and show distribution gradients in orthogonal direc-
tions as predicted by D-CE (Figure 4f). Remarkably, even without
using marker gene, 2D-template fitted D-CE (D-CE-t) reconstruc-
tion (still de novo), nearly fully recapitulated all samples’ spatial
distributions in both x and y dimensions, as well as the marker
gene expressions (Figure 4f), and the D-CE-t reconstruction with
1 self-generated marker (JUNB) is almost indistinguishable from
the original annotated gold standard structure (Figure 4f). In con-
trast, novoSpaRC failed to do so without marker, while improved
with 1 marker, still cannot reach the level of de novo D-CE-t re-
construction (no marker) (Figure 4f). Similar reconstruction per-
formance differences are also found on the human breast can-
cer dataset (Figure S11a,b, Supporting Information). The EOC
distributions of novoSpaRC and D-CE are very consistent, both
are far better than CSOmap (Figure S11c, Supporting Informa-
tion). While enriched GO terms are similar among the 3 meth-
ods, only D-CE detected an enrichment for KEGG focal adhesion
pathway (Figure S11d, Supporting Information). These results
further demonstrate the need for a reliable spatial reconstruction
to discover spatial domain and markers.

Similarly, the de novo reconstruction of mouse olfactory bulb
spatial transcriptome also revealed the best performance by D-
CE based on OI, ASI, and PSImcc (Figure 5a,b), and higher
EOC among all genes or the top 5% EOC genes compared to

the other two methods (Figure 5c). The biological processes and
pathways enriched among the top EOC genes are very similar be-
tween D-CE and NovoSpaRC but rather different from CSOmap
(Figure 5d,e). D-CE identified “neuronal cell body” and “calmod-
ulin binding” ranked as the top pathways (Figure 5d). Indeed,
the top two D-CE EOC genes, Apoe, and Calm2, belong to these
two pathways, respectively, and are highly spatially expressed and
show distribution gradients in orthogonal directions as predicted
by D-CE (Figure 5f). It should be noted that no de novo method
is expected to resolve symmetry in a sample, such as in this ol-
factory bulb dataset. Thus, not surprisingly, in order to fully re-
construct the symmetric structures, two top orthogonal marker
genes identified by de novo D-CE are needed to guide template
fitted reconstruction (Figure 5f). In fact, D-CE-t reconstruction
with 2 self-generated markers are nearly identical to the origi-
nal annotated gold standard structure, so are the marker gene ex-
pressions. On the other hand, NovoSpaRC reconstructions with
no marker or even 2 markers are far from the original structure,
while no obvious pattern can be seen from CSOmap reconstruc-
tion (Figure 5f). The primary components (up to 10) the dimen-
sionality reduction approaches (PCA, t-SNE, and UMAP) are not
very informative on spatial ordering, making these approaches
not prioritized for spatial reconstruction (Figure S12, Supporting
Information).

We find the OI, ASI, and PSImcc of D-CE reconstructions can
still increase with increasing number of markers in both a low re-
construction accuracy (olfactory bulb) and a high reconstruction
accuracy (cancerous prostate) dataset, despite at different rate of
increase (Figure S13, Supporting Information).

2.4. Leap in Performance of D-CE over Existing Reconstruction
Methods

For a more comprehensive comparison of D-CE with the ex-
isting de novo spatial reconstruction methods novoSpaRC and
CSOmap, as well as the state of art dimensionality reduction
methods PCA, t-SNE, and UMAP, we applied them to 6 addi-
tional transcriptome datasets with annotated spatial coordinates
on a template.[5,25,28] For the sake of fairness to all the algorithms
for spatial reconstruction, all expressed genes are used during
the comparison. The datasets include the melanoma lymph node
data,[28c] the mouse hippocampus[28a] seqFISH data, the mouse
brain,[28e] seqFISH data, and the mouse medial ganglionic emi-
nence LCM-seq dataset,[28f] the mouse embryonic brain digitized
in situ hybridization (ISH) (Figure S14, Supporting Information)
and the mouse spinal cord dataset[28d] (Figure S15, Supporting
Information). Together with the datasets tested above, in total
14 datasets (Table S2, Supporting Information), and 497 re-
constructions (one dataset may contain multiple experiments,
e.g., barcoded-microarray based spatial transcriptomic dataset
contains 407 arrays) (Table S2, Supporting Information). For
example, on the 407 arrays of the mouse spinal cord dataset,[28d]

D-CE performs better in the great majority of the 407 recon-
structions as evaluated by OI, ASI, and PSImcc, and also by the
EOC distribution and the top EOC genes enriched GO/KEGG
terms (Figure S15, Supporting Information). Based on the
random expectation normalized,[19] OI, ASI, and PSImcc on 484
reconstructions from 10 datasets that contain precise sample
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Figure 4. Spatial reconstruction and spatial marker gene detection of cancerous prostate spatial transcriptomic dataset with D-CE, novoSpaRC, CSOmap,
PCA, t-SNE, and UMAP. a) Illustration of a cancerous prostate transcriptomic data. Tissue staining picture reproduced from Berglund, E. et al. (upper
panel) and original coordinates of all samples on a template (lower panel). b) Barplot of OI, ASI and PSImcc. The percentage of improvement by D-CE
over the second-best method is labeled for each index. c) Density plot of all expressed genes to the reconstructed coordinates by D-CE, novoSpaRC,
and CSOmap. The dashed line indicates the EOC position of top 5% genes in each distribution. Student’s t-test was used to compare the distribution
difference between D-CE and the other two methods. d,e) GSEA analysis of GO d) and KEGG e) enrichment terms of top 5% EOC genes in panel (c). f)
Original coordinates, D-CE, novoSpaRC, and CSOmap without marker and template fitting, D-CE-t with 0 marker, novoSpaRC with template fitting and
0 marker, D-CE-t with 1 marker, and novoSpaRC with 1 marker from the first to the eighth column reconstructed coordinates colored according to the X
axis, Y axis, and the top two D-CE markers’ (JUNB and KLK3) expression level from the first to the fourth row, respectively. NovoSpaRC randomly selects
1 or 2 markers for marker-based template fitting, the best result among 100 trials is used for novoSpaRC. **** p-value < 2.2e-16.
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Figure 5. Spatial reconstruction and spatial marker gene detection of mouse olfactory bulb spatial transcriptomic dataset with D-CE, novoSpaRC,
CSOmap, PCA, t-SNE, and UMAP. a) Illustration of the mouse olfactory bulb spatial transcriptomic data. Tissue staining picture reproduced from
Berglund, E. et al. (upper panel) and original coordinates of all samples (lower panel). b) Barplot of OI, ASI and PSImcc. The percentage of improve-
ment by D-CE over the second-best method is labeled for each index. c) Density plot of all expressed genes to the reconstructed coordinates by D-CE,
novoSpaRC, and CSOmap. The dashed line indicates the EOC position of top 5% genes in each distribution. Student’s t-test was used to compare the
difference between D-CE and the other two methods. d,e) GSEA analysis of GO d) and KEGG e) enrichment terms of top 5% EOC genes in panel (c).
f) Original coordinates, D-CE, novoSpaRC, and CSOmap without marker and template fitting, D-CE-t with 0 marker, novoSpaRC with template fitting
and 0 marker, D-CE-t with 2 marker, and novoSpaRC with 2 marker from the first to the eighth column reconstructed coordinates colored according to
the X axis, Y axis, and the top two D-CE markers’ (Calm2 and Apoe) expression level from the first to the fourth row, respectively. NovoSpaRC randomly
selects 1 or 2 markers for marker-based template fitting, the best result among 100 trials is used for novoSpaRC.
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Figure 6. Performance summary and comparison to existing methods and organization and makers of D-CE into spatial domains. a,b) Average rank
g) and values h) of OI, ASI and PSImcc by D-CE, NovoSpaRC, CSOmap, PCA, t-SNE, and UMAP on 484 reconstructions from 10 datasets that contain
precise sample coordinates on templates. The best performance is ranked 1. Whiskers denote standard deviations. OI is transformed by (1+index)/2
to render all the indexes with a range from 0 to 1. Then each index is normalized by subtracting a baseline value obtained by the average of 100 label-
randomization of the samples. CSOmap is only applicable to 9 datasets and 483 reconstructions (without BDTNP dataset) due to its limit to human
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coordinates on templates, D-CE ranks the top 1 on all three met-
rics (Figure 6a), and has an average at least >4-fold improvement
on spatial reconstruction over NovoSpaRC and CSOmap, and
three conventional dimensionality reduction methods (PCA,
t-SNE, and UMAP) (Figure 6b). The ASI and PSImcc in partic-
ular evidence the unique ability of D-CE to excel in separating
and maintaining homogeneity of spatial domains compared
to all other methods. This puts D-CE at a unique advantage of
deciphering the spatial domains and markers. To illustrate this,
we focused on two cases, one is the E7.5 mouse embryo, where
the domains are roughly linearly distributed and regulators are
largely known, and the other is the olfactory bulb, where the do-
mains are not linear and the regulators are less well known. We
first unsupervisedly dissected putative domains from the spatial
reconstructions (gained by various methods) using k-means
clustering (based on the Euclidean distances of cells/samples in
the embedding space). Then we match them to the positions in
the original structures. Consistent with the best reconstruction
by D-CE when directly compared to domain labels (Figure 2a–c,
Supporting Information), the unsupervised primary clusters
(Figure 6c) and secondary clusters (Figure S16, Supporting In-
formation) among the D-CE reconstructed positions overlap the
most with the annotated domains. From the visualization, D-CE
indeed by far best recapitulated the original domain structures
and the homogeneity within domains (Figure 6c,d; and Figure
S16a,b, Supporting Information), consistent with enrichment
for specialized functional pathways identified among the domain
specifically expressed genes (Figure 6e,f; and Figure S16c,d, Sup-
porting Information). Such spatial domain and regionalization
information unbiased revealed by de novo reconstruction will un-
doubtedly guide researchers to experimental explorations on the
driving force and cues of pattern formation and cell migration.
For the olfactory bulb data, UMAP, t-SNE, and PCA although
overall do not perform well on spatial reconstruction (Figure
S17, Supporting Information), identified the spatial patterns of
different layers fairly well, this might be because the cells in
these different layers also happen to differ in lineages, as UMAP,
PCA, and t-SNE often separate samples by lineages (Figure 2j,k).

3. Conclusion and Discussion

In conclusion, we developed D-CE which is an effective land-
mark free and model free de novo 3D reconstruction method for
oligo and single cell analysis. Through comprehensive analysis
of currently available spatial transcriptomes, we demonstrated
the superior performance of D-CE over the existing reconstruc-
tion methods on 497 reconstructions. To make the performance
and advantage of D-CE reconstruction visually apparent, D-CE
contains additional steps of specimen shape-template fitting and
marker based one-to-one position mapping. To evaluate the re-
construction of the 2D spatial distributions, the D-CE 3D recon-
struction results can be interpreted and evaluated by first map-

ping it to 2D space by template fitting and one to one mapping.
When we divide the samples into different four artificial domains
at midpoints of x and y coordinates, and calculate different in-
dexes (ASI, OI, and PSImcc), these indexes confirm that of 3D
model built by D-CE after template fitting to 2D can accurately
reconstruct 2D distributions of the samples (Figures 4 and 5).
Furthermore, we introduce another related innovation, in com-
parison to previous methods in the field, D-CE can also self-detect
spatial marker genes and use them for marker based one-to-one
position mapping. The results, by both quantitative and visual
comparisons to the original structure and to the reconstructions
by other methods, revealed often magnitudes of improvements
(e.g., Figures 2, 4, and 5), on average at least over fourfold im-
provement of D-CE (Figure 6a,b), and visually compelling supe-
riority of D-CE over the existing methods. D-CE, by accurately
reconstructing the spatial patterning of the oligo and single cells,
revealed many previously under or unappreciated regulators (or
potential morphogens), such as oxygen, extracellular matrix, and
tight junction gradients. These gradients guide the pattern for-
mation of many biological processes, including but not limited to
embryo and tissue development, regeneration, and cancer forma-
tion. Probably most fascinating, D-CE revealed a mesoscale de-
sign principle of spatial organization which associates local net-
work neighborhoods to spatial domains. Those interconnected
mesoscale domains and their communications are fundamental
in forming the microenvironment and guiding the oligo or single
cells spatial distribution toward the ultimate pattern formation.
The universal versatility and the accuracy of the algorithm makes
it an invaluable tool for oligo or single cell analysis.

Eight of the top 10 EOC genes in mouse embryo and 8 of
the top 10 EOC genes in Drosophila embryo have been reported
in previous publications (Table S3, Supporting Information) to
show spatial expression patterns during embryonic stage, while
the one other top 10 EOC gene in mouse embryo can be ver-
ified using seqFISH data, the two other top 10 EOC genes in
Drosophila embryo can be verified to have spatial expression pat-
terns in in situ hybridization databases (Table S3 and Figure S18,
Supporting Information). This reflects the thoroughness of stud-
ies on spatial transcriptions during mouse embryogenesis and
the accuracy of D-CE reconstructions. However, when the stud-
ies are less intensive, such as for the human embryonic cerebral
cortex, many D-CE self-nominated spatial marker genes have not
been reported in the literature. For example, we find oxygen bind-
ing (HBA2 and HBE1) and gap junction (DBN1 and GJA4) genes
and their related pathways spatially distributed (Figure S4, Sup-
porting Information), suggesting oxygen gradient and gap junc-
tion mediated bioelectrical field across cells might play an im-
portant yet unappreciated or underappreciated role in spatial or-
ganization in the human embryonic cerebral cortex. Experimen-
tally, although the correspondence of domains in human brain
to mouse brain is unclear, the DBN1 expression in mouse brain
can be seen as spatially expressed in the mouse brain by in situ

and mouse data and LR genes only. Student’s t-test p-value are labeled on top. The percentage of improvement by D-CE over the second-best method
is labeled for each index. c) Domain structures and compositions of mouse embryo Geo-seq data revealed by D-CE, novoSpaRC, CSOmap, PCA, t-SNE,
and UMAP. The reconstructed coordinates are clustered by k-means (k = 2), visualized by 2 different colors on the illustrative “corn plot.” Jaccard Index
of the two clusters to A and P domains are labeled within the brackets. d, GSEA of KEGG pathways for top 500 cluster specifically up-regulated genes in
all 6 methods. e,f) The same layout as shown in panel (c) and (d) for mouse olfactory bulb data. The reconstructed coordinates are clustered by k-means
(k = 3) and visualized by 3 different colors on the template.
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hybridization (Figure S4e, Supporting Information). These fur-
ther demonstrate the accuracy and novel insight of the D-CE in
de novo discovery of spatial markers.

Then, what makes D-CE stand out and excel previous methods
for single cell 3D spatial reconstruction? Common microenvi-
ronmental cues will render the cells to have similarity in gene
expression in response to the common microenvironment.[6a,d]

Cells of the same cell type can have different expression profiles
in different spatial domains, and cells of the different cell type
in the same spatial domain can have shared expression profiles,
the spatially correlated transcriptome profile is the feature we
want to infer to not only separate the cells of same cell type in
different spatial domains, but also aggregate the cells of different
cell types but in the same spatial domains. D-CE reconstructions
of spatial domain of human embryonic frontal lobe and parietal
lobe demonstrate when cells of the same cell type distributed in
very different spatial domains, the common spatially associated
transcriptome features can be used to separate the cells of same
cell type in different spatial domains. De novo reconstruction
methods novoSpaRC and CSOmap, and other landmark-based
reconstruction methods, such as Satija et al.’s method,[13a] also
rely on this general assumption. As one would expect, cell–cell
similarities reflect both lineage and spatial microenvironment ef-
fects, and direct sample wise dimensionality reduction methods,
such as PCA, t-SNE, and UMAP are indeed optimized to capture
the differences in lineages (Figure 2k,j). NovoSpaRC by similar-
ity fitting to geometric reconstruction template and CSOmap by
focusing on only ligand–receptor interactions mitigate some of
the confounding influences by lineages. However, by network-
reconstruction and embedding, only D-CE is able to exploit the
network of transcriptomic similarity between cells and to better
capture the latent transcriptomic manifold modes of the com-
plex biosystem that generates the data. This allows topological
domains to stand out as assemblies and truly captures the design
principle of spatial patterning by (micro)environment. Given
that cell distributions and organizations are guided by mor-
phogen, bioelectric voltage, and mechanical force gradients,[6a,d]

all these diverse types of gradients represent different forms of
inter-cellular communication in a parceled soft active matter
system,[29] which follow network geometry dynamics compara-
ble to diffusion and spreading processes in social networks.[30]

D-CE by embedding a local similarity network, can reliably
reconstruct the spatial domains and their relationships, while
the existing global transcriptome profile similarity-based meth-
ods cannot (summarized in Figure 6). Based on the ASI, D-CE
significantly separates spatial domains and outperforms other de
novo reconstruction methods. In addition, relative orientations
and locations between spatial domains are also better revealed
by D-CE, as shown by PSImcc, and even the orders of samples in
general are better captured by D-CE, as shown by OI. In addition,
the radius in the embedding is designed to reflect the lineage
hierarchy of the cells, that is cells which are similar to many
others in gene expression pattern are more central in the repre-
sentation. Consistently, we find the radius in all four randomly
selected single cell datasets is highly and significantly anticor-
related with the number of genes expressed (detected) across
different cells, which is a reliable marker for cell stemness, and
has been developed into the CytoTRACE stemness score through
a smoothing operation[31] (Figure S19, Supporting Information).

D-CE is a method specifically designed and tested for 3D spa-
tial reconstruction of oligo and single cell data by network em-
bedding, and for this reason cannot be directly used and needs
specific adjustments for nonlinear topological dimension reduc-
tion of data in general. In particular, the first step of D-CE con-
sists in building a gene association network by means of the con-
nectivity specificity index (CSI), which is a procedure developed
under the assumption and in the context of computational sys-
tems biology networks, therefore we cannot guarantee is valid
for network reconstruction of any type of data in general. In fact,
D-CE performance is far different from routine dimensionality
reduction methods such as PCA, t-SNE, and UMAP, which we
have tested and compared to and showed that do not work for
spatial reconstruction as D-CE does. D-CE is based on biologi-
cally valid assumptions that we described above. However, when
the transcriptome does not respond to local environment or form
spatial domain, such as a partial transcriptome biased for cell
type marker genes, the escaping cancer cells or highly mobile
or shuttling cells, might defy such an assumption, and thus their
locations will be hard to reconstruct. For example, MERFISH is
another method generating spatial transcriptomes, however due
to the limited throughput, only cell type specific marker genes
were profiled, thus biasing reconstructions by all 3 spatial recon-
struction methods to cell type classification, therefore we did not
include the MERFISH data in the overall comparison of the 3
methods although even under this circumstances, D-CE still per-
forms the best (Figure S20, Supporting Information).

As D-CE is a network embedding method, its performance
strongly depends on the strategy we adopt to filter away ran-
dom background level low-strength links (which increases
quadratically with the number of nodes) from the original fully
connected association network. A widely used strategy is to apply
a rigid threshold which cuts off the links lower than a certain
strength in the association network, however this strategy does
not adapt the thresholding to the local neighborhood informa-
tion imprinted in the association network. CSI is a strategy
developed to address this issue by adapting the thresholding to
the local links’ strengths (association) pattern.[32] Therefore, it is
important to not only remove the global background links (such
as the rigid threshold procedure does) but also to determine
and remove local background level links using CSI, because
this will allow to cell assemblies’ connectivity to standout in
the network structure. Indeed, we find that filtering PCC using
CSI performs better than directly using PD network for large
datasets (more than 150 nodes/samples) as indicated by gradient
down-sampling of the BDTNP dataset (Figure S7, Supporting
Information) and are used as default for all reconstructions that
contain more than 150 samples.

Machine learning can be model-based or model-free. Methods
that are model-based require an accurate knowledge of the
processes behind the 3D morphogenesis and an appropriate
formalization of these processes in a mathematical model whose
parameters can be learned from the data. For instance, Bayesian
approaches’ parameters can be learned by maximum likelihood
estimation. To the best of our knowledge, there is not yet any
method for single cell 3D spatial reconstruction that is model-
based because due to the complexity of the process it is difficult to
write down an accurate mathematical model whose parameters
can be learned from the few and heterogeneous data currently
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available. In this scenario, model-based methods would offer
poor results because of the missing knowledge for modeling and
poor data for learning. For this reason, current approaches for
single cell 3D spatial reconstruction, such as de novo reconstruc-
tion methods novoSpaRC and CSOmap, and landmark-based
reconstruction methods, such as Satija et al.’s method 2, are
data-driven. This means that they do not exploit an explicit
mathematical model of the process behind the data to predict
their reconstruction, but they derive an implicit (not encoded in
any mathematical formula) representation of the data directly
from the data according to the assumption of the latent manifold
of the data. That is, such data are the geometrical representation
of the mathematical relation between the data samples, and can
be learned by approximating the multidimensional similarity
(or dissimilarity) relation of the data samples. Based on this
assumption, a solution is to approximate the manifold similarity
relations by means of a network connectivity.[18]

Just as spatial transcriptome can provide a blueprint for spa-
tially mapping a gene expression, and identify spatial marker
genes and spatial transcription domains, a precise in silico de
novo spatial reconstruction algorithm like D-CE/D-CE-t can serve
the same propose—provide the spatial domain organizations and
markers, without the need of expensive spatial sample prepara-
tion, and can generate the spatial information for scRNA-seq data
which lacks spatial information.

Currently all methods for 3D spatial reconstruction of sin-
gle cell data including novoSpaRC and CSOmap are unsuper-
vised for a concrete reason. A constraint to build supervised ap-
proaches is to have 3D genome-wide single cell ground-truth
datasets on which we can implement the training phase of the su-
pervised algorithms. The “crude” reality is that at the moment we
do not have such data and therefore we cannot build supervised
approaches. We hope that future efforts and improvements in
ground-truth data production could help to set an initiative such
as a competition in single cell 3D spatial reconstruction similar
to the effort performed in the DREAM challenge.[33]

4. Experimental Section
Datasets for Gene Set Selection: 186 Geo-seq samples with known po-

sitions in mouse embryo E6.5, E7.0, and E7.5 and 69 scRNA-seq datasets
(GSE120963) in E7.0 mouse embryo with A and P spatial labels were used
to develop the 3D reconstruction method. For better comparison with
novoSpaRC, the same expression matrix as novoSpaRC is used, which is
downloaded from https://www.github.com/rajewsky-lab/novoSpaRC.[10]

Genes for cell–cell network construction were selected based on 3 gene
lists: 4512 developmental genes based on GO database,[34] which are
genes with GO terms containing keywords of “differentiation,” “develop-
ment,” and “morphogenesis,” 2302 transcription factors obtained from
the AnimalTFs[35] and RIKEN databases,[36] and 4895 signaling genes ob-
tained from the previous curation.[37] All samples are first subjected to
batch effect correction by ComBat. Then the batch effect corrected RPKMs
(Reads Per Kilobase of exon model per Million mapped reads) are used
for further analysis. All expressed genes are defined as RPKM>1 in at least
2 samples. Among them, there are 3795 developmental genes, 1646 tran-
scription factors, and 3470 signaling genes for downstream analysis. The
union, intersection, and difference of each pair of datasets or among the
3 datasets, all expressed genes and all expressed genes minus the devel-
opmental genes were used to generate a total of 19 gene lists for spatial
reconstruction, gene expression levels are transformed by log 10(FPKM +
1). For each dataset, 12 different normalization methods were applied to
each gene set (Table S1, Supporting Information), which give rise to a final

of 228 datasets for network construction using D-CE. In order to embed
the scRNA-seq and Geo-seq data together, ComBat was first used to elim-
inate batch effects.

The top PC loading genes are selected using function “dimdesc” R pack-
age “FactoMineR,”[38] the genes with p value <10−10 are selected as top
PC loading genes which result in 5731, 898, and 585 genes for PC1, 2,
and 3, respectively. These 3 gene sets, individually and combined, were
compared to DST genes on the performance of D-CE. DST genes were
also compared to Scialdone et al’s pseudospace genes,[7] which is a set
of genes displaying a gradient along pseudospace axis, 334 assigned to
anterior and 87 to posterior, the union of these genes are used for spatial
reconstruction.

De Novo Coalescence Embedding: A new algorithm was proposed
that was named D-CE and designed under the framework of CE
methodology,[15] according to which the network nodes in the embed-
ded space were ordered preserving hidden relations of: i) homophily
(similarity) on the angular coordinates and ii) hierarchy on the radial
coordinates.[15] In this study, the main hypothesis is that, according to CE
rationale, the embedding of a developmental network of transcriptomic
topological similarity between cells (an association network derived from
their gene expression) should produce an angular coalescent cell ordering
that recapitulates the original single cell samples’ 3D spatial tissue distri-
bution. While the cell hierarchy on the radial coordinates is obtained via
a measure of node centrality in the network topology. The details of how
to implement angular and radial inference is in the network embedding
sub-section below. Indeed, any CE algorithm such as D-CE consists of two
steps (see Figure 1b): 1) network construction; 2) network embedding. In
the next two sub-sections, the specific design of each of these two steps
for the proposed D-CE is described, respectively. The Matlab code of D-
CE for de novo 3D reconstruction is an open access tool downloadable at
https://github.com/JackieHanLab/D-CE.

Step 1: Network Construction
In this section, how to build a weighted association network between

Geo-seq or cell samples in order to perform the first step of D-CE, is de-
scribed. The final weighted association network is represented as a dis-
tance adjacency matrix that is obtained from the conversion of node sim-
ilarities in node distances. This association network is used in step 2 in
order to perform the network embedding which provides the angular co-
ordinates that allow the 3D spatial reconstruction. Two different strategies
that can be used to build the distance matrix are proposed.

The first strategy is the following. For each normalized gene set (nor-
malization is first done within the gene set) the pairwise distance matrix
between samples is generated by using Spearman distance:[22]

SD = 1 − RCC (1)

where RCC is the Spearman correlation coefficient, or Pearson distance
(PD):

PD = 1 − PCC (2)

where PCC is the Pearson correlation coefficient, or directly the Euclidean
distance (ED) between each pair of samples.

In addition, a second strategy that is designed to apply a soft-threshold
that penalizes nontopological-specific low correlations and rewards local
connectivity similarities that are associated to high correlations, is also
considered. This second strategy can be applied only to adjust correlation
networks, hence it will be applied only to RCC and PCC. The first step is
based on computing the Connectivity Specificity Index (CSI).[23] For in-
stance, in the case of the Pearson correlation PCC, CSI sparsifies (remov-
ing negligible links that are put to zero) the PCC similarity network accord-
ing to this formula

PCC_CSIi,j

=
number of nodes connected to i and j with PCC < PCCi,j − 0.05

number of nodes in the network
(3)
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where i and j are two samples (nodes in the correlation network). The same
formula can be used to compute RCC_CSIi,j.

The result of this first step is a similarity matrix where a zero element
indicates that the similarity between two samples is negligible according
to CSI. Then, the nonzero elements (x+) of this similarity matrix are “re-
versed” to obtain a distance matrix according to this reverse function

f
(
x+
)
= abs

(
x+ − min

(
x+
)
− max

(
x+
))

(4)

where abs is the absolute value and min and max are, respectively, the
minimum and maximum. Finally, after this distance matrix is created, in
order to assign a distance also to nonadjacent node pairs (which are the
zero elements), the shortest path between each pair of nonadjacent nodes
is computed and its value is stored as their distance. This generates a PCC-
CSI distance matrix. Applying the same strategy, also the RCC-CSI can be
generated by substituting PCC with RCC in the procedure above.

In summary, 5 different distance matrices are prposed which represent
5 different network construction options for D-CE: Pearson distance (PD),
Spearman distance,[22] Euclidean distance (ED), PCC-CSI distance, and
RCC-CSI distance.

Step 2: Network Embedding
After getting the sample–sample distance matrix (network) according

to one of the 5 different options described above, the network embedding
step of the D-CE algorithm consists of two routines.

(2.1) The first routine is associated with inferring the 3D angular coordi-
nates of the samples and consists of two subroutines. The first subroutine
is the n-by-n distance matrix doubly-centering operation given by the for-
mula

X̄ = X − 1
n
⋅ O ⋅ X − 1

n
⋅ X ⋅ O − 1

n2
⋅ O ⋅ X ⋅ O (5)

where O is an n-by-n matrix of all 1’s.
Kernel-based machines provide a framework to generalize linear pat-

tern recognition methods to the nonlinear domain.[39] They rely on the
concept of kernel trick, initially introduced by Aizerman et al.[40] As a mat-
ter of fact, D-CE (similar to any coalescent embedding algorithm[15]) is
a nonlinear kernel-based machine, in D-CE the inference of the kernel is
network-topology-driven because the distances between the points are in-
ferred by means of the CSI filtered association network, where CSI is tai-
lored for biological networks such as the ones here considered.[41] This
implies that D-CE is able to perform nonlinear network-driven dimension
reduction, which makes this approach very different from any linear tech-
nique such as PCA. In standard kernel-based machines, data should be
centered in the feature space, by shifting the origin to the centroid of the
data. Hence, D-CE distance matrix (kernel) is also centered. From an algo-
rithmic point of view, centering is performed easily with matrix algebra, by
a subsequent column and row centering of the kernel matrix,[15] according
to the formula above.

However, recent studies are also advocating the option to not center the
kernel,[39] that is a solution that is not considered in this study because it is
still under debate[39] and in the previous study on coalescent embedding
did not provide any major increment in performance.[15]

The second subroutine is the spectral decomposition of the doubly-
centered distance matrix by means of the SVD

X̄ = U ⋅ S ⋅ V′ (6)

Dn,3 =
(

sqrt(S3,3) ⋅ (Vn,3)
′
)

′ (7)

where S is an n-by-n diagonal matrix with singular values of X̄ on its diago-
nal and sqrt is the square root operation. U and V are two unitary matrices,
the columns of which are singular vectors of X̄. V’ is the Hermitian trans-
pose (the complex conjugate of the transpose) of V. Since X̄ is symmetric
in this particular care U = V. Dn,3 is the score matrix where each row is a
node of the network and each column is a different dimension of embed-
ding that can be used to assign to each network node respectively the x, y,

z coordinate of the 3D embedding. Then, the coordinates are transformed
into polar coordinates and the angular coordinates are kept.

(2.2) The second routine is associated with inferring the radial coor-
dinates as a function of the node strength, which is the sum of the edge
similarities incident on a node. A node with high strength is very similar to
many other nodes in the network,[15] therefore it is high in the topological
hierarchy.[15] Indeed, being similar to many nodes means that many nodes
consider you at the center of the connectivity structure. Hence, according
to the CE methodology,[15] nodes with higher strength should be located
toward the center of the embedding and therefore have lower radial coor-
dinates; whereas nodes with lower strength should be located toward the
periphery of the embedding and therefore have higher radial coordinates.
On the basis of this rationale, a procedure is designed to infer the radial
coordinates that is described step by step below. For a certain node i, its
similarity is defined as

Si =
N∑

j=1

si,j (8)

where si,j is the similarity metric between node i and j, and N denotes all
nodes connected to i. For Spearman, Pearson, and Euclidean distance net-
work, si,j = 1 − di,j∕max

i,j
di,j, where di,j is the distance between node i and

j, and for CSI network, si,j = CSIi,j .
Nodes are first sorted in descending order by strength with nodes with

highest strength ranked first. Then, the radial coordinate of the ith node is
determined by the following formula that is termed heterogeneity-adaptive
radius (HAr) and is specifically designed for D-CE embedding in order to
capture the node hierarchy and according to the rationale that is clarified
below

HAri = 1 − 𝛽

ln (oi) + 1
(9)

oi is the ranking value of ith node, and the logarithm adjustment ln (oi) of
the ranking value is introduced to mitigate the growth of the denominator
when the strength of a node is low and, possibly, many nodes with similarly
low strength are arbitrarily ordered in the high value zone of the ranking.
The adjustment coefficient 𝛽 = RSD

1+RSD
, where RSD = std(S)

mean(S)
is the rel-

ative standard deviation of the strength among all nodes, is a measure of
heterogeneity of the node strength distribution.

HAri is confined to the interval]0,1[. The reversed square brackets indi-
cate that the value 0 and 1 are, respectively, the inferior and superior limits
of the interval, but in practice they cannot be reached. For a networked sys-
tem with high hierarchical organization, the node strength will have large
heterogeneity because the distribution of the node strength will have high
RSD and, as a consequence, 𝛽 → 1. Hence, 𝛽 → 1 means that the network
has very high hierarchical organization and, to reflect this feature in the
embedding visualization, the node with highest strength (for which oi =
1) takes ri → 0 and is located more toward the center of the embedding,

then all the other nodes following it will assume larger radial values in the
range]0,1[. In contrast, if the network hierarchical organization is lower
than the previous case, for example, it is assumed that 𝛽 = 1/2, then the
node with the highest strength (for which oi = 1) takes ri = 1/2, and the
radial coordinates space available for the representation will be squeezed
to the radial interval [0.5,1[. In conclusion, the proposed formula to infer
radial node coordinates in D-CE will visually represent networked systems
with very high hierarchical organization as a 3D distribution of points oc-
cupying all the radial space from the periphery to the center of the radial
coordinates. Instead, in case of networked systems with very low hierarchi-
cal organization, all the nodes will be compressed and equally distributed
toward the periphery of the polar coordinate representation, and occupy
only a reduced and peripheral portion of the radial space.

Note that some networked systems might have a hierarchical organi-
zation that changes across the angular coordinates with a certain pattern.
In this case, the 3D embedding might result in not spherical and assume
other shapes, for instance an ellipsoidal shape.
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The time complexity of the method is O(Nˆ2) where N is the number
of cells, because it is constrained by the SVD, as explained in the previous
study on coalescent embedding.[15]

One to One Position Mapping to Template: To enable template and
marker gene expression information to be used, a template containing
each sample positions (not labels) is first constructed, and then optimal
transportation is used to get the transport matrix between samples and
positions, assuming that the sample and position weight follow a uni-
form distribution (p and q). D-CE coordinates are used to calculate the
Euclidean distance between each pair of cells. For the cost distance, a k-
nearest-neighbor graph of the Euclidean distance matrix of samples and
template is first computed, and the shortest distance between samples
and positions(Cs and Ct) are calculated by Dijkstra algorithm, and the cost
matrix C is calculated by: C = Cs · (p × q) · Ct, if marker genes are pro-
vided, the cost of gene Cg is defined as the Euclidean distance divided by
the maximum Euclidean distance between samples and templates, and
the total cost is calculated by the weighted sum of C and Cg and the op-
timal transportation is done using function “sinkhorn” in python package
“POT” similar to that in novoSpaRC,[10] so mask and marker information
could be included. Then to make sure on sample is mapped to only one
position, the position-cell pair is first selected that have maximum weight
in the optimal transport matrix, and map the cell to the position, then the
node-cell pair is removed, and the same mapping is repeat until each the
cell is mapped to a position in the template.

To facilitate single cell resolution mapping, as an additional option of
D-CE-t package (“-scmap”), after reconstruction, single cell samples can
be also mapped to the spatial location with maximum probability.

Optimizing Normalization and Edge Weight for Reconstruction: The 3D
coordinates of each sample from each of the 60 possible strategies of D-
CE (12 normalization methods and 5 edge weighting distances) were ob-
tained to evaluate the performance of each of them in spatial reconstruc-
tion as follows.

For spatial reconstruction, the anterior and posterior samples are fur-
ther divided into 4 groups according the spatial locations: dA, dP, pA,
and pP, which means the distal/proximal part of anterior/posterior, the
four groups are colored with red, green purple and yellow, respectively, in
Figure 2. For each germ layer in each stage, only the angular coordinates
of the samples (with the radius all set to 1) are used to calculate the fol-
lowing three indexes. 1) The angular separability index (ASI) of each part
from the rest of the samples is defined and implemented by Muscoloni
et al.;[15] 2) The projection separability index—Matthews correlation coef-
ficient (PSImcc) is calculated by the mean value of Matthews correlation
coefficient between the order of cells from each pair of clusters (groups)
and the order that well separate the 2 clusters when all the cells from those
2 clusters are projected to the line that link the median of the 2 clusters.
For each pair of clusters cluster 1 and cluster 2, which have n1 samples in
cluster 1 and n2 samples in cluster 2, labels: L: {ln|n ∈ 1: (n1 + n2),ln ∈ {0,
1}} where 0 present cluster 1 and 1 present cluster 2, the samples are first
projected to the line that link the center of the 2 clusters, then, the samples
can be divided into 2 clusters according to the projected positions of the
samples, label n1 samples in one side to be cluster 1’ and n2 samples in
the other side to be cluster 2’ then labels L2: {ln|n ∈ 1: (n1 + n2),ln ∈ {0, 1}}
then, the comfusion matrix is calculated and Matthews correlation coeffi-
cient is calculated by mcc = TP∗TN−FP∗FN√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)
, where TP

is “True Positives,” FNis “False Negatives,” FP is “False Positives,” and
TP is “True Positives,” then, since the position of the 2 clusters are un-
known, a comparison of the mcc is taken when label the samples in each
of the 2 side as cluster 1, and take the maximum to be PSImcc. 3) The
ordering index (OI) is used to compare the order of samples to the known
order of samples. The OI of A, P, L, or R samples was calculated in each
reconstruction between their original proximal to distal orders and their
orders in reconstructed coordinates. The original order is determined by
the labels of samples, and the rank/order of samples in the reconstructed
spatial structures are determined by

a) First OI calculated for the Geo-seq samples in each spatial domain, A,
P, L, or R, separately. For each domain, the reconstructed spatial posi-

tions of samples from each layer were obtained, if there are more than
one sample in the same layer, the geometric center of all the samples
in this layer is used as the spatial position;

b) The center of the first layer samples is designated as the reconstructed
position of the first layer, then rank the sequential layers by the shortest
spatial distance to the last layer.

c) The RCC of the original and reconstructed ranks are calculated as OI.
d) The minimal OI in A, P, L, and R is taken as the overall OI of the re-

construction.

For the BDTNP dataset, the embryo is cut into 4 groups according to
the x and z coordinates in original locations, then the angular coordinates
are used to calculate ASI and PSImcc as described above. Same as the
mouse embryo, the fly embryo is bilaterally symmetric along y axis, there-
fore only half of the embryo is used as novoSpaRC did. As the order of cells
on y axis was not considered by novoSpaRC,[10] the reconstructed spatial
order is also evaluated in x and z axes using the ASI and PSImcc of the 4
groups according to x and z axes. For OI, the x, y, or z coordinate is sorted
from high to low and divided into 10 groups, the original order of other
groups is determined by the ascending order of coordinate, the geomet-
ric center of each groups in the reconstructed structure is calculated as
the spatial location of this group. The group with lowest mean coordinate
is designated as the first group, then the rest are calculated as described
above for Geo-seq data.

Comparing Dimensionality Reduction Methods in Spatial Reconstruction:
Besides D-CE, 5 other dimensionality reduction methods, PCA, t-SNE, and
UMAP are also tested for spatial reconstruction in Cartesian coordinates,
and then they are compared with D-CE using ASI, PSImcc, and OI. The 3
indexes of all the results using D-CE, PCA, t-SNE, and UMAP are ranked
in descending order, and the maximum ranks are calculated as described
above.

Comparison to the Existing De Novo Spatial Reconstruction Method: For
CSOmap, the TPM of all LR genes were used for spatial reconstruction.
Only human and mouse LR interaction were provided.

As novoSpaRC method is developed specifically for Berke-
ley Drosophila Transcription Network Project (BDTNP) dataset,
which only contains the expression level of 84 TFs. For comparison
to novoSpaRC, the D-CE of the BDTNP data used all 84 TFs’ profiles with
the same normalization method and distance metric as for to the 3D
reconstruction of the Geo-seq data.

To determine the coordinates of samples reconstructed by novoSpaRC,
the probabilistic coupling matrix Tm×n

+ between m samples and n loca-
tions is calculated using novoSpaRC, then the dot product Tm×n

+ ⋅ Ln×3,
where Ln × 3 is the original 3D coordinates of the locations, is used to de-
termine the reconstructed sample locations. Specifically, Ti,j is the proba-
bility of sample i mapping to location j, and as the distribution of

∑
j Ti,j

follow a uniform distribution, the weighted sum coordinates of all the lo-
cations for sample i(

∑n
j = 1 Ti,j ⋅ xj,

∑n
j = 1 Ti,j ⋅ yj,

∑n
j = 1 Ti,j ⋅ zj) is is used

to as novoSpaRC reconstructed location (with x, y, and z coordinates) of
sample i, where(xj,yj,zj) is the coordinate of the location j.

Comparison to the Existing De Novo Spatial Reconstruction Method—
Identifying Spatial Domains and Corresponding Gene Expression Signatures:
Putative domains are obtained by K means clustering of the samples ac-
cording to the coordinates in the reconstructed structure based on the
elbow method (Figure S21, Supporting Information), then the top 500
domain specifically highly expressed genes were determined by log fold-
changes of the samples within the domain versus outside of the domain.
Then GSEA on KEGG pathway is performed by the rank of the log fold-
changes.

Down-Sampling of the BDTNP Dataset and Comparison of PCC versus
PCC-CSI Network: The samples in the BDTNP dataset are randomly se-
lected to 1/n, with n = 2–100, of the total number of samples. The sam-
pling is repeated 20 times at each sampling rate. For each down-sampled
BDTNP sample set, the PD network and PCC-CSI networks are used for
D-CE. ASI and PSImcc are calculated and the mean ASI and PSImcc of the
20 repeats at each sampling rate are plotted to compare the performance
PD network and PCC-CSI network, on samples of different sizes.
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Reconstruction of Transcriptome Data with Known Spatial Domain Labels:
Log2 transformed FPKM (Fragments Per Kilobase of exon model per Mil-
lion mapped fragments) was used for D-CE and novoSpaRC. TPM (Tran-
scripts Per Kilobase of exon model per Million mapped reads) was used
for CSOmap reconstruction as required. The spatial order of the samples
is reconstructed using D-CE, novoSpaRC and when applicable CSOmap
(only applicable to human and mouse LR-including gene sets). To evalu-
ate the reconstructed spatial gene expression patterns for the Drosophila
and zebra fish embryo scRNA-seq datasets, as there is no specific label for
each sample, the coarse-grain domains were obtained on the matching
FISH image by first converting it to gray scale, and then cut into 10 layers
along either anterior-posterior or dorsal-ventral axis. The gray-scale den-
sity of each layer was used as the gold standard expression level in each
layer. The direction of the reconstructed structure is corrected by rotating
around x and y axis with different angles (with 𝜋/30 as step size, sampled
from 0 to 2𝜋) and cut into 10 layers according to the x and z axis. Then the
RCC between FISH order and each rotated reconstructed structure layer
order were calculated. The orientation with max RCC is defined as the op-
timal orientation, whose OI is used as the final OI.

Reconstruction of Transcriptome Data with Spatial Coordinates in a Tem-
plate: For 8 transcriptome data with spatial coordinates, such as bar-
coded microarray-based spatially resolved transcriptome, LCM-seq, seq-
FISH, and MERFISH data, the spatial order or coordinates in a template
as gold standard is used to evaluate the reconstructed structure of each
method. The log2 transformed gene expression values were used for re-
construction. For each experiment, samples are labeled by their x and y
coordinates and used as gold standards to compute OI, ASI, and PSImcc
after the embedding of the samples.

Expression Order Correlation (EOC) Calculation and Spatial Marker Gene
Selection: The reconstructed coordinates are rotated 30 times along the
XY and XZ planes respectively (12 degrees each time) to calculate the RCC
between the gene expression level and the rotated coordinate X, arriving
at a 30 by 30 matrix of RCC. Then the 30 by 30 RCC matrix is converted
into a vector of 900 values, and clustered into 2 and 3 clusters by K-means
for 2D and 3D templates, respectively. The top EOC gene in the large and
small clusters are the selected as the top 1 and 2 spatial marker genes
for D-CE-t as default. NovoSpaRC randomly selected 1 or 2 markers for
marker-based template fitting, but it was done 100 times to select the best
one for a favorable result for novoSpaRC.

GSEA Analysis for EOC Genes: Top 5% EOC genes in each dataset
were used for GO and KEGG GSEA analysis with genes’ EOC as the rank
and genesets with each GO and KEGG term as signatures. The function
“GSEA” in R package “clusterProfiler” was used with “pvalueCutoff= 0.05,
pAdjustMethod = fdr, maxGSSize = 500 (if the gene number is more than
500, than maxGSSize = 1000)”, and default settings for other parameters.

Whole Mount In Situ Hybridization Experiment: Mid-gastrulaton stage
(embryonic day 7.5, E7.5) embryos were collected from C57BL/6 mice, and
embryos images were taken for recording and confirmation of develop-
mental staging. Animal procedures conducted in this study were approved
by the Institutional Animal Care and Use Committee of Guangzhou Insti-
tutes of Biomedicine and Health, Chinese Academy of Sciences (Institu-
tional Animal Welfare Assurance Number N2022102).
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