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ABSTRACT: The past decade has seen a number of impressive
developments in predictive chemistry and reaction informatics
driven by machine learning applications to computer-aided
synthesis planning. While many of these developments have
been made even with relatively small, bespoke data sets, in order to
advance the role of AI in the field at scale, there must be significant
improvements in the reporting of reaction data. Currently, the
majority of publicly available data is reported in an unstructured
format and heavily imbalanced toward high-yielding reactions,
which influences the types of models that can be successfully
trained. In this Perspective, we analyze several data curation and
sharing initiatives that have seen success in chemistry and
molecular biology. We discuss several factors that have contributed to their success and how we can take lessons from these
case studies and apply them to reaction data. Finally, we spotlight the Open Reaction Database and summarize key actions the
community can take toward making reaction data more findable, accessible, interoperable, and reusable (FAIR), including the use of
mandates from funding agencies and publishers.

■ INTRODUCTION
Interest in big data continues to grow as artificial intelligence
(AI) and automation change the way we conduct scientific
research. While it may a be trite point to make, there are many
problems where the lack of high-quality, publicly available data
impedes research progress. Predictive chemistry and reaction
informatics is one such field where there have been numerous
impressive developments over the past few years despite only a
handful of data sets being accessible to researchers, even
commercially. Many of these developments are driven by
applications of machine learning to, e.g., forward reaction
prediction,1−5 retrosynthesis planning,6−13 and reaction
condition prediction14−17 where predictions can be made
even with relatively small data sets. We and others18−21 have
asserted that to advance the role of AI in organic synthesis,
there must be significant improvements in the reporting of
laboratory synthesis procedures, including reaction conditions.
Our collective understanding of synthesis and synthetic

outcomes is based on the experimental evidence we find in the
journal and patent literature. First-principles models and post
hoc analysis are used to rationalize experimental observations
but hold limited predictive power beyond simple systems.
High-fidelity data includes the products that were observed,
their yields, selectivities, impurities, and other summary
statistics under different experimental conditions. Rather than
being hidden in lengthy Supporting Information PDFs, these
data could be captured as digital files and code that can be

published, versioned, and transferred between data platforms.
This would enhance not only reproducibility in the field but
also downstream machine learning applications of these data.
As a long-term investment into the future of this field, we and
others have recently launched the Open Reaction Database
(ORD).22 The ORD is an initiative to support machine
learning and related efforts in synthetic organic chemistry
through standardized data formats and an open-access data
repository. The scope of scientific challenges that we believe
openly shared reaction data can help address is broad, from the
familiar task of retrosynthesis to the holy grail of new reaction
discovery.
There are a handful of curated data sets that have been used

for training predictive chemistry models: the fully open
“USPTO dataset”,23 Pistachio,24 Reaxys,25 and CAS26 offer
broad data sets suitable for building “global” models, while
focused data sets constrained to individual reaction types from
high-throughput experimentation have helped build “local”
models.27−29 These resources have contributed to the recent
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progress in the field but do not fully address the evolving needs
of the community. First, there is an under-emphasis on
quantitative aspects of reaction procedures that are essential
for reproducibility and consideration of scale-up; details about
concentrations, orders of addition, etc. are only available in the
original manuscript or patent in an unstructured format.
Second, there is a significant publication bias toward high-yield
reaction examples, despite low-yield or low-conversion
reactions being informative of substrate scope and compati-
bility. Third, an increasing amount of data is “born digital”, e.g.,
as a result of automated screening, which should not require
conversion to an unstructured document to be disseminated.
Fourth, much of the reaction data that is published is not
openly accessible in either an unstructured or structured
format.
We believe this is the right time for community-initiated

action toward better data practices in chemistry. Our goals are
more ambitious than addressing the logistics of data sharing:
they include changing how information is treated and shared
across the community. There are also shifting mandates from
funding agencies (e.g., Plan S30) and recent guidance that
federally funded research in the United States must make its
products broadly available to the public by 2025.31 But,
requiring data management plans and encouraging data sharing
have not proved sufficient.32 In this Perspective, we discuss
potential lessons to be learned from successful examples of

data curation or sharing initiatives in the chemical sciences,
how data sharing in organic chemistry may evolve with efforts
like the ORD, and the perceived barriers to open science. We
echo the call to action of Baldi21 and others,19,20 who advocate
for the creation and adoption of community resources (like the
ORD), and consider how we can jointly make the effort a
success.

■ WHAT HAS WORKED IN THE PAST
We first consider what paradigms for data sharing have worked
before and illustrate their timeline in Figure 1. How did
PubChem come to be one of the world’s largest databases of
open-access chemical information? How did the Protein Data
Bank (PDB) and Cambridge Crystal Structure Database
(CSD) come to be required for publication? What was
ChEMBL’s path to becoming an invaluable source of assay
data? How did nuclear magnetic resonance (NMR) line tables
become standards for reporting analytical data? For each of
these data sharing initiatives, we look into how the number of
unique contributors has grown over time and what the process
looks like for adding to the database. We present these case
studies below.
A common observation is that adoption and growth

generally takes a significant amount of time, and the initial
timing is critical. Each of the CSD, PDB, and PubChem started
at a time when relatively few structures or assays had been

Figure 1. (top) Timeline of key dates surrounding the databases discussed in this work. (bottom) The growth of each database over time,
excluding the ORD. Count is the exact number of entries according to each database (sources: CSD,33 PDB,34 PubChem,35−43 and ChEMBL44).
Traces do not necessarily start close to 0 due to limited public information for early dates of some efforts.

Figure 2. Timeline illustrating the growth in contributors over time for each database. Sources for the data are given in Figure 1. PubChem data on
the individual number of contributors over time was not available; thus “sources” (i.e., organizations) are plotted instead. As ChEMBL does not
follow a contributor model but an expert curation model, its growth in data sources is plotted instead. Finally, note that, while the CSD follows a
contributor model, the submission process also includes manual review by domain experts at the CCDC. Traces do not necessarily start close to 0
due to limited public information for early dates of some efforts.
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collected such that standards could be set early on.
Furthermore, the enforcement of these standards by journal
publishers and the scientific community has also driven
adoption of these resources, particularly in the case of the
CSD and the PDB.
We illustrate the growth in contributors or sources to each

database in Figure 2. The databases can be grouped into three
distinct models: first, there is the expert curation model
(ChEMBL), where a small group of experts are gathering and
curating the data; second, there is the contributor model with
automatic validation (PubChem, PDB), where individual
organizations or research groups are submitting and validating
their own data; this is in contrast to a combined expert
+automated review model, where contributions are subject to
manual review in addition to automated validation (CSD).
While the PDB and PubChem take similar approaches, any
structural biologist with a new structure is allowed to upload
and publish their data to the PDB, whereas only members of
select organizations are allowed to publish data to PubChem.
The number of structures deposited into the CSD has
continued to keep pace with the growth of the other databases
(Figure 1), suggesting that the combined expert+automated
review strategy might be a feasible approach for validation of
new reaction data moving forward.
Throughout the development of these open-source data-

bases, we notice a common philosophy that the collective use
of data can be used to catalyze new knowledge and generate
insights, and the principle that information developed with
public funds must be made freely and publicly available.
The Cambridge Structural Database (CSD). We begin

by looking at the growth of the Cambridge Structural Database
(CSD), a repository for small molecule and crystalline
structures established in 1965.45 It began as a bootstrapped
effort when the crystallography group led by Dr. Olga Kennard
at the University of Cambridge collected published crystal
structure data for all small molecules studied by X-ray and
neutron diffraction. Between 1960 and 1965, the database
contained hand- and computer-drawn chemical diagrams,
bibliographic data, bond lengths, and bond angles. The team
used professional editors to meticulously assemble and print
these first two volumes but shifted to digital publication of the
data with the development of the chemical connectivity file
(CONN FILE). Besides easier encoding of atom, bond, and
charge information, the CONN FILE also enabled more
efficient substructure searching.46

During the 1980s, interest in the CSD boomed thanks in
large part to the pharmaceutical and agrochemical industries,
where students who had been using it on academic licenses
went on to work at companies and requested the same
resources be available in-house. Since its inception, >1 M
crystal structures have been deposited in the CSD, including
organic, metal−organic, and polymeric structures; the database
is continuously updated with >50K structures each year and
used in >70 countries. The CSD is a UK charity managed by
the Cambridge Crystallographic Data Centre (CCDC), an
independent organization that keeps close links to the
University of Cambridge.45 While it remains open access for
a small number of structures, the significant operating costs are
paid for by commercial license fees charged for access to the
full data and accompanying tools. The CSD does not depend
on any core grant funding.
Currently, structures in the CSD are available for download

in the CIF file format. Structures can be contributed to the

CSD by individual researchers, and each entry undergoes an
elaborate set of automated checks and manual curation by an
expert in-house editor, allowing authors the opportunity to sort
out any errors (of which there are many) before publication.
Dr. Kennard believed such checks give people confidence in
the tool.46 The Web site, which provides tools for advanced
searching, 3D data mining, analysis, and visualization, also
undergoes regular updates to keep up with the changing needs
of users. Newly deposited structures are available to view with
early access. These editorial and data curation processes, led by
a core team of 7 scientists,47 are thought to be essential to the
sustained utility of the database.48 That is not to say it is
immune to the deposition of fraudulent data; in early 2022,
Retraction Watch reported nearly 1000 entries as “concerning”
after linking them to a paper mill,49 to which the CCDC
responded by conducting a thorough investigation of the
claims and eventually removing the fraudulent structures from
the database.50

The process and tools used to create the CSD have been
constantly evolving to keep up with new developments and
user needs. While in the early days, the team manually
transferred structure information onto punch cards and used
knitting needles to pick up the similarities between structures,
today the CSD uses automated workflows and software,
allowing individual editors to focus their expertise where it has
the most impact. Currently, an editor is able to curate 100 new
structures a day, and it is estimated that over 400 person years
have been invested in the curation of the CSD.51

As part of their commitment to promoting findable,
accessible, interoperable, and reusable (FAIR) data principles,
many journals in the fields of chemistry, materials science, and
crystallography require crystal structure data deposition in the
CSD, such as the ACS journals.52 These policies undoubtedly
contribute to the continued growth and success of the CSD.
While use of the CSD in the pharmaceutical and agrochemical
industries is well-established, interest in the CSD continues to
grow. It is quickly becoming a fundamental resource for
research into new materials design, such as batteries and gas
storage frameworks, and in recent years, the CCDC has noted
a consistent increase in submissions from research taking place
in China,53 illustrating the growing value and utility of the
CSD for researchers worldwide.
Dr. Kennard attributed the immense success of the CSD to a

few key decisions made early on in its development.46 She
believed that it was critical that the CSD started at a time when
there were relatively few published structures (∼8K by 1969),
such that manual curation of these structures and their
inclusion in the database was feasible. Early on, the novel
ability to search the database was also introduced, improving
its utility; this was initially done by dividing data on punch
cards into ∼80 equal classes. Another unorthodox idea at the
time was the use of internal coordinates and symmetry for
storing data, as opposed to lists of atomic coordinates. This
final point enabled CSD data to be used by noncrystallogra-
phers, catalyzing its widespread use. A recent presentation
from Dr. Suzanna Ward at the CCDC mentions how the
introduction of sketch searches in 199154 was “revolu-
tionary.”55 Other CSD members have highlighted how faults
in structures have been historically corrected by “vigilantes”
who are each working in a particular area of interest (e.g.,
Richard Marsh and space group symmetry).56,57 Finally, Bruno
et al.58 emphasize the importance of carefully preparing a
detailed CIF file via automatic (CheckCIF, integrated into the
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CCDC deposition procedure) and expert curation of crystal
structures: “No one enjoys this chore, but it produces tangible
benefits for the crystallographic community and will become
increasingly important as the productivity of crystallographers
continues to rise.”
The Protein Data Bank (PDB). The Protein Data Bank

(PDB) was the first open access digital data resource in biology
and medicine, established at Brookhaven National Laboratory
(BNL) and the Cambridge Crystallographic Data Center
during the 1971 Cold Spring Harbor Symposium on
Quantitative Biology.59 It started with the few protein
structures (ribonuclease, lysozyme, papain, lactate dehydrogen-
ase, myoglobin, hemoglobin, carboxypeptidase, α-chymotryp-
sin, elastase, subtilisin, and trypsin) known at the time.60 At
that particular year’s symposium, focused on the structure and
function of proteins at the three-dimensional (3D) level, a
meeting was organized by Max Perutz to discuss the easy
availability and preservation of protein structure data with the
handful of researchers who had coordinates to a protein
structure.61 The goal of the meeting was to establish a means
for researchers to share coordinates beyond their immediate
collaborators and resulted in what is now known as the
PDB.60−62

The PDB initially suffered from a lack of users who could
provide valuable feedback on ease of use and desired features;
however, this improved after the PDB moved from the
Chemistry Department to the Biology Department at BNL.62

Nowadays, one of the biggest challenges in maintaining the
PDB involves appropriately archiving not only the final
inferred coordinates for a structure but also the raw data
derived from an increasing variety of methods. The types of
data deposited have also been steadily increasing in complexity.
While there continues to be exponential growth in the number
of deposited structures, the number of entries obtained from
X-ray and NMR methods has begun to plateau; conversely, the
number of structures obtained from electron microscopy (EM)
methods has continued to increase every year.63 Presently over
200,000 structures in the PDB are available for download in
the mmCIF (macromolecular CIF) file format, which replaced
the legacy PDB format in 1997.
Part of the success of the PDB is that it has become required

for publication in many prestigious scientific journals. The first
example of such a policy came in the early 1970s, when the
Journal of Biological Chemistry set a policy that, if a paper
depended on a new set of coordinates, they had to be
deposited into the PDB so as to encourage data accessibility
and sharing (not to mention that it was effectively impossible
to typeset the coordinates for large protein structures which
further improved the appeal of a central data repository).61 In
1989, the International Union of Crystallography (IUCr)
published their policy on and guidelines for data deposition,
which endorsed the deposition of atomic coordinates and
structure factor information in the PDB for scientific
publications reporting crystallographic determinations of
macromolecular structure.64 In 1998, Nature, Science, and
PNAS instituted a policy that any paper containing new
structural data received on or after October 1, 1998 would not
be accepted without an accession number from the PDB,
accompanied by an assurance that unrestricted or “layer-1”
release would occur at or before the time of publication.59,65

Between 2008 and 2010, deposition of other experimental data
including NMR chemical shifts also became mandatory; this
was also a time in which NMR data saw improvements in

standardization due to the first publication of NMR impurity
tables.59

PubChem. PubChem is a public repository for chemical
and biological data, launched in 2004 by the National
Institutes of Health (NIH) as part of the Molecular Libraries
Roadmap Initiative.42,66 It is maintained by the National
Center for Biotechnology Information (NCBI) and organizes
its data into three main databases: Substances, Compounds,
and BioAssays. The primary intent was to make screening data
for bioactive compounds easily and freely available to the
public through the PubChem BioAssay database so as to
benefit basic biological and preclinical research.67 PubChem is
a very successful model for public repositories, as the database
has grown rapidly with contributions from over 800 data
sources around the world as of July 12, 2022.68 Data sources
include organizations such as the US Food and Drug
Administration (FDA) as well as other curation efforts (e.g.,
UniProt69) and journals.
PubChem provides web servers for accessing, retrieving, and

analyzing biological data in its databases. It allows users to
easily export assay results, either through the web interface or
in bulk. Chemical structures are available in SDF, SMILES, and
InChI formats, among others. In addition to the data tables,
PubChem hosts tools that can be used to draw insights from
data, including structure−activity analyses, and the ability to
visualize data as a scatterplot or histogram. Data retrieval and
analysis utilities in PubChem are continuously updated and
expanded to improve data FAIR-ness, with the last major
updates to the web interface published in 2019 so as to
efficiently handle the needs of a very diverse user base.
Currently, PubChem contains over 270 million assay outcomes
for nearly 300 million substances, with millions of users per
month.42 Assay metadata and various annotations are
accessible via the Entrez search engine to help medical
researchers connect information.66

A large part of PubChem’s success is due to the use of
existing ontological frameworks wherever possible to seman-
tically describe available information,70,71 including the
integration of standard data sources into the database and
powerful cross-referencing functionality. Existing frameworks
included the Chemical Entities of Biological Interest (ChEBI)
ontology,72 the CHEMical INFormation ontology (CHEM-
INF),73 and the Protein Ontology (PRO).74 Adoption of these
and other core biomedical ontologies, followed by compliance
with the shared set of evolving principles established by the
Open Biomedical Ontologies (OBO) foundry, has helped
ensure that the mapping of biochemical information available
in PubChem will be compatible across multiple Semantic Web
resources. To facilitate data retrieval and integration,
PubChem also includes mappings between the NCBI protein
GenInfo Identifier (“GI number”), GenBank accessions, and
UniProt IDs.40 PubChem not only is well-integrated with other
databases operated by the National Library of Medicine but
also combines new data generated by the NIH with data
available from other public sources, making it more powerful
than a standalone tool. Early on, journals such as Nature
Chemical Biology began automatically depositing data for
compounds mentioned in their articles into PubChem and
linking to the associated entries so that readers could consult
the database for more information about the chemical
structures and properties in question.75 Automated indexing
of compounds can be facilitated through policies such as the
Journal of Medicinal Chemistry’s requirement that authors
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submit a CSV listing the SMILES strings of all small molecules
mentioned in a paper.
PubChem’s freely available services initially faced opposition

by the American Chemical Society (ACS) due to purported
competition with its Chemical Abstracts Service (CAS), which
charged users a fee for its database.75 However, as it was
eventually shown that PubChem and CAS overlapped
relatively little in terms of content, scope, and resources,
PubChem was allowed by the US Senate to continue as it was
driven by the “primary goal of maximizing progress in science
while avoiding unnecessary duplication and competition with
private sector databases.”75 Data in PubChem can be deposited
to the database by individual researchers at these organizations
using the PubChem Upload tool. This tool enables researchers
to submit new data to the PubChem Substance or PubChem
BioAssay databases or to update existing data (e.g., chemical
structures, experimental biological activity results, annotations,
siRNA data, etc.). Users are then allowed to preview and
review their data before publication.
ChEMBL. ChEMBL is a collection of drug discovery

databases maintained by the EMBL European Bioinformatics
Institute (EMBL-EBI).76 The database spun out of the transfer
of a set of predictive drug discovery databases from BioFocus
DPI, an early stage drug discovery company, to EMBL-EBI in
July 2008, funded by a Wellcome Trust strategic award.77 The
goal of EMBL-EBI was to make these databases, which
included StARlite, CandiStore, and DrugStore, publicly
available online to drug discovery researchers worldwide.
StARlite was a large-scale structure−activity relationship
(SAR) database of known compounds and their pharmaco-
logical effects extracted from primary literature; it performed
extensive manual curation and automated indexing in-house
and outsourced the data entry. CandiStore was a database of
compounds in clinical-stage development and included data
such as compound structure, synonyms, target, and highest
development stage reached for use in drug repurposing.
DrugStore was a database of known small molecule drugs and
proteins that included their indications and targets.77

The Wellcome Trust made the transfer of all this data from
the private into the academic sector possible by awarding £4.7
million to EMBL-EBI, which funded seven people for five
years, as well as future data updates, improved curation, and
integration with other genomics resources. The initial group
was tasked with putting the new database online, building a
brand, and doing outreach. These databases would allow
researchers to track the progress of a compound from lead
optimization, through clinical development, and then on to
commercial launch. Databases were available as full downloads,
web services, and via a user-friendly front end. It would
eventually come to be integrated with other EMBL-EBI
resources, such as UniProt, ChEBI, and IntAct.77 ChEMBL
currently contains data on >15K targets and >2M distinct
compounds, extracted from roughly 86K publications. The
initiative is currently funded through a variety of public grants,
including the European Commission and the NIH.78

A large part of ChEMBL’s success was having the first mover
advantage for SAR databases. They established the data model
and standards, which other users then had to follow. Most of
the focus was on the back-end and data delivery aspects of the
database, as opposed to the front-end user interfaces. It was
initially heavily advertised at ACS and Gordon conferences as
well as European equivalents. Notably, having a single, large
funding source was helpful as it provided the team with five

years to build up the database, release it, and build up a brand
and body of users. Perhaps most important to its success is that
ChEMBL added value; before ChEMBL, many companies had
chemical databases but not SAR databases, and they lacked
medicinal chemistry data in machine-readable form.
Rather than a contributor model, where information is

solicited from individual researchers and then reviewed, the
data in ChEMBL follows a data curation model and is
extracted and curated from the primary scientific literature by a
team of ∼20 researchers (Chemical Biology Services).
Individual submissions by external users were judged to be
too “painful” to process, perhaps due to variance in format and
quality.79 The data is updated regularly, with new releases
approximately every 3−4 months. In integrating new data, the
team attempts to normalize the bioactivities into a uniform set
of end-points and units where possible and to assign
confidence levels to the links between a molecular target and
a published assay. Currently, data on the clinical progress of
compounds is being integrated into ChEMBL.80

Nuclear Magnetic Resonance (NMR) Line Tables.
NMR data is an interesting case where a standardized data
format has been defined without an accompanying centralized
repository. NMR spectroscopy is widely used to study the
structure of molecules in solution and their dynamics in the
solid state. Though the publication of NMR data is now
routine and fairly well-standardized, this was not always the
case. The initial issues with NMR data reporting mirror many
of our current challenges with reaction data reporting: they
require both a standardized data format as well as guidelines
for the sharing of the data. Seeing how NMR spectra reporting
came to be standardized can provide insights into how we may
take similar steps with reaction data.
NMR was first accurately measured in molecular beams in

1938 and in bulk materials in 1946.81 While it was initially
believed that a given nucleus would show the same resonance
frequency at a fixed magnetic field, regardless of what molecule
the nucleus is a part of, experiments in the late 1940s showed
that this was not the case. In fact, it was shown that the
magnetic properties of the electrons surrounding a nucleus
shield it from the applied magnetic field, leading to a shift in
the anticipated resonance frequency; this came to be referred
to as the chemical shif t and is the basis for NMR spectroscopy
as an analytical method in chemistry. Eventually, improved
resolution in the spectra showed that many of the chemically
shifted resonances were often collections of distinct resonances
and that these split resonances were due to neighboring nuclei
spins (spin−spin coupling).81 By the mid 1950s, primitive
commercial NMR instruments became available, and the
technology steadily improved over the subsequent decades.
Great strides were made in the understanding of increasingly
complex NMR spectra during this time to the point that
computer programs were developed which could model
chemical shifts.
As the applications of NMR spectroscopy boomed, the

IUPAC Commission on Molecular Structure and Spectroscopy
published a set of recommendations for the publication of
proton NMR data in 1972, following this up with another set
of recommendations in 1976 for spectra from other nuclei.82,83

This set of recommendations included conventions for
graphical presentation of NMR data in chemistry journals
(e.g., “a dimensionless scale factor for chemical shifts should be
p.p.m.”, “the unit for measured data should be Hertz (cycles
per second)”) as well as guidelines for the meta-data which
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should be provided (e.g., name of solvent used, concentration
of solute, name and concentration of internal reference, etc.).
These guidelines were established to ensure that NMR spectra
were reported in a clear and unambiguous manner, whether in
text or image form. Important in the development of standards
was the publication of NMR impurity line tables, first
published in 1997.84 These line tables compiled 1H and 13C
chemical shifts for the most common trace impurities in
organic chemistry in a variety of solvents. This publication was
followed up in 2010 with an expanded table,85 which has
become an essential reference for identifying known impurities
in samples from NMR spectra.
NMR reporting guidelines are regularly updated to reflect

changes in NMR technology. For instance, the current ACS
guidelines, last updated in 2013, include instructions for
structuring both 2D and non-2D NMR data in the
experimental section (as structured strings) and in the
Supporting Information (images of the processed and labeled
spectra).86 The IUPAC also follows up with updated
recommendations every few years, recommending, for
instance, the use of tetramethylsilane (TMS) as a universal
reference in 2001, and guidelines for reporting chemical shifts
in solids in 2008.87,88 As a means of encouraging
reproducibility and integrity in chemical research,89 journals
such as The Journal of Organic Chemistry and Organic Letters
have recently (2020) begun encouraging authors to submit the
original data for NMR, which includes free induction decay
(FID) files, acquisition data, and processing parameters as
Supporting Information along with their submissions.90

There remains a broader need in the community for an open
repository and associated tools needed to make it not only
convenient but also rewarding for investigators to make their
raw NMR data FAIR.91 The few existing initiatives for the

open sharing of NMR data (e.g., nmrshiftdb292) have not seen
widespread adoption.

■ COMMON FACTORS FOR SUCCESS
In Table 1, we summarize the main strategies which have
contributed to the success of the aforementioned data sharing
and standardization initiatives. Some strategies are shared
across most initiatives, such as compliance with existing
ontological frameworks wherever possible, while others, such
as having a single large funding source backing the initiative,
seem less important. In particular, we note that, while
mandates for deposition as a requirement for publication are
not currently in place for all the frameworks discussed herein,
they can encourage faster adoption of structured data formats
and quicker compliance with FAIR data sharing principles. The
fact that these initiatives have grown so successfully is a
testament to both the needs of the scientific community and
the grit of the various contributors and reviewers involved.
Additionally, we note that there are two ingredients which

are each necessary but not sufficient for a successful data
initiative: (1) standardized data formats and (2) centralized
repositories. NMR line tables are a good example of a case
where only standardized data formats are present and the lack
of a centralized repository limits downstream applications; if a
comprehensive precurated NMR data set exists, machine
learning researchers would rapidly adopt it as a supervised
learning benchmark. On the other hand, an effort with a
centralized repository and no standard formats would be
similarly useless to anyone who was not willing to extract data
from diverse and incompatible file types. ChEMBL is an
interesting case: they have structured data formats as well as a
centralized repository, but they also have largely taken on the
(expensive) responsibility of data curation to convert

Table 1. Strategies Employed in the Various Case Studies in This Perspective That Have Contributed to Each Initiative’s
Successa

strategic decision CSD PDB PubChem ChEMBL NMR

Cooperation with Scientific Journals
Journals mandate deposition as requirement for publication ⊗ ⊗ − ⊗
Automatic deposition of data from journals ○ ⊗ −
Links to research articles reporting the data ○ ○ ○ ○

Adaptability
Regular updates of data sharing principles and recommendationsb ⊗ ⊗ ⊗ ⊗ ⊗
Integration and intercompatibility with other databasesc ○ ⊗ ⊗ −
Ability for individual users to submit data entries ○ ○ ⊗ − ○
Ability for individual users to update data entries ⊗ −
Use of and compliance with existing ontological frameworks where possible ○ ○ ⊗ ○ ⊗

Functionality
Powerful search functionalities, e.g., sketch search, similarity search ⊗ ⊗ ⊗ ⊗ −
Focus on back-end and data delivery functionality rather than front-end × −
Expert in-house curation and/or curation by “vigilantes”d ⊗ ⊗ −

Target Audience
Ease-of-use by nonexperts ⊗ ○ ○ ○ ○
Adoption by industrial users as part of their core R&D workflowse ⊗ ○ ○ ⊗ ○
Heavy initial advertisement in journals and conferences ×
Critical number of initial users who can provide feedback ×

Other Contributing Factors
Starting early, with relatively few data-points, or first-mover advantage × × ×
Single, large funding source ⊗ ×
Funded via multiple smaller grants (at least partially) ○ ○ ○ ○

aKey: (×) strategy employed at launch; (○) strategy employed now; (−) strategy not applicable. bAt least every few years. cEasy mapping of data
across multiple databases. dReportedly gives users confidence in the data. eParticularly pharmaceutical and agrochemical industries.
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unstructured data from journals into their preferred formats.
(Imagine how quickly ChEMBL could grow if biochemical
assay data came as structured Supporting Information!)

■ WHAT IS DIFFERENT ABOUT REACTION DATA?
Contrary to the structural and assay data of the aforemen-
tioned case studies, it may require more work to format
reaction data. Reaction data is fundamentally more heteroge-
neous. Reaction outcomes can be characterized in many
different ways (e.g., yields, conversions, rates), sometimes
providing information about product identities and quantities
with varying levels of precision (e.g., isolated yields,
quantitative NMR) or sometimes only in a relative sense
(e.g., liquid chromatography area percentage). Moreover,
reaction data is not just a single result, but also the full
process or protocol and details about the inputs are essential.
Instead of, for instance, the acquisition method of structures in
PDB being encoded as meta-data and not being of interest to
most users, the procedural details of chemical reactions are of
primary interest to anyone working with reaction data. Because
representing procedural details can be done in a number of
different ways, most people use free text; however, as has been
demonstrated in each of the case studies, defining a structured
format or ontology and then sticking to it, especially in the
early phases of establishing a new database, has been critical to
the widespread adoption of chemical databases. Ontologies,
which in their simplest form may just involve the organization
of objects into structured data classes, provide the language
and logic to semantically annotate and link data, making it
easier to search, review, and update entries. The lack of a
(widely adopted) standard for reaction data is setting back
data-sharing efforts.
An additional practical challenge is that, while some data is

“born digital”, the majority of reactions are not. Preparing
comprehensive Supporting Information (SI) documents al-
ready places a large burden on authors of manuscripts
submitted for peer review; if one were to introduce another
format or publication requirement, it could create at least a few
hours of additional work for authors. However, the stand-
ardized publication of reaction data should also contribute to
increased reproducibility and reuse of the data, in principle
saving precious research time.

An additional major difference between the present question
of reaction data sharing and these successful examples is
timing. Unlike the PDB at the time of its founding, there is an
abundance of reaction information that already exists, albeit in
an unstructured format. Unlike PubChem and ChEMBL at the
time of their founding, use cases for the information beyond
retrieval and recall (i.e., for use in data-driven models) are
abundant. This contributes to a sense of urgency: the time is
right to figure out better reaction data sharing practices, and as
a community, we do not have to wait decades for this change
and for its payoff.

■ WHOSE JOB IS DATA CURATION AND SHARING?
In our view, there is a general consensus in the field that
current methods for the communication and the sharing of
reaction data need to evolve so as to better accommodate
machine-readable formats and open collaborative frameworks
(FAIR principles).19,22 However, there remains a general
disagreement, or at least a lack of consensus, about whose
responsibility it is to curate reaction data. Incentives between
data producers and data consumers typically do not overlap;
although within industry, there may be a larger organizational
strategy that incorporates both.
Data consumers have a clear incentive to promote this kind

of database because they need better training data; many users
anecdotally report that their machine learning models perform
okay on public data and significantly better on less noisy
company data sets. Less anecdotally, many recent efforts in
reaction prediction are only able to evaluate their performance
with the USPTO data sets; the lack of challenging benchmarks
with significant room for improvement leads to an emphasis on
incremental improvements and masking of the potential
impact of new model architectures.
Data producers also have many incentives for data sharing,

as it makes it easier to access the data they have created and
can in principle amplify their impact. For synthetic chemists,
being able to search for and identify failed reactions can not
only save valuable time on a project but also motivate new
method development (e.g., extending a method to new
substrates). A chemist, hoping to try a new reaction, should
be able to refer to databases like SciFinder, Reaxys, and the
ORD to quickly and painlessly identify similar reactions which

Figure 3. Four methods for obtaining structured reaction information: (top left) mining historical unstructured data, (top right) manually
structuring and translating present/historical data via electronic lab notebooks, (bottom left) efforts to publish existing structured data centrally and
publicly, and (bottom right) moving forward, building best practices in from the beginning, whether running benchtop or high-throughput
experiments. Regardless of the approach, the ORD can provide a framework for depositing, validating, and distributing structured reaction data.
Icons downloaded from flaticon.com.
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have been previously run, identify what the respective
conditions and yields were regardless of whether the yields
were high enough to be considered a “success”, and use an
associated or integrated reaction prediction tool to estimate
the potential outcomes of their proposed scope or conditions
with better accuracy than is currently possible. This would
streamline the day-to-day work of laboratory scientists, who
can use tools such as these to inform the next steps in their
project and save valuable time otherwise spent searching the
literature or attempting to run an irreproducible reaction.
Broader reaction data sharing, together with standardized

formats like the ORD schema, will accelerate the realization of
this vision. We expect a shift in the “data streams” that define
reaction data today, literature reports and manual curation, to
include more examples of failed reactions and large-scale plate-
based data that include reaction conditions in addition to the
usual reactants/reagents/product descriptions. Additionally,
these new data streams can exist independently of traditional
publications, allowing for more frequent depositions and
facilitating the release of previously unpublished data (e.g., an
academic group could set up a monthly or quarterly data dump
that is not tied to any specific project or publication).
Commercial databases like SciFinder and Reaxys offer a

critical service in their curation of unstructured data from
publications, including information beyond reactions such as
molecular properties. In contrast, ORD and related efforts are
focused on the emerging data stream of digital-first, structured
reaction data that may or may not be part of a traditional
publication. Plugins and translators for various ELNs are being
developed to make these data streams easy to populate with
existing tools so that preparing a submission can be as simple
as clicking a button.

■ FINDING A SOLUTION
The nature of different data sources warrants the consideration
of different strategies for sharing the information therein
(Figure 3).
Looking Backward. Journal articles and patents published

over the past several decades provide a rich source of
unstructured information. Commercial database efforts have
used expert curation to produce excellent resources for
information retrieval. We should not replicate such efforts or
otherwise do things that could be perceived as redundant or
overlapping. Instead, we can focus on the richer procedural and
outcome information present in the original document that
tends not to be part of tabulation efforts. Can we extract
additional details from existing published papers?
Patent extraction tools such as those used by NextMove

Software have been quite successful at extracting reaction data
from patents, with Daniel Lowe first publishing the USPTO
CC-Zero Subset (3.7 million chemical reactions extracted from
US patents between 1976 and September 2016).23,93 Addi-
tionally, NextMove Software commercially provides an
updated database of automatically extracted chemical reactions
as part of their Pistachio database (13.3 million reactions
automatically extracted from US, European, and WIPO
patents). The methods NextMove uses to extract chemical
reaction data broadly work as follows: (1) identify the
experimental sections of patents, (2) identify chemical entities,
(3) convert chemical names to structures, (4) associate
chemical entities and quantities, (5) assign chemical roles to
each entity, and finally (6) perform atom−atom mapping.23

Besides methods for text extraction,94 there are also a variety of

methods available for automatic reaction extraction from
images, such as the ReactionDataExtractor tool from the
University of Cambridge.95 ReactionDataExtractor uses a
combination of rule-based and unsupervised machine learning
approaches to extract information from multistep reaction
schemes and includes capabilities such as segmentation of
reaction steps, identifying regions containing reaction con-
ditions and, of course, optical character and structure
recognition. Success stories of automated reaction information
extraction tend to be focused on the patent literature, rather
than more heterogeneous journal articles.
It is arguable that extracting old data from historical

documents is not so important given the rate at which we
can generate new data. As there is so much unstructured
reaction data already in existence, curation of the entire
domain of existing data is practically infeasible. It is somewhat
unlikely that we will ever be able to extract reaction
information from PDFs completely automatically given how
dispersed this information is and how heterogeneously it is
represented, and at least some amount of expert supervision
and curation will always be needed when it comes to historical
data. Additionally, the aforementioned bias toward positive
results inherently limits the value of traditional publications as
a source of training data for better predictive models.
Nonetheless, this is changing with the increasing adoption of
automated and plate-based chemistry.
Looking at the Present. If extracting structured data from

historical records is challenging, what might the short-term
look like instead? There is an opportunity to shift current
record-keeping practices from unstructured paper notebooks
to structured ELNs, at which point submission to repositories
like the ORD is straightforward. But while ELN “translators”
might facilitate exporting reaction data and converting between
formats, many researchers are not using ELNs to begin with,
despite the increasingly digital nature of research.96 Among the
many benefits of ELNs are easy long-term storage (and back-
ups), increased reproducibility of research, IP protection, and
better search functionalities. They also eliminate the need to
manually transcribe data from paper notebooks to digital form
for publication and make it easier to include/cross-reference
digital resources such as figures, instrument data, etc., relative
to paper notebooks. The use of ELNs increases interoperability
and makes it easier to automatically generate materials for
deposition in an archive or publication. Coupled with the use
of semantic web technologies, ELNs can also enrich collected
data with meaning and context and create valuable links
between raw data and the final report. Among researchers that
have already adopted ELNs, there is a general preference for
ELNs that make use of pre-existing software (e.g., for drawing,
data processing, reference management).96,97

The uptake of ELNs in academia has been limited. Among
the many barriers faced by scientists for ELN adoption are
concerns about data being kept private, an overwhelming
number of choices between providers, time needed for
implementation, cost, lack of appropriate hardware access in
the lab, lack of compatibility with operating systems, and
concerns about the use of proprietary data formats that make
switching between ELN providers challenging. These chal-
lenges certainly need to be addressed in order to increase wider
adoption of ELNs in academic laboratories, which will in turn
make it easier to standardize reaction data.96

So what is the role of ELN software in encouraging such a
transition? In the long term, it would be fruitful for funding
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agencies or companies to invest in the development of open
source ELNs that natively support open and interoperable
digital reaction formats such as the ORD schema. The choice
of format dictates what information is captured in a structured
way vs in an unstructured way. The ORD schema supports
data generated via benchtop reactions, automated high-
throughput experiments, flow chemistry, and other existing
and emerging technologies. Beyond providing a centralized
open access data repository, it is an open source format,
putting the I in FAIR. We feel the ORD provides a much-
needed framework via which to enable the collection and
publication of new data as it is generated, whether it be from
HTS, flow chemistry, or an individual scientist.
Similar to the CSD, the ORD enforces a certain level of

consistency between entries via the use of validation functions.
These functions, for instance, require the presence of certain
fields and check for reasonable values, such as ensuring that
each reaction has at least one input or that quantities are non-
negative. These validations are performed automatically in the
interactive web editor and during the data set submission
process. As a standalone schema without any sophisticated
software front-ends, it can be difficult or tedious to structure
data using the ORD format. However, efforts are underway to
dramatically improve the user experience for contributors
without programming experience.
One hurdle the ORD currently faces is reliance on volunteer

time for development and data review, which will need to be
addressed in the near future to better support the management
of large volumes of reaction data; this will include securing
funding for staff and infrastructure. Currently, the ORD
receives some baseline financial support from the NSF Center
for Computer-Assisted Synthesis, but in order to become a
ubiquitous resource like the databases highlighted in this work,
more strategic measures such as those presented in Table 1 will
need to be implemented.
Looking Forward. Looking forward, it is tempting to ask

why we cannot just generate new reaction data 100% from
scratch. With the rise of automation and HTE, some argue that
we do not necessarily need to worry about historical data, as
we can quickly generate new data of higher quality. However,
not all types of data tend to be conducive to HTE, raising the
question of how well the reaction spaces of interest can be
covered with this approach. How would this bias the types of
reactions which are explored in the future versus the types of
reactions which we know or could extract from historical data?
The answer is likely to be different for each use case; medicinal
chemistry applications in early drug discovery are likely to
emphasize well-understood reactions that are amendable to
automation, while other fields like reaction discovery will favor
data that is generally more heterogeneous and difficult to scale.
One example of bias in HTE data generation is the choice of
reaction time (preference for shorter times), analytical method
(LC/MS), performance metric (LCAP, not yield), and among
other conditions, solvent (preference for high boiling solvents).
Insights from these HTE platforms about reactivity may not
translate directly to other conditions or reaction types.
While automation helps us rapidly explore “condition-space”

through combinatorial testing, the literature is substantially
more diverse in terms of “substrate-space” or “reaction-type-
space”, even if each set of reactants and products is only
reported with a single condition. An interesting case to
consider is that process analytical technology (PAT) for the
manufacturing of pharmaceuticals will generate a lot of

reaction data but only for a single reaction under a range of
conditions. The “shape” of these data sets is qualitatively
different than what most researchers imagine when they think
of a reaction database, yet an extensible data model like the
ORD can accommodate it. Further, with automation, it may be
trivial to prepare reaction mixtures from liquid stock solutions
at a variety of concentrations and run reactions at a variety of
temperatures, but the preparation of those solutions or use of
solid phase reagents is still a practical challenge. This is one of
the main limitations we see in relying on automation for the
generation of new reaction data. Whatever future plans are
made to improve the state of data sharing in chemistry, they
cannot be solely focused on automation and HTE.

■ MANDATES FOR SHARING STRUCTURED DATA
This brings us to a primary conclusion of this work. Having
analyzed a range of historically successful data sharing and
standardization initiatives, it is our opinion that funding
sources share the bulk of the responsibility for establishing
good data sharing practices via demanding open access and
FAIR publication of data generated via their funding. Without
such a mandate from funding sources, there is little to no
accountability for researchers to improve their data sharing
practices, and we believe it is unlikely that the state of reaction
data sharing will change. While prior efforts have been
successful without mandates, mandates can accelerate the
transformation of data sharing practices to ensure that change
occurs on a time scale of years rather than decades. In
particular, we are advocating for mandates that require
publication of structured, machine-readable data that can be
automatically imported into centralized repositories.
Every researcher, particularly those of us in academia, has

incentives to continue to receive grant funding, as this enables
student training, leads to more research impact through
publications and patents, greater peer recognition, and awards,
and is thus one of the primary means for advancing their
research and careers. If researchers can continue to receive
grant funding for their work only if certain data standards are
met, then they will have a huge incentive to do the extra work
of making their data FAIR. Though the field might not be
ready to embrace it, we would suggest that it become
mandatory that data management plans (already required for
many funding mechanisms) include a plan for digital
deposition of reaction data. This comes at no direct financial
cost to funding agencies but will amplify the impact,
accessibility, and reproducibility of the research they fund.
To improve the utility of shared data, researchers should be
required to format it according to predefined data require-
ments established by the funding agencies. Some recent
mandates for data sharing such as the one by the National
Institutes of Health is a start98 but must be accompanied by
guidelines for how sharing should be done as well as
mechanisms for accountability. Tying data sharing to funding
rather than peer-reviewed publication may also mitigate the
loss of information when projects are discontinued without a
corresponding publication, which can happen due to a change
in priorities, staffing, etc.
We recognize that researchers at some institutions may lack

appropriate resources to publish reaction data under these
principles due to limited funding, infrastructure, or researcher
bandwidth. This may be particularly true for primarily
undergraduate and/or non-R1 institutions, whose work is an
essential part of the scientific enterprise. In such cases, funding
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agencies may need to account for additional labor costs to
allow reaction data sharing mandates to be equitable. Similarly,
it is important that there are freely available software tools to
facilitate the preparation of data contributions in the requested
format.
Contributions arising from efforts not supported by funding

agencies (e.g., industry-generated data) will require a different
tack of publication requirements, where journals only accept
manuscripts with sufficient structured data to reproduce the
findings in the paper. As we saw in many of the
aforementioned data sharing initiatives, journals mandating
the publication of specific data (e.g., depositing crystal
structures into the PDB) played a big role in many of these
data sharing initiatives taking off, to the point that we can no
longer imagine not doing those things. As such, it would be
reasonable to expect that requiring the deposition of structured
reaction data may be necessary to increase the incentives for
researchers to publish their data in a structured format and also
to lead to greater incentives to use ELNs.
For both funding agency mandates and journal publication

requirements, we recommend the ORD as the preferred
mechanism for structuring and sharing these data.

■ CONCLUSION
While some chemists are reluctant to change and quick to
point to barriers to open data sharing, those who embrace the
principles of FAIR data will find that downstream applications
on these data can enhance their research, saving time and
energy down the line. For example, CASP tools for predicting
better synthesis conditions can help synthetic chemists
improve their reaction yield or find a more efficient reaction
pathway. The availability of reliable data and accompanying
code also enables other researchers to quickly verify research
findings and would deter researchers from publishing
irreproducible findings that waste other researchers’ time,
though reproducibility carries other challenges. We have
summarized the main strategic factors which we believe helped
drive the success of databases such as the CSD, PDB,
PubChem, and ChEMBL and look to the development of
NMR guidelines as a model for the development of reaction
reporting guidelines. We assert that a large part of the
momentum for sharing structured data needs to come not
from individuals and peer pressure (where there can be little to
no accountability) but rather from funding agencies and
journals. By requiring open access and FAIR publication of any
and all reaction data generated via their funding, agencies can
place the required incentives on researchers to move toward
the digitization of reaction data and open data sharing.
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