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A B S T R A C T   

With the in-depth investigation of cardiac fibrosis, oxidative stress (OS) has been recognized as a significant 
pathophysiological pathway involved in cardiac remodeling and progression. OS is a condition characterized by 
the disruption of equilibrium between reactive oxygen species (ROS) produced by the organism and the anti
oxidant defense system, resulting in adverse effects on the structure and function of the heart. The accumulation 
of reactive substances beyond cellular thresholds disrupts the normal physiology of both cardiomyocytes and 
non-cardiomyocytes, leading to OS, inflammation, hypertrophy, and cardiac fibrosis. Furthermore, cardiac OS 
also modulates several crucial genes involved in maintaining cellular homeostasis, including those associated 
with mitochondrial biogenesis, injury, and antioxidant defense, which are inevitably associated with concurrent 
epigenetic changes. Multiple studies have demonstrated the crucial role of epigenetic modifications in regulating 
cardiac OS. Consequently, modulating OS through targeted epigenetic modifications emerges as a potentially 
promising therapeutic strategy for managing cardiac fibrosis. This article provides a new review of current 
research on this subject and proposes that epigenetics may improve OS-induced cardiac fibrosis.   

1. Introduction 

Cardiac fibrosis, is a multifactorial process that includes, but is not 
limited to, cardiac fibroblast activation, apoptosis of cardiomyocytes, 
transition of endothelial cells to mesenchymal cells, injury or aging of 
endothelial cells. It is defined as myocardial interstitial dilation due to 
deposition of extracellular matrix (ECM) proteins [1]. Initial deposition 
of ECM improves tissue integrity, but extensive fibrosis impairs cardiac 
function [2]. Notably, fibroblasts, particularly myofibroblasts, play a 
pivotal role as downstream effector cells in the fibrotic process and serve 
as the primary source of matrix proteins [3]. In addition, ECM 

metalloproteinases (MMPs) are proteases that specifically regulate the 
content of ECM. Changes in the frequency and relative proportions of 
MMPs and their inhibitors can lead to changes in the myocardial matrix 
[4]. Disruption of this balance is also present in some mechanisms that 
promote fibrosis, but exactly what is changed remains a matter of 
debate. 

In recent years, an increasing body of literature has provided 
compelling evidence indicating that OS acts as a mediator in the above 
pathological state of cells and promotes the progression of cardiac 
fibrosis. OS is characterized by an imbalance between oxidative and 
antioxidative processes in the body. The primary cause of OS is the 
generation of ROS. ROS diffuses within the cytoplasm and activates 
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redox-sensitive protein kinases [5], which play a pro-fibrotic role by 
promoting fibroblast proliferation, cardiomyocyte apoptosis, and 
endothelial cell injury or senescence, ultimately leading to extracellular 
remodeling [6,7]. At the molecular level, OS induces specific manifes
tations such as cellular electrophysiological disturbances, alterations in 
the expression of myosin chains [8], oxidative damage to proteins and 
lipids, DNA damage, and dysregulation of MMPs and their inhibitors [6, 
9]. Their cumulative effect further leads to the development of cardiac 
fibrosis, impairing basic heart function. The review aims to provide an 
extensive overview of the intricate interplay between OS and various 
cardiac cell types, including cardiomyocytes, cardiac fibroblasts, and 
endothelial cells. By elucidating the specific epigenetic mechanisms and 
signaling pathways affected by OS in these cell types, a deeper under
standing of the pathogenesis of cardiac fibrosis and remodeling can be 
gained. 

2. Epigenetic mechanisms 

Epigenetic regulation, a pivotal mediator of fibrotic progression, 
governs the transcriptional state of genes. It serves as a mechanism for 
modulating the cellular transcriptome and proteome without affecting 
the genetic content, potentially accomplished through the establishment 
of epigenetic marks, including DNA methylation, post-translational 
modifications of histones, as well as additional mechanisms involving 
non-coding RNAs [10]. Indeed, numerous studies have proved that OS 
can alter the epigenetic landscape of cells [11,12]. There even have been 

reports supporting that superoxides could directly mediate cytosine 
methylation by deprotonating C5 and transferring the methyl group 
from SAM without the involvement of DNA methyltransferase [13]. 
Nonetheless, many studies have also demonstrated the epigenetic 
mediation of OS [14]. An important example is that activation of erox
isome proliferator-activated receptor gamma coactivator-1 alpha 
(PGC-1α) reduces mitochondrial ROS. However, the activation of 
PGC-1α is contingent upon its deacetylation mediated by sirtuins (SIRT) 
[15]. Overall, redox signaling and OS could modulate gene regulation by 
altering histone function and DNA-modifying enzymes, which subse
quently impact cellular phenotypes. Conversely, epigenetic changes can 
also influence the redox environment within cells [16]. 

Meanwhile, epigenetic and OS have important downstream effects, 
both contributing to fibrosis. It can be seen that OS is closely related to 
epigenetics, overlaps each other, and significantly affects the progres
sion of cardiac fibrosis. Therefore, modulation of OS through epigenetic 
mechanisms is a potential and promising therapeutic option for cardiac 
fibrosis. 

3. Overview of oxidative stress in cardiac fibrosis 

Regulation of redox homeostasis is critical for maintaining normal 
cell growth, metabolism and survival. OS, characterized by an imbal
ance of the body’s oxidation and antioxidant mechanisms, primarily 
arises from ROS [17]. ROS is a collective term encompassing molecules 
derived from O2, such as superoxides, hydrogen peroxide, hydroxyl 
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KAT7 lysine acetyltransferase 7 
LARP7 la-related protein 7 
AAV adeno-associated virus 
AngII angiotensin II 
ATM ataxia-telangiectasia mutated 
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CAT catalase 
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CircRNAs circular RNAs 
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Imp importin 
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NEU neuraminidase 
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PAK2 p21-activated kinase 2 
PGC-1α peroxisome proliferator-activated receptor γ coactivator 
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ROS reactive oxygen species 
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siRNAs small interfering RNAs 
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radicals, ozone, and singlet oxygen [18]. And numerous additional 
agents also contribute to redox signaling, including nitric oxide, 
hydrogen sulfide, and oxidized lipids [19]. These agents play an 
important role in mediating diverse biological processes within the body 
by modulating protein function, promoting inflammation, inducing 
apoptosis, impairing autophagy, disrupting mitochondrial function, and 
interfering with various signaling pathways. These effects tend to 
accelerate the pathological process and aggravate the disease symptoms. 

Intracellular production of ROS can stem from multiple sources, 
encompassing the mitochondrial electron transport chain (ETC), 
NADPH oxidase/Dual oxidase (NOX/DUOX) enzymes, endoplasmic re
ticulum (ER), as well as superoxide generation [20]. The detrimental 
impacts of ROS are intricately involved in the pathogenesis of cardiac 
tissue. To counterbalance these effects, the human body possesses a 
sophisticated antioxidant system consisting of both enzymatic and 
non-enzymatic components. Among these, crucial elements include 
antioxidant enzymes, such as superoxide dismutase (SOD), macrophage 
migration inhibitory factor (MIF), and catalase, alongside various 
non-enzyme antioxidants. These components collectively contribute to 
the regulation of OS and maintenance of redox homeostasis in cardiac 
cells. 

Remarkably, several studies have demonstrated that ROS play a 
significant role in modulating the ECM by enhanced protein expression 
of TGF-β1, alpha smooth muscle actin, collagen I, and collagen Protein 
III, leading to the activation of cardiac fibroblasts [21]. TGF-β plays a 
crucial role in the transdifferentiation of cardiac fibroblasts and the 
deposition of ECM [22]. Upon activation, fibroblasts exhibit a significant 
increase in collagen production, while ROS also have the ability to 
disrupt the balance of MMPs and their inhibitors [9]. These processes 
collectively contribute to the development of fibrosis and remodeling of 
the matrix. Moreover, oxidative damage inflicted upon ECM proteins 
can result in their fragmentation and/or stabilization, consequently 
impairing the proper resolution of inflammation and fibrosis. In addi
tion, ROS are also involved in signaling, such as apoptosis signaling 
[23]. Apoptosis is usually associated with the activation of caspase 
proteases. Apoptosis stimulated by ROS may also aggravate cardiac 
fibrosis [24]. We recently discovered that these ROS-induced changes 
are inextricably linked to concomitant epigenetic changes. Below we 
discuss recent studies of OS-regulated epigenetic changes mediating 
myocardial fibrosis, Fig. 1 and Table 1 provide more details on this 

discovery. 

4. Oxidative stress mediated epigenetic regulations of cardiac 
fibrosis 

OS exerts a substantial influence on the induction of epigenetic 
modifications, with a particular focus on DNA methylation. Adverse 
effects of oxidative damage on DNA integrity disrupt the chromatin 
structure and lead to epigenetic changes, leading to subsequent epige
netic alterations. This interplay between OS and epigenetic modifica
tions highlights the intricate relationship between environmental cues 
and the modulation of gene expression patterns [25]. ROS have the 
capacity to modify the methylation status of CpG sites, impeding their 
interaction with transcription factors that would typically bind to them. 
Furthermore, studies have provided evidence indicating that OS tran
siently influences epigenetic processes by modulating the activity of 
enzymes involved in histone demethylation and deacetylation [26]. 

4.1. Antioxidants reduce DNA methylation 

RASSF1A is a tumor suppressor gene that exerts its effects by 
modulating downstream proteins, including ERK1/2. The Ras/ERK 
signaling pathway represents an intracellular signaling cascade intri
cately associated with fibroblast proliferation. Notably, DNA methyl
ation events occurring in cardiac fibroblasts lead to the inactivation of 
the tumor suppressor gene RASSF1A, concurrently activating ERK1/2 
and culminating in fibroblast proliferation and the development of 
cardiac fibrosis. Chronic exposure to hypoxic stress triggers DNA 
methylation events, while extracellular superoxide dismutase (EC-SOD) 
exhibits a significant capacity to mitigate RASSF1A gene methylation 
and alleviate hypoxia-induced cardiac fibrosis [27]. 

4.2. Oxidative stress affects histone modification 

Previous investigations have provided evidence indicating that the 
activation of ROS-induced ataxia-telangiectasia mutated (ATM) protein 
kinase is evident in conditions of hypertrophy and heart failure [28]. In 
cardiomyocytes, OS triggers the activation of the ATM-mediated DNA 
damage response (DDR) signaling pathway, subsequently leading to the 
degradation of La-related protein 7 (LARP7). The downregulation or 

Fig. 1. Oxidative stress influences cardiac fibrosis by affecting epigenetic modification 
ROS affect cardiac fibrosis progression by mediating multiple epigenetic mechanisms in various cardiac tissue cells, including cardiomyocytes, cardiac fibroblasts, 
and endothelial cells. 
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mutation of LARP7 elicits a reduction in SIRT1 expression, resulting in 
the acetylation of PGC-1α and impairing mitochondrial biogenesis and 
energy metabolism. Ultimately, these cascades contribute to the pro
gression of heart failure, with cardiac fibrosis emerging as a critical 
pathological manifestation [29]. Adeno-associated virus (AAV)-me
diated delivery of LARP7 emerges as a promising targeted therapeutic 
approach for addressing cardiac dysfunction. 

Alterations in the redox status of conserved cysteine residues within 
class II histone deacetylases (HDACs) exert a significant impact on the 
cytoplasmic localization of these HDACs and the activity of crucial genes 
implicated in cardiomyocyte hypertrophy. These cysteine mutations are 
sufficient to induce cardiac hypertrophy [30]. Cardiomyocyte hyper
trophy is a prominent feature of cardiac hypertrophy, which can be 
categorized into pathological hypertrophy and physiological hypertro
phy. Pathological hypertrophy is triggered by disease stimuli such as 
stress overload or myocardial infarction, and myocardial fibrosis serves 
as a notable manifestation of pathological hypertrophy [31]. When 
exposed to OS, HDAC4 mutants rely on chromosome region mainte
nance protein 1 (CRM1) for their translocation into the cytoplasm, 
thereby abolishing the inhibitory effect of HDAC4 on cardiac hyper
trophy in vivo. Interestingly, thioredoxin 1 (TRX1) plays a crucial role in 
monitoring and regulating redox signaling [16]. It forms a multiprotein 
complex with DnaJb5, thioredoxin-binding protein-2 (TBP-2), and 
importin (IMP) α, facilitating the degradation of key cysteine residues 
within HDAC4 and promoting the nuclear localization of HDAC4. 
Consequently, targeted redox modulation of HDAC4 represents a 
promising independent approach for the therapeutic management of 
cardiac hypertrophy. 

4.3. Oxidative stress affects the regulation of non-coding RNAs 

Moreover, increased levels of ROS have been shown to downregulate 
the expression of miR-29b-3p and miR-29c-3p by activating Smad3 
signaling. This dysregulation of microRNAs contributes to the promo
tion of cardiac fibrosis in cardiac fibroblasts (CFs) by targeting TGF-β2 
and MMP2 [32]. Notably, macrophage migration inhibitory factor (MIF) 
possesses antioxidant properties and has been found to inhibit ROS 
production and inhibit the activation of Smad3. As a result, MIF inter
vention restores the downregulation of miR-29b-3p and miR-29c-3p in 
CFs, thereby exerting a suppressive effect on cardiac fibrosis. 

Another ROS-mediated mechanism involving microRNAs (miRNAs) 
has been identified. It is characterized by the ROS-induced redistribu
tion of miRNAs between mitochondria and the cytoplasm, specifically in 
endothelial cells, leading to endothelial cell damage. Importantly, this 
redistribution does not significantly alter the overall expression of 
miRNAs in the cell. Among these redox-sensitive miRNAs, miR-381–3p 
has been implicated in ROS-induced endothelial injury through this 
mechanism. It exerts its effects by targeting specific genes, including 
lipoprotein receptor-related protein 6 (LRP6) and nuclear factor I-A 
(NFIA). By inhibiting these target genes, miR-381–3p promotes 
apoptosis and inhibits endothelial cell proliferation, contributing to the 
progression of endothelial dysfunction [33]. 

5. Epigenetic regulations of oxidative stress in cardiac fibrosis: 
focus on histone modification 

As previously mentioned, OS has been shown to induce alterations in 
the epigenetic landscape of cells. In the following sections, we discuss 
the epigenetic mechanisms that mediate OS. Additional insights and 
detailed information can be found in Fig. 2 and Table 2, which provide a 
comprehensive overview of these discoveries. 

One prominent epigenetic mechanism that has been extensively 
studied is histone modification. Fig. 3 illustrates the intricate regulation 
of OS by histone modifications. Among various histone modifications, 
acetylation and methylation have garnered significant attention due to 
their roles in modulating chromatin condensation, transcription factor 
binding, and transcription elongation [34]. These modifications are 
meticulously controlled and manipulated by three classes of proteins, 
often referred to as “writers” “erasers” or “readers” based on their spe
cific functions [35]. 

“Writers” encompass enzymes such as HATs and HMTs, which 
catalyze the addition of acetyl and methyl groups to histones, respec
tively. On the other hand, “erasers” include proteins like deacetylases 
and demethylases, which are responsible for removing acetyl and 
methyl groups from histones. Lastly, “readers” refer to proteins that bind 
to these modified histone marks, exerting their regulatory influence on 
chromatin organization and the activity of other proteins. 

The intricate interplay between OS and histone modifications reveals 
the dynamic nature of epigenetic regulation in response to the cellular 

Table 1 
Oxidative stress influences cardiac fibrosis by affecting epigenetic modification.   

DNA methylation Histone modification Non-coding RNA 

Transformation ●DNA methylation ↑ 
inactivate RASSF1A activate 
ERK1/2 [27] Proliferation 

●activate DDR signaling pathway 
SIRT1↓ PGC-1α acetylation [29] 
Mitochondrial damage 
●HDAC4 is transported to the 
cytoplasm [30] Hypertrophy 

●Activate Smad3 miR-29b-3p和 
miR-29c-3p↓ target TGF-β2 and 
MMP2 [32] Activation 

●redistribution of miR-381–3p between 
mitochondria and cytoplasm inhibiting LRP6 and 
NFIA [33] Apoptosis Inhibit proliferation 

Cell type Cardiac fibroblast Cardiomyocyte Cardiac fibroblast Endothelial cell  

Fig. 2. Epigenetic modification influences cardiac fibrosis by affecting oxida
tive stress 
Several epigenetic mechanisms influence cardiac fibrosis progression by 
affecting oxidative homeostasis in vivo. 
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redox status. These complex mechanisms are pivotal in shaping the 
epigenome, exerting profound effects on gene expression, cellular 
functionality, and the pathogenesis of various diseases. Elucidating the 
intricate network of interactions between OS and histone modifications 
holds significant promise for advancing our understanding of epigenetic 
regulation and its therapeutic implications in diverse pathological 
contexts. 

5.1. Histone deacetylation regulations of oxidative stress in cardiac 
fibrosis 

Mitochondria plays a vital role in generating ROS within cells [36]. 
In recent years, the epigenetic mechanisms associated with SIRTs, 
particularly those involving mitochondrial proteins, have garnered 
considerable research interest. SIRTs are enzymes with nicotinamide 
adenine dinucleotide (NAD+)-dependent activity, and their activation is 

intricately regulated by the metabolic state of the cell. 
Activation of SIRT1, for instance, leads to an elevation in adiponectin 

levels, which in turn stimulates mitochondrial biogenesis and enhances 
the antioxidant defense system. SIRT1 interacts with peroxisome PGC- 
1α at multiple lysine and deacetylation sites, resulting in increased 
transcription of genes involved in oxidative phosphorylation [37]. In 
response to stressful conditions, SIRT1 exerts its regulatory function by 
deacetylating forkhead box protein O1/3 (FOXO1/3), thereby regu
lating the expression of manganese-dependent superoxide dismutase 
and catalase antioxidants [38]. Furthermore, Activated SIRT1 inhibits 
Smad3 acetylation, OS, and activation of ER stress, thereby preventing 
the activation of cardiac fibroblasts. Geniposide (GE) can resist cardiac 
fibrosis through this mechanism, so it is expected to become a promising 
anti-cardiac fibrosis drug [39]. 

Moreover, Impairment or loss of cardiac SIRT1 contributes to the 
exacerbation of cardiac dysfunction and remodeling. Inhibition of SIRT1 

Table 2 
Epigenetic modification influences cardiac fibrosis by affecting oxidative stress.   

Cardiac fibroblast Cardiomyocyte Endothelial cell 

DNA 
methylation 

− /− ●DNMT2 decreases GPX1 expression [54] 
Apoptosis↑ 

●DNA methylation levels of the IGFBP3 promoter↑ nuclear 
translocation of IGFBP3 [55] Angiogenesis↑ 

Histone 
modification 

●SIRT1 inhibits Smad3 acetylation OS 
and ER stress [39] Activation↓ 

●SIRT1 reduces nuclear translocation of NRF2 [40] 
Ferroptosis↑ 
●SIRT3 induces IDH2 deacetylation [49] 
Apoptosis↓ 
●SIRT3 increase SOD2 activity [47] Apoptosis↓ 
●SIRT4 inhibits Sirt3-mediated activation of 
MnSOD [50] Hypertrophy↑ 
●EZH2 inhibits the expression of USP22 [52] 
Apoptosis↑ 

●SIRT1 inhibits AngII-induced ROS generation [43] 
Aging↑ 

Non-coding RNA ●miR-4732–3p increases Nfe2l2 and 
NRF1 [63] Activation↓ 

●miR-134–5p inhibits the expression of KAT7 [61] 
Hypertrophy↑ 
●miR-194–5p Inhibits PAK2 expression [62] 
Apoptosis↑ 
●miR-340–5p inhibits the expression of Mcl-1 [63] 
Apoptosis↑ 
●lncDACH1 promote SIRT3 ubiquitination [65] 
Apoptosis↑ 
●CircSamd4 induces the mitochondrial 
translocation of the Vcp protein [66] Apoptosis↓ 
●CircITCH Upregulates SIRT6 [67] Apoptosis↓ 

miR-101–3p inhibits expression of Bim [59] Apoptosis↓  

Fig. 3. Regulatory effect of histone modification on oxidative stress in cardiac fibrosis 
Histone modifications affect the intracellular oxidative balance of various cardiac tissue cells such as cardiomyocytes, cardiac fibroblasts, and endothelial cells, 
thereby affecting the process of cardiac fibrosis. Among them, ATF4, peIF2α and CHOP were upregulated as markers of ER stress. 
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reduces the nuclear translocation of NRF2, leading to a decrease in NRF2 
translocation from the cytoplasm to the nucleus. This alteration affects 
the downstream Keap1 pathway, compromising the ability of NRF2 to 
effectively inhibit ROS in cardiomyocytes [40]. NRF2 primarily func
tions to maintain redox homeostasis [16] by transcriptionally regulating 
various genes involved in antioxidant defense, such as SOD, catalase 
(CAT), heme oxygenase 1 (Hmox-1), NAD(P)H quinone 
oxidoreductase-1, and TRX-1 [15]. Consequently, the levels of MDA, a 
marker of OS, increase, while the levels of SOD and GSH, key antioxi
dants, decrease. And honokiol (HKL), a potent cardioprotectant, exerts 
its beneficial effects by stimulating the SIRT1/NRF2 pathway, thereby 
reducing OS and ameliorating myocardial injury in diabetic rats [41]. 
Moreover, HKL also serves as a pharmacological activator of SIRT3 [42]. 

Activation of SIRT1 plays a crucial role in inhibiting angiotensin II 
(AngII)-induced ROS generation and promoting telomerase activity, 
thereby attenuating AngII-induced senescence in human umbilical vein 
endothelial cells (HUVECs) [43]. Notably, apelin, an adipocyte-derived 
factor, acts as an endogenous ligand and the activation of its receptors 
has been shown to ameliorate the endothelia in-induced HUVEC 
senescence through the AMPK/SIRT1 signaling pathway. 

Previous studies have shown that moderate expression of SIRT1 
confers protection against OS associated with cardiac hypertrophy and 
fibrosis. However, it is important to note that higher levels of SIRT1 
expression may actually contribute to cardiomyopathy by promoting 
mitochondrial dysfunction [44]. Therefore, while activated SIRT1 holds 
promise as a potential therapy for cardiac fibrosis, careful consideration 
of dosage is necessary to achieve the desired therapeutic effects without 
causing adverse effects on mitochondrial function. 

SIRT3 plays a crucial role as the major mitochondrial SIRT in regu
lating 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial man
ganese superoxide dismutase [45]. Deficiency of SIRT3 leads to the 
downregulation of several mitochondrial proteins, including Mn-SOD 
and OGG1, resulting in elevated mitochondrial ROS levels and mito
chondrial DNA (mtDNA) damage. A study has confirmed that SIRT3 is 
the predominant protein deacetylase in mitochondria, and its loss results 
in a nearly tenfold increase in acetylation modifications of mitochon
drial proteins [46]. Loss of SIRT3 leads to hyperacetylation of the key 
mitochondrial antioxidant SOD2, which induces OS and promotes 
apoptosis in cardiomyocytes, leading to cardiac fibrosis. Neuraminidase 
1 (NEU1) can exploit this mechanism to control OS, thereby reducing 
cardiac fibrosis and is therefore a potential therapeutic target [47]. As 
SIRT3 expression increased, SOD2 deacetylation decreased and SOD2 
activity increased, limiting ROS accumulation. In addition, SIRT3 also 
regulates the expression of NAPDH oxidase through mitochondrial ROS 
[48]. 

Transient stimulation of nonischemic hypertrophy has been shown to 
enhance the cardiac resilience to subsequent ischemic stress, and this 
process is partly mediated by SIRT3. SIRT3 plays a crucial role by 
directly binding to and deacetylating Isocitrate dehydrogenase 2 (IDH2), 
resulting in increased IDH2 activity. The activation of IDH2 could 
inhibit mitochondrial ROS production and mitigates mitochondria- 
dependent apoptosis through the production of mitochondrial nicotin
amide adenine dinucleotide phosphate (NADPH) [49]. 

However, emerging evidence suggests that SIRT4 plays a contrasting 
role. In cardiomyocytes, SIRT4 inhibits SIRT3-mediated activation of 
Mn-SOD, resulting in increased ROS levels that contribute to the 
development of pathological cardiac hypertrophy. This mechanism may 
involve a competitive interaction between SIRT4 and Mn-SOD for 
binding to SIRT3 [50]. Therefore, targeting the inhibition of 
SIRT4-mediated OS presents a potential therapeutic strategy for miti
gating pathological hypertrophy and managing heart failure. Further 
studies are warranted to elucidate the precise molecular mechanisms 
underlying the role of SIRT4 in cardiac pathophysiology. 

Additionally, lisinopril, a novel non-sulfhydryl angiotensin-con
verting enzyme (ACE) inhibitor, has been shown to enhance the anti
oxidant defense system in animals and humans, offering protection 

against oxidative damage and fibrosis in human cardiomyocytes 
through epigenetic mechanisms [51]. Following treatment with lisino
pril, activation of SIRT1 and SIRT6 signaling pathways has been 
observed, imparting a protective effect against OS and fibrosis in human 
AC16 cardiomyocytes. Notably, the expression of antioxidative stress 
proteins such as catalase, SOD2, and TRX was significantly increased in 
cardiomyocytes, while key proteins implicated in cardiac fibrosis, 
namely osteopontin and Galectin-3, were significantly decreased. 

SIRTs have emerged as crucial regulators of OS and have garnered 
significant attention in the study of metabolic disorders due to their 
involvement in epigenetic modifications within mitochondria. Further 
investigations into the intricate interplay between SIRTs, OS, and 
epigenetic regulation offer considerable potential for advancing our 
knowledge of cardiac fibrosis diseases and uncovering novel therapeutic 
strategies. 

5.2. Histone methylation regulations of oxidative stress in cardiac fibrosis 

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), 
a lncRNA, has emerged as a crucial regulator of apoptosis in diabetic 
cardiomyopathy through its interaction with enhancer of EZH2. 
MALAT1 facilitates the recruitment of EZH2 to the myocardial nucleus, 
thereby promoting EZH2 activity. Consequently, EZH2 suppresses the 
expression of ubiquitin-specific peptidase 22 (USP22) by modifying 
H3K27me3, leading to enhanced OS, inflammation, and apoptosis in rat 
cardiomyocytes [52]. Moreover, MALAT1 has been observed to interact 
with EZH2 in cardiac microvascular endothelial cells. Genetic and 
biochemical studies have demonstrated the regulatory role of histone 
methylation in DNA methylation, while histone acetylation influences 
histone methylation dynamics. These intricate epigenetic modifications 
collectively contribute to the complex regulatory landscape underlying 
cardiomyopathy [53]. 

6. Epigenetic regulations of oxidative stress in cardiac fibrosis: 
focus on DNA methylation 

DNA methylation, as depicted in Fig. 4, is a crucial epigenetic 
mechanism involved in the modulation of cardiac fibrosis under con
ditions of OS. It is the earliest and extensively studied epigenetic 
modification, exerting regulatory control over various cellular processes 
such as transcriptional regulation, transposon silencing, maintenance of 
genomic imprinting, and X chromosome inactivation. Methylation- 
induced gene silencing entails a complex interplay of DNA-protein and 
protein-protein interactions, along with a cascade of enzymatic activ
ities responsible for dynamic changes in DNA methylation patterns. Key 
players in this process include DNMTs and TET enzymes, which 
collectively orchestrate the delicate balance of DNA methylation dy
namics. Understanding the intricate mechanisms underlying DNA 
methylation-mediated gene regulation holds immense potential in 
unraveling the pathogenesis of cardiac fibrosis and may pave the way for 
the development of targeted interventions. 

Within cardiomyocytes, DNMT2 has been observed to induce DNA 
methylation within the promoter region of the glutathione peroxidase 1 
(GPX1) gene, consequently diminishing the expression of GPX1. As a 
representative selenoprotein, GPX1 plays a key role in reducing organic 
hydrogen peroxide to water or alcohols utilizing GSH as a reducing 
agent. Insufficient GPX1 levels lead to compromised antioxidant de
fense, cellular dysfunction, and apoptosis [54], thereby facilitating the 
progression of fibrosis. Consequently, selenium supplementation 
emerges as a potential therapeutic strategy to ameliorate the levels of 
ROS and enhance cardiac function. By replenishing selenium levels, it is 
hypothesized that ROS generation can be reduced, culminating in an 
improvement in overall cardiac health. Further investigations in this 
domain hold promise for the development of targeted therapeutic in
terventions aimed at mitigating OS-related pathologies in the heart. 

Salvianolic acid B (Sal B) has been demonstrated to exert beneficial 
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effects on diabetic cardiomyopathy (DCM) by promoting angiogenesis, 
as well as attenuating cardiac fibrosis and remodeling through the in
hibition of IGFBP3 [55]. The underlying molecular mechanism involves 
Sal B’s ability to enhance DNA methylation within the promoter region 
of IGFBP3 under hypoxic conditions. This modification leads to the 
translocation of IGFBP3 from the nucleus to the cytoplasm, subsequently 
resulting in its downregulation. As a consequence, cardiac angiogenesis 
is promoted, cardiac fibrosis is reduced, and overall heart function is 
improved [56]. Previous studies have indicated that IGFBP3 is impli
cated in OS regulation and apoptosis in various tissues [57,58], yet its 
involvement in cardiac fibrosis has remained unclear. Further in
vestigations are warranted to elucidate the precise role of IGFBP3 in the 
pathogenesis of cardiac fibrosis and to explore its potential as a thera
peutic target for this condition. 

7. Epigenetic regulations of oxidative stress in cardiac fibrosis: 
focus on non-coding RNAs 

Non-coding RNAs (ncRNAs) consist of a variety of RNA molecules 
not normally involved in protein coding. This group encompasses 
various types of ncRNAs, including microRNAs, siRNAs, lncRNAs, and 
circRNAs. Importantly, these ncRNAs play pivotal roles in mediating 
genetic changes. By exerting regulatory functions at the epigenetic 
levels, ncRNAs contribute to the intricate molecular mechanisms un
derlying the interplay between OS and the development of cardiac 
fibrosis, as depicted in Fig. 5. 

Fig. 4. Regulatory effect of DNA methylation on oxidative stress in cardiac fibrosis 
In cardiomyocytes and endothelial cells, DNA methylation mediates the expression of key proteins that regulate OS, thereby affecting cellular oxidative balance and 
consequently cardiac fibrosis. 

Fig. 5. Regulatory effect of non-coding RNA on oxidative stress in cardiac fibrosis 
In cardiomyocytes and endothelial cells, non-coding RNAs mediate the expression of key proteins that regulate OS, thereby affecting cellular oxidative balance and 
consequently cardiac fibrosis. 
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7.1. MiRNA regulations of oxidative stress in cardiac fibrosis 

miRNAs have emerged as promising targets and regulators of OS- 
related signaling pathways, exerting their effects by binding to the 3′- 
UTR of target mRNAs. Notably, various miRNAs have been implicated in 
the regulation of ROS production in the heart. Among these miRNAs are 
miR-21, miR-30, miR-34a, miR-144, miR-140–5p, miR-181, miR-378, 
miR-421, and miR-451. These miRNAs play crucial roles in modulating 
ROS levels by directly or indirectly targeting genes involved in ROS 
generation, detoxification, or antioxidant defense mechanisms. 

Moreover, a decrease in miR-101–3p levels in endothelial cells has 
been associated with an upregulation of Bim expression, an important 
initiator of the intrinsic apoptosis pathway. Bim interacts with B-cell 
lymphoma-2 (Bcl-2), leading to the release of Bcl-2-associated X (Bax) 
and subsequent promotion of ROS production. Endothelial cell apoptosis 
is then induced by NLRP3 inflammasome-mediated activation of 
caspase-1/7 [59]. On the contrary, another study demonstrated that 
miR-101 can indirectly enhance Bim expression through 
EZH2-dependent epigenetic regulation, thereby sensitizing tumor cells 
to apoptosis induced by chemotherapeutic drugs [60]. These observa
tions highlight the role of miR-101 in modulating apoptotic pathways 
and provide insights into potential therapeutic strategies targeting 
miR-101 and its downstream effectors to regulate apoptosis and 
ROS-related processes in various pathological contexts. 

miR-134–5p has been found to be highly expressed in a mouse model 
of myocardial infarction. Recent studies have elucidated that miR- 
134–5p plays a role in regulating ROS levels through its interaction with 
lysine acetyltransferase 7 (KAT7), a HAT responsible for acetylating 
histone H3 at lysine 14 (H3K14Ac) in Mn-SOD and catalase genes. 
Mechanistically, miR-134–5p suppresses the expression of KAT7, lead
ing to reduced levels of Mn-SOD and catalase, which in turn promotes 
ROS accumulation. This dysregulation of ROS homeostasis ultimately 
contributes to the activation of cardiac fibroblasts, processes associated 
with cardiac fibrosis and adverse remodeling [61]. 

Inhibition of miR-194–5p has been demonstrated to mitigate doxo
rubicin (Dox)-induced cardiomyocyte apoptosis. Specifically, miR- 
194–5p directly targets and suppresses the expression of p21-activated 
kinase 2 (PAK2). PAK2 has been previously reported to exert car
dioprotective effects by enhancing ER function through the activation of 
the IRE1/XBP1 signaling pathway. Activation of XBP1, in turn, leads to 
upregulation of ER chaperones, alleviation of ER stress, and promotion 
of cell survival. Upon treatment with Dox, there is a dynamic alteration 
in the expression of XBP1s, with an initial increase followed by a sub
sequent decrease. Notably, inhibition of miR-194–5p results in the 
overexpression of XBP1, thereby restoring its levels even after Dox 
treatment. Consequently, this leads to the inhibition of dox-induced 
caspase 3/7 activity and an increased expression of cleaved caspase 
12, ultimately culminating in the protection of cardiomyocytes from 
apoptotic cell death [62]. 

miR-340–5p has been identified as a suppressor of myeloid cell 
leukemia 1 (Mcl-1) expression. Notably, Mcl-1 possesses a unique ability 
to impede ROS formation by inhibiting the upregulation of pro-oxidants 
through NOX4. Consequently, overexpression of miR-340–5p exacer
bates mitochondrial dysfunction and increases OS, ultimately leading to 
enhanced apoptosis. Furthermore, miR-340–5p also modulates the 
expression levels of key apoptotic regulators, including Bim, Bax, and 
cleaved caspase 3, while reducing the expression of the anti-apoptotic 
protein Bcl-2. These molecular changes collectively contribute to the 
protection of cardiomyocytes from apoptosis [63]. 

MiR-4732–3p has emerged as a potential mediator of car
dioprotective mechanisms in rat cardiac cells and cardiac fibroblasts, 
primarily through its ability to enhance antioxidant responses. Notably, 
miR-4732–3p has been shown to upregulate the mRNA levels of two 
critical transcription factors, Nfe2l2 and NRF1. These transcription 
factors are known to regulate genes encoding proteins involved in the 
cellular response to free radical damage [64]. 

7.2. LncRNA regulations of oxidative stress in cardiac fibrosis 

In the context of DCM, recent investigations have revealed elevated 
expression of the long non-coding RNA lncDACH1 in DCM hearts and 
cardiomyocytes exposed to high glucose levels. Notably, knockdown of 
lncDACH1 has demonstrated favorable effects, including the reduction 
of mitochondrial OS, apoptosis, cardiac fibrosis, and hypertrophy, ulti
mately improving heart function in DCM mice. 

Further studies have shed light on the underlying mechanisms by 
which lncDACH1 exerts its effects. It has been discovered that lncDACH1 
directly interacts with SIRT3. This interaction facilitates the binding of 
SIRT3 to E3 ligases or other components of the ubiquitin-proteasome 
system, thereby promoting the ubiquitination process. This ubiquitina
tion leads to the degradation of SIRT3, resulting in decreased activity of 
Mn-SOD, a crucial antioxidant enzyme. As a consequence, the imbal
anced redox state leads to increased levels of ROS, ultimately causing 
cellular injury and potentially triggering apoptosis in mouse car
diomyocytes [65]. 

7.3. CircRNA regulations of oxidative stress in cardiac fibrosis 

CircRNAs localized within mitochondria have emerged as critical 
regulators of mitochondrial ROS production. Among these, circSamd4 is 
under the transcriptional control of the NRF2 transcription factor, which 
binds to the promoter region of the circSamd4 host gene. Functionally, 
circSamd4 mitigates OS by facilitating the translocation of valosin- 
containing proteins (VCPs) to the mitochondria, thereby maintaining 
mitochondrial dynamics. This process leads to a reduction in the 
expression of voltage-dependent anion channel 1 (VDAC1) and blocks 
the opening of the mitochondrial permeability transition pore (mPTP). 
Consequently, mitochondrial OS and subsequent oxidative DNA damage 
are alleviated, inducing cardiomyocyte (CM) proliferation and pre
venting CM cell apoptosis when CircSamd4 was overexpressed, and the 
area of fibrosis was also smaller. Conversely, silencing circSamd4 has 
the opposite effect, exacerbating OS, impairing mitochondrial function, 
and promoting adverse cardiac remodeling [66]. 

Moreover, circular RNA itchy E3 ubiquitin protein ligase (CircITCH), 
a tumor suppressor with broad-spectrum functionality, has emerged as a 
key player in doxorubicin-induced cardiotoxicity. The protein ITCH is an 
important enzyme involved in the transfer of ubiquitin from E2 
ubiquitin-conjugating enzymes to specific protein substrates, thereby 
marking them for lysosomal degradation. CircITCH upregulates SIRT6 
by sponge filtering mmir-330–5p in the mouse heart [67]. SIRT6, in 
turn, mitigates OS by activating NRF2 [68] and Mn-SOD2, both of which 
are crucial endogenous defense molecules against oxidative damage. 
Additionally, SIRT6 enhances DNA damage repair by activating PARP1, 
a pivotal enzyme involved in DNA repair mechanisms [69]. Collectively, 
these molecular events culminate in improved cardiomyocyte survival 
and enhanced cellular resilience in the face of doxorubicin-induced 
cardiotoxicity. 

8. Conclusions and future perspective 

Cardiac fibrosis is a prevalent pathological complication of various 
heart diseases, including cardiac hypertrophy, diabetic cardiomyopathy, 
coronary heart disease (CHD), hypertensive heart disease, and heart 
failure. Different types of myocardial fibrosis, such as interstitial, peri
arteriolar, or “replacement” fibrosis, are associated with distinct un
derlying pathophysiological processes, which poses challenges in 
developing therapeutics for myocardial fibrosis [31]. Cardiac hyper
trophy is characterized by the prominent presence of cardiac interstitial 
fibrosis. On the other hand, diabetic cardiomyopathy is characterized by 
diffuse myocardial fibrosis (interstitial fibrosis at the microscopic level), 
along with the occurrence of endothelial-to-mesenchymal transition 
(EndMT) and cardiac hypertrophy [70]. In the context of CHD, studies 
often investigate models of myocardial infarction and myocardial 
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ischemia-reperfusion, where OS-induced cardiomyocyte apoptosis plays 
a significant role in disease progression. Replacement or scar fibrosis, 
which involves the formation of fibrotic tissue to replace damaged or 
necrotic cardiomyocytes [71], is a common occurrence in CHD models. 
In hypertension, fibrosis is initiated in the perivascular space [72], and it 
has been demonstrated that hypertensive heart disease is characterized 
by predominant perivascular fibrosis in both human and murine models 
[73]. 

Cardiac fibrosis will inflict significant damage, and currently lacks 
effective preventive or reversal treatments. ROS play a crucial role in the 
pathogenesis of cardiac fibrosis, orchestrating several pathological 
changes such as cardiomyocyte apoptosis, heightened activation of 
cardiac fibroblasts, and increased senescence and damage in endothelial 
cells, collectively contributing to fibrosis progression. Recent studies 
have increasingly implicated OS and its interplay with epigenetic 
modifications in the context of cardiac fibrosis. This comprehensive 
review summarizes the latest research in this area and proposes that OS 
may influence cardiac fibrosis through its modulation of epigenetic 
mechanisms, while epigenetic modifications may, in turn, ameliorate 
cardiac fibrosis by attenuating OS. Nevertheless, the precise underlying 
mechanisms are not yet fully elucidated, and given the overlap of 
various epigenetic pathways, further investigations are warranted to 
determine the impact of epigenetic-mediated OS on the fibrotic process. 

Furthermore, it is important to acknowledge the signaling function 
of ROS, as they serve as essential mediators of cellular signaling and 
regulation. Thus, it is crucial to recognize the multifaceted role of ROS 
when designing therapeutic interventions. In conclusion, targeting 
epigenetic OS for the treatment of fibrosis shows promise as a thera
peutic direction. However, there is a need to explore other epigenetic 
mechanisms involved in the regulation of OS, as well as additional 
bioactive substances governed by epigenetic modifications. Further 
experimental and clinical studies are essential to ascertain the potential 
of epigenetic-based therapeutic strategies in addressing OS during the 
progression of cardiac fibrosis. 
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