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Abstract

Deep-learning-based registration methods emerged as a fast alternative to conventional registration 

methods. However, these methods often still cannot achieve the same performance as conventional 

registration methods because they are either limited to small deformation or they fail to handle a 

superposition of large and small deformations without producing implausible deformation fields 

with foldings inside.

In this paper, we identify important strategies of conventional registration methods for lung 

registration and successfully developed the deep-learning counterpart. We employ a Gaussian-

pyramid-based multilevel framework that can solve the image registration optimization in a 

coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the 

determinant of the Jacobian to physiologically meaningful values by combining a volume change 

penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated 

to focus on the alignment of smaller structures.

We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the 

estimated deformation fields, and the transferability of our registration approach. We show that it 

achieves state-of-the-art results on the COPDGene dataset compared to conventional registration 

method with much shorter execution time. In our experiments on the DIRLab exhale to inhale 

lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
*Corresponding author. alessa.hering@mevis.fraunhofer.de (A. Hering). 

Declaration of Competing Interest
There’s no financial/personal interest or belief that could affect the objectivity of the submitted research results. No conflict of 
interests exist.

CRediT authorship contribution statement
Alessa Hering: Conceptualization, Methodology, Software, Validation, Investigation, Writing - original draft, Writing - review & 
editing, Visualization, Funding acquisition. Stephanie Häger: Visualization, Writing - review & editing. Jan Moltz: Methodology, 
Writing - review & editing. Nikolas Lessmann: Supervision, Writing - review & editing. Stefan Heldmann: Conceptualization, 
Resources, Writing - review & editing, Supervision, Funding acquisition. Bram van Ginneken: Conceptualization, Resources, 
Supervision, Writing - review & editing.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2023 July 26.

Published in final edited form as:
Med Image Anal. 2021 August ; 72: 102139. doi:10.1016/j.media.2021.102139.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/

deep-learning-based-ct-lung-registration/.
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1. Introduction

Image registration is the process of aligning two or more images to achieve point-wise 

spatial correspondence. This is a fundamental step for many medical image analysis tasks 

and has been an active field of research for decades (Maintz and Viergever, 1998; Sotiras 

et al., 2013). Various approaches and tailored solutions have been proposed to a wide range 

of problems and applications. Typically, image registration is phrased as an optimization 

problem with respect to a spatial mapping that minimizes a suitable cost function 

and common approaches estimate solutions by applying iterative optimization schemes. 

Unfortunately, solving such an optimization problem is computationally demanding and 

consequently slow.

While deep learning has become the methodology of choice in many areas, relatively few 

deep-learning-based image registration algorithms have been proposed. One reason for this 

is the lack of ground truth and the large variability of plausible deformations that can align 

corresponding anatomies. Therefore, the problem is much less supervised than for example 

image classification or segmentation. Nevertheless, several methods have been presented in 

the last years which aim to mimic the process of conventional image registration methods 

by training a neural network to predict the non-linear deformation function given two new 

unseen images. As a trained neural networks can process images in real time, this has 

immense potential for time-sensitive applications such as image guidance in radiotherapy, 

tracking, or shape analysis through multi-atlas registration.

In this paper, we target the challenging task of lung registration. The complexity of this 

registration task is manifold, as the occurring motion is a superposition of respiratory 

and cardiac motion. Moreover, the sliding motion between the lung and rib cage during 

breathing – more precisely between pleura visceralis and pleura parietalis – is an additional 

challenge. The scale of the motion within the lungs can often be larger than the structures 

(vessels and airways) that are used to guide the optimization process. This may cause a 

registration algorithm to get trapped in a local minimum (Heinrich et al., 2013; Polzin et al., 

2013). This makes the problem even more difficult.Therefore, a registration method needs to 

be able to estimate a displacement field that accounts for substantial breathing motion but 

also aligns small structures like individual pulmonary blood vessels precisely.

2. Related work

Most deep-learning-based approaches aim to learn a registration function in form of a 

convolutional neural network to predict spatial deformations warping a moving image to 

a fixed image. All these works have contributed improving deep-learning-based image 
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registration and have been applied to different registration applications including brain 

MR (Balakrishnan et al., 2018; 2019; Yang et al., 2017b), cardiac MR (de Vos et al., 

2017), cardiac MR-CT (Hering et al., 2019c), prostate MR-US (Hu et al., 2018a), thorax-

abdomen CT (Heinrich, 2019), thorax CT (de Vos et al., 2019; Eppenhof and Pluim, 

2018; Eppenhof et al., 2019; Hering and Heldmann, 2019; Hering et al., 2019a; Sentker 

et al., 2018) and CT-CBCT registration (Kuckertz et al., 2020). Existing approaches can 

be classified as supervised, unsupervised, and weakly-supervised techniques based on how 

much supervision is available.

Supervised methods use ground-truth deformation fields for training. The ground truth 

can be generated in different ways. In Eppenhof et al. (2018) and Sokooti et al. (2017) 

the network is trained on synthetic random transformations. A drawback is that the 

randomly generated ground truth is artificial and may not be able to reproduce all possible 

deformations. Alternatively, conventional registration methods can be used to produce 

deformations by registering images (Sentker et al., 2018; Yang et al., 2017a) or other 

image features like landmarks or segmentations (Rohé et al., 2017). Another way to create 

a ground truth is to combine simulations with existing algorithms (Krebs et al., 2017). 

Consequently, the performances of all these approaches is upper bounded by the quality of 

the initial registration algorithm or the realism of the synthetic deformations.

In contrast, unsupervised methods – also called self-supervised methods – do not require 

any ground truth. The idea is to use the cost function of conventional image registration 

(similarity measure and regularization term) as the loss function to train the neural network. 

An important milestone for the development of these methods was the introduction of the 

spatial transformer network (Jaderberg et al., 2015) to differentiably warp images. This 

differentiable warping has actually been part of most conventional registration methods 

for a long time (e.g. König et al. (2018); Modersitzki (2004, 2009)). The concept of an 

unsupervised deep-learning-based registration method was first introduced with the DIRNet 

(de Vos et al., 2017) for 2D image registration using the normalized cross-correlation image 

similarity measure as loss function. In Li and Fan (2018) the approach has been extended 

by adding diffusion regularization to the loss function forcing smooth deformations. The 

method has successfully been demonstrated for registration of 3D brain subvolumes. The 

idea of unsupervised deep-learning-based image registration has been further evolved in 

several works (Balakrishnan et al., 2018; de Vos et al., 2019; Ferrante et al., 2018; Hering 

and Heldmann, 2019; Krebs et al., 2019).

Weakly-supervised methods do not rely on ground-truth deformation fields either but 

training is still supervised with prior information. In Hu et al. (2018a) and Hu et al. (2018b), 

a set of anatomical labels is used in the loss function. The labels of the moving image are 

warped by the deformation field and compared with the fixed labels. All anatomical labels 

are only required during training. In Balakrishnan et al. (2019) and Hering et al. (2019a,c), 

the complementary strengths of global semantic information and local distance metrics were 

combined to improve the registration accuracy.

In conventional registration approaches, multilevel continuation and scale-space techniques 

have been proven very efficient to avoid local minima during the optimization process of the 
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cost function, to reduce topological changes or foldings, and to speed up runtimes (Bajcsy 

and Kovačič, 1989; Haber and Modersitzki, 2004; Kabus and Lorenz, 2010; Schnabel et 

al., 2001) – explaining the popularity of multi-level strategies in conventional registration 

methods. As a lot of deep-learning-based registration methods are build on top of U-Net 

(e.g. Balakrishnan et al. (2019); Hering and Heldmann (2019); Hering et al. (2019b); 

Rohé et al. (2017)), they are also multi-leveled in their nature. The first half of the ”U” 

(the encoder) generates features on different scales starting at the highest resolution and 

reducing the resolution through pooling operations. In this procedure, however, only feature 

maps on different levels are calculated but neither are different image resolutions used 

nor deformation fields computed. Only a few approaches implement a multi-resolution 

or hierarchical strategy in the sense of multilevel strategies associated with conventional 

methods. In Hu et al. (2018a), the authors proposed an architecture that is divided into 

a global and a local network, which are optimized together. In Eppenhof et al. (2019), a 

multilevel strategy is incorporated into the training of a U-Net, by growing and training 

progressively level-by-level. In de Vos et al. (2019), a patch-based approach is presented, 

where multiple CNNs (ConvNets) are combined additively into a larger architecture for 

performing coarse-to-fine image registration of patches. The results from the patches are 

then combined into a deformation field warping the whole image. Another patch-based 

multilevel approach is presented in Fu et al. (2020). The multilevel framework consists 

of a CoarseNet and a FineNet which are trained jointly. During training, the estimated 

deformation field of the CoarseNet and the FineNet are not combined but the moving 

patch is transformed twice. During inference, if the mean absolute differences between 

the deformed image patch and the fixed image exceeds a predefined threshold, FineNet 

is applied again. This leads to a variable number of deformation field patches, which are 

combined additively. Although previous deep-learning-based registration works (e.g. de 

Vos et al. (2019); Eppenhof et al. (2019); Sentker et al. (2018)) contributes many efforts 

to improve the registration accuracy for lung registration, there is still a misalignment of 

smaller structures in the lung, which leads to a high target registration error of landmarks.

Contribution

We previously introduced an end-to-end deep-learning multilevel registration method that 

can handle large deformations by computing deformation fields on different scales and 

functionally composing them Hering et al. (2019a). This initial study, despite its limited 

evaluation, proved that it is a valid strategy to improve the alignment of vessels and 

airways – though a gap regarding the target registration error of landmarks with the best 

conventional registration methods remained. Building on this previous work, and addressing 

its limitations, we were able to further close that gap.

Our key contributions are as follow:

• We present multiple anatomical constraints to incorporate anatomical priors 

into the registration framework to obtain more realistic results. We integrate 

the lung lobe mask to consider the global context. Moreover, the keypoint 

correspondences are used to increase the alignment of airways and vessels.
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• We introduce a novel constraining method to control volume change and 

therefore avoid foldings inside the deformation field. While the idea of volume 

change control is not new in conventional registration, we firstly present a 

suitable version for deep-learning-based image registration.

• We perform comprehensive experiments on three different datasets – the multi-

center COPDGene study (Regan et al., 2011) and the DIRLab challenge dataset 

(Castillo et al., 2009; 2013), and the EMPIRE10 challenge dataset (Murphy 

et al., 2011) – to assess the accuracy, plausibility, robustness, transferability 

of our method. We achieve comparable results as state-of-the-art registration 

approaches.

3. Method

3.1. Variational registration approach

Let ℱ, ℳ:ℝ3 ℝ denote the fixed image and moving image, respectively, and let Ω ⊂ ℝ3

be a domain modeling the field of view of ℱ. Registration methods aim to compute a 

deformation y:Ω ℝ3 that aligns the fixed image ℱ and the moving image ℳ on the field 

of view Ω such that ℱ x  and ℳ y x  are similar for x ∈ Ω. The deformation is defined as a 

minimizer of a suitable cost function that typically takes the form

J ℱ, ℳ, y = D ℱ, ℳ y + αℛ y (1)

with so-called distance measure D that quantifies the similarity of fixed image ℱ and 

deformed moving image ℳ y  and so-called regularizer ℛ that forces smoothness of the 

deformation typically by penalizing spatial derivatives. Typical examples for the distance 

measure are the squared L2 norm of the difference image (SSD), normalized cross 

correlation (NCC), or mutual information (MI). The cost function can be extended by 

additional penalty terms to force desired properties or incorporate additional knowledge 

in form of anatomical constraints (Rühaak et al., 2017). As illustrated in Fig. 1, our 

method inputs both the fixed and moving image into the network that predicts the 

dense displacement field. The loss function uses all available information: input images, 

segmentation masks and keypoints, with additional regularization – in the form of a 

smoothness prior and a volume consistency constraint – to prevent foldings.

3.2. Loss function

3.2.1. Normalized gradient field distance measure—One of the main challenges 

of lung registration are the varying intensity changes occurring due to the altered density of 

lung tissue during breathing. This leads to a violation of the intensity constancy assumption 

between corresponding points, on which the classic sum of squared differences (SSD) 

distance measure is built. However, the lung exhibits a rich structure of bronchi, fissures, and 

especially vessels that can be exploited for the registration, more suited to distance measure 

that focus on image edges rather than intensities. We follow the approach of Rühaak et al. 

(2017) and Hering et al. (2019a) using the normalized gradient fields (NGF) (Haber and 

Modersitzki, 2006) distance measure
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D ℱ, ℳ y = ∫
Ω

1 − ∇ℳ y x , ∇ℱ x ϵ
2

∇ℳ y x ϵ
2 ∇ℱ x ϵ

2 dx,

with f, g ϵ: = ∑j = 1
3 fjgj + ϵ2 , f ϵ: = f, f ϵ. The edge hyper-parameter ϵ > 0 is used to 

suppress small image noise, without affecting image edges. Therefore, a good strategy is 

to choose its value relative to the average gradient. In (Haber and Modersitzki, 2006), the 

following automatic choice is suggested:

ϵ v
V ∫

Ω
∇I x dx,

where ν is the estimated noise level in the image and V  is the volume of the domain Ω. For 

CT images, a value in the range of [0.1, 10] is mostly a good choice.

Since we focus on accurate registration inside the lungs and to avoid misalignment artifacts 

due to sliding motion at the pleura, we restrict Ω to the support of the lung mask of the fixed 

image.

3.2.2. Curvature regularizer—Smooth deformation fields are enforced by the second 

order curvature regularizer (Fischer and Modersitzki, 2003b) given by

ℛ y = ∫
Ω

∑
j = 1

3
Δyj x 2dx . (2)

3.2.3. Volume change control—Although the curvature regularization from Equation 

(2) prefers smooth deformation, foldings may still happen, which is obviously physically 

impossible. More formally, foldings happen when the Jacobian determinant of the 

deformation field becomes negative. To avoid any foldings, we therefore aim to minimize 

the distance measure D and the regularizer ℛ while keeping the Jacobian determinant 

positive, for every voxel in Ω. Formally, this can be written as a constrained optimization 

problem:

miny D ℱ, ℳ y + αℛ y
s . t . det∇y x > 0 ∀x ∈ Ω .

To achieve this, Rühaak et al. (2017) introduced a Volume Change Control (VCC) that could 

be integrated in their overall objective:

V y = ∫
Ω

ψ det∇y x dx, (3)

where
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ψ z =
z − 1 2

z if z > 0

+∞ otherwise .
(4)

For the sake of simplicity, the input to ψ in Eq. 3 is substituted with z = det∇y x  in Eq. 4. 

Notice that ψ z  is minimized when z = 1 (see Fig. 2 (a)). Therefore, the regularizing effects 

of the VCC are twofold: i) prevents the formation of foldings, by keeping the determinants 

positive, ii) limits both shrinkage and expansions by biasing the optimization to keep the 

same volume.

The method that Rühaak et al. (2017) used falls into the category of interior-point methods. 

Such methods became very popular in constrained optimization (Boyd et al., 2004) as they 

do not require the expansive primal-dual updates of traditional Lagrangian optimization: the 

infinity penalty acts as a ”barrier”, preventing the optimization to go out of bounds.

To be used, interior-points methods require a feasible starting point: all constraints need 

to be strictly satisfied before starting the optimization procedure. This is usually done 

in a pre-optimization step (called Phase I) before the actual optimization of Phase II is 

performed. We can see it as finding a valid initial guess, and then refining it.

In the context of deep neural networks, standard Lagrangian methods are not feasible due 

to their expensive primal-dual updates, which requires to retrain a neural network (from 

scratch) at each iteration. Interior-point methods are also not applicable, as solving phase I 

requires to solve a constrained optimization problem in the first place.

Kervadec et al. (2019) (Kervadec, Dolz, Wang, Granger, Ayed, 2020) proposed a parametric 

log-barrier extension (illustrated in Fig. 2 (b)), that does not require an initial feasible 

solution:

ψ t z =
− 1

t log z if z ≥ 1
t2

−tz − 1
t log 1

t2 + 1
t otherwise .

(5)

t is a hyper-parameter, controlling the slope of the barrier. By starting with a small initial 

value, and increasing it as the training progresses, one is able to ”raise” the barrier, closing it 

eventually.

We propose to keep the property of Eq. (4) to symmetrically penalizes local shrinkage and 

expansion and make it applicable for neural networks by using the barrier formulation of Eq. 

(5) for z < t with t 0 over time (illustrated in Fig. 2 (c)):
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ψt z =
z − 1 2

z if z ≥ t

1 − 1
t2 z + 2 1 − t

t otherwise,
(6)

with t  > 0 which is a hyper-parameter controlling the slope of the linear barrier for 

z  <  t. This barrier can be raised during the training by decreasing the value of t to 

penalize foldings more strongly. Note that the linear part for z < t is chosen such that ψ
is continuously differentiable provided t > 0. In our experiments, we set t = 0.2 for the first 

level of our multilevel architecture and decrease it by the factor of 2 for any further level. for 

z ≥ t, we symmetrically penalize local shrinkage and expansion, i.e., ψ z = ψ 1/z .

3.2.4. Mask alignment—Several recent publications (e.g. Balakrishnan et al. (2019); 

Hering et al. (2019c)) have shown that adding further information in the form of 

segmentation masks into the loss function can guide the network during the training process. 

Since the segmentation masks are used in the loss function, they are only required during 

training and not for registration of unseen images. We integrate segmentation masks by 

using the SSD loss

ℬ y = 1
2∫

Ω

bℳ y x − bℱ x 2dx, (7)

where bℱ:Ω 0, 1 k and bℳ:Ω 0, 1 k denote functions of ℱ and ℳ that are the one-hot 

representation of the segmentation mask, with k the number of different labels. For lung 

registration, we use segmentation of the lungs into the five pulmonary lobes k = 5 . During 

training, we use linear interpolation to warp the one-hot segmentation masks since this 

results in a smoother loss function at the border of the segmentation. With nearest neighbor 

interpolation, the loss of each voxel can either be one or zero. Linear interpolation allows for 

probabilistic loss values between zero and one.

3.2.5. Keypoint loss—For conventional image registration, previous work (e.g. 

Ehrhardt et al. (2010); Polzin et al. (2013); Rühaak et al. (2017)) has shown that the 

integration of sparse keypoints during the optimization of the deformation field yields better 

registration results. In contrast to conventional registration approaches, keypoints can be 

integrated into the loss function and are therefore, similar to the segmentation masks for the 

mask penalty, only needed for training but not during inference. In general, there are several 

ways to integrate the keypoints into an intensity-based registration approach (e.g. Fischer 

and Modersitzki (2003a), Rühaak et al. (2017), Papenberg et al. (2009)). We choose to 

integrate the keypoint information through a least-squares penalty into our model by directly 

comparing the transformed keypoint of the fixed image with the corresponding moving 

keypoint:

K y = 1
K ∑

i = 1

K
kℳ

i − y kℱ
i 2
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with the moving keypoint kℳ
i  and the warped fixed keypoint y kℱ

i  for all K  keypoints. 

In general, manually annotated landmarks or automatically generated keypoints can be 

integrated with this loss function. However, since manual annotation of landmarks is time-

consuming, we use the keypoint detection algorithm described in Rühaak et al. (2017) to 

generate a large number of corresponding keypoints.

The final loss is given by

ℒ ℱ, ℳ, y = D ℱ, ℳ y + αℛ y + βℬ y + γV y
+ δK y . (8)

The hyper-parameters α, β, γ and δ have to be chosen manually. However, our experiments 

showed that a change in the magnitude leads to only slight changes in the results.

3.3. Baseline architecture

Our CNN is based on a U-Net (Ronneberger et al., 2015) which takes the concatenated 

3D moving and fixed image as input and predicts a 3D dense displacement field with 

the same resolution as the input images. The U-net consists of three levels starting with 

16 filters in the first layer, which are doubled after each downsampling step. We apply 

3D convolutions in both encoder and decoder path with a kernel size of 3 followed 

by an instance normalization and a ReLU layer. In the encoder path, the feature map 

downsampling steps use 2 × 2 × 2 average pooling with a stride of 2. In the decoder path, 

the upsampling steps use transposed convolution with 2 × 2 × 2 filters and half the number 

of filters than the previous step. The final layer uses a 1×1×1 convolution filter to map each 

16-component feature vector to a three-dimensional displacement.

3.4. Multilevel architecture

In conventional image registration, multilevel continuation has been proven very efficient 

to avoid local minima, to reduce topological changes or foldings, and to speed up 

runtimes (Bajcsy and Kovačič, 1989; Haber and Modersitzki, 2004; Kabus and Lorenz, 

2010; Schnabel et al., 2001). Recent deep-learning-based approaches (de Vos et al., 2019; 

Fu et al., 2020; Hering et al., 2019a; Jiang et al., 2020; Mok and Chung, 2020) have 

shown that, besides carrying over these properties, a multilevel scheme helps overcome the 

limitations of deep-learning-based registration approaches to properly deal with small and 

local deformations.

As in our previous work (Hering et al., 2019a), we follow the ideas of standard multilevel 

registration and compute coarse grid solutions that are prolongated and refined on the 

subsequent finer level. Our multilevel framework is illustrated in Fig. 3 with L =  3 levels. 

The registration starts on the coarsest level L where the deformation yL is computed from the 

input images that have been Gaussian-smoothed and downsampled by a factor of 2L−1. On 

all finer levels ℓ < L, we incorporate the deformations from all preceding coarse levels as an 

initial guess by combining them by functional composition and warping the moving image. 

Subsequently, the fixed and warped moving images are downsampled.
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The number of used levels is a hyper parameter which should be chosen depending on the 

task and the used data. The maximal number of levels that can be used is limited by the GPU 

memory and the image size. Since the images are downsampled with a factor of two in the 

multilevel setting and additionally the image features are downsampled three-times in the 

U-Net, the number may be chosen at most so that the image size is divisible by 23 + L − 1 . 

Our experiments (c.f. Section 4.9) have shown that a three-level scheme works best in our 

application and fits on a 12GB GPU. In our experiments, we use in particular a three-level 

scheme (L = 3, Fig. 1). The three networks are trained progressively. First, the network on 

the coarsest level is trained for a fixed amount of epochs. Afterwards, the parameters of 

the middle network are learned while the coarsest network stays fixed and is only used to 

produce the initial deformation field. The same procedure is repeated on the finest level. The 

same architecture is used on all levels. The network parameters on the coarsest level are 

initialized with Xavier uniform (Glorot and Bengio, 2010), whereas all other networks are 

initialized with the learned parameters of the previous network. Note that the receptive field 

in voxels is the same for all networks, however, due to the decreased resolution on the coarse 

levels, the receptive field in mm is much larger.

4. Experiments

We perform several experiments to assess the accuracy, plausibility, robustness, 

transferability, and speed of our weakly-supervised deep-learning-based registration 

approach.

4.1. Data

We train and validate our method on the data from the COPDGene study (Regan et al., 

2011). To prove the robustness and transferability of our method and to compare our method 

with other registration approaches, we evaluate our registration approach on the publicly 

available DIRLab dataset (Castillo et al., 2009; 2013) and on the EMPIRE10 challenge as 

well. On the COPDGene dataset, the evaluation is based on the lobe segmentation masks, 

and on both of the other datasets, annotated landmarks are available on which we evaluate 

the target registration error.

4.1.1. COPDGene Dataset—Training, validation, and testing data were acquired from 

the COPDGene study, a large multi-center clinical trial with over 10,000 subjects with 

chronic obstructive pulmonary disease (COPD) (Regan et al., 2011). The COPDGene study 

includes clinical information, blood samples, and chest CT scans. The image dataset was 

acquired across 21 imaging centers using a variety of scanner makes and models. Each 

patient had received two breathhold 3D CT scans, one on full inspiration (200mAs) and 

one at the end of normal expiration (50mAs). About five years later, follow-up images were 

acquired from about 6000 subjects. In our study, we use the inspiration and expiration scans 

of 1000 patients. We split these patients into 750, 50, 200 patients for training, validation, 

and testing, respectively. The original images have sizes in the range of 512 × 512 × 

{341, … , 974} voxels. The in-plane resolution of the axial slices varied between 0.5mm to 

0.97mm per voxel with a slice thickness of 0.45mm to 0.7mm.
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The human lungs are sub dived into five lobes that are separated by visceral pleura called 

pulmonary fissure. An exemplary inspiration scan and expiration scan of one patient with 

the lobe segmentation overlay is shown in Fig. 4. For all scans segmentations of the lobes 

are available, which were computed automatically and manually corrected and verified by 

trained human analysts.

4.1.2. DIRLab Challenge—This dataset consists of ten thoracic 4D CT images acquired 

as part of the radiotherapy planning process for the treatment of thoracic malignancies. In 

our study we are only using the inspiration and expiration phase of the 4D image, i.e., two 

of the ten images per 4D scan. The in-plane resolution of the 512 × 512 axial slices varied 

between 0.97mm to 1.16mm per voxel with a slice thickness of 2.5mm. Each scan pair 

contains 300 manually annotated corresponding landmarks in the lung on which we evaluate 

the target registration error.

4.1.3. EMPIRE10 Challenge—The EMPIRE10 challenge (Murphy et al., 2011) 

consists of 30 scan pairs from six different categories: breathhold inspiration scan pairs, 

breathhold inspiration and expiration scan pairs, 4D data scan pairs, ovine data scan pairs, 

contrast-noncontrast scan pairs and artificially warped scan pairs. Further information on 

each category can be found in the challenge paper (Murphy et al., 2011). Each scan pair 

contains 100 annotated corresponding landmarks.

4.2. Preprocessing

In this work, we focus on non-rigid, non-linear deformations and for that reason we perform 

a linear prealignment of fixed and moving image as preprocessing. For all methods, the 

same preprocessing is used. We subsequently warp and resample the moving image on 

the field of view and resolution of the fixed image, which yields a pre-registered moving 

image ℳ. Lung regions are automatically cropped for each CT and resized to volumes 

of dimension 192 × 160 × 192 as the network input. However, although the deformation 

field is computed from low-resolution input, during inference, the output deformation field 

is up-sampled to the original image resolution using trilinear interpolation and the overall 

evaluation is performed at full resolution of the original images. We do not perform any 

further preprocessing like normalization on the images, because the CT images are already 

in a standardized range (Hounsfield units). On the training data, we use the keypoint 

detection algorithm described in Rühaak et al. (2017) to automatically compute keypoints 

inside the lung. These keypoints can be considered noisy labels with residual errors of 

1–2mm

4.3. Implementation details

We implemente our method in PyTorch. Each network was trained for 25 epochs on an 

NVIDIA Titan Xp using an ADAM optimizer with a learning rate of 10−3. The training of 

all three networks takes about 20 hours. We empirically chose the loss weighting parameters 

α = 10, β = 1, γ = 0.01. For the coarsest level, the keypoint weighting parameter δ was set 

to zero such that the network can focus on the coarse alignment of larger structures. In the 

subsequent levels, we chose δ = 107. For the edge parameter of the NGF distance measure, 

we chose ϵ   = 1.
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4.4. Accuracy

We evaluate our method by using the propagated lobe segmentation and the fixed 

lobe segmentation. If a deformation field represents accurate correspondences, the lobe 

segmentation of the fixed image bℱ and the warped lobe segmentation of the moving image 

bℳ y  should overlap well. In contrast to a lung segmentation overlap, the lobe segmentation 

overlap provides information about inner lung structures. A good alignment of the lobes was 

shown to be indicative of good alignment of the fissures, which the evaluation of registration 

quality in Murphy et al. (2011) has shown to be indicative of the overall performance of 

different registration approaches.

We measure the overlap of the lobes with the Dice coefficient

DSC = X ∩ Y
X + Y

where X is the propagated segmentation bℳ y  and Y  is the segmentation of the fixed image 

bℱ. Moreover, we evaluate the average symmetric surface distance

ASD = 1
Xs + Y s

∑
x ∈ XS

d x, Y S + ∑
y ∈ Y S

d y, XS ,

where d is the surface distance

d x, Y s = min
y ∈ Y

d x, y

where x and y are points on the surface of the propagated segmentation surface Xs and the 

fixed segmentation surface Y s. Additionally, we calculate the symmetric Hausdorff distance

HD = max dH Xs, Y S , dH Y s, Xs ,

where

dH Xs, Y s = max
x ∈ Xs

min
y ∈ Y s

d x, y .

We compare our proposed method to the conventional approach of Rühaak et al. (2017) 

that is currently ranked first in the EMPIRE challenge (Murphy et al., 2011) (https://

empire10.grand-challenge.org/Home/). This method performs a discrete keypoint detection 

and matching which are integrated into a dense continuous optimization framework. 

Additionally to the keypoint penalty, the method uses an NGF distance measure, curvature 

regularizer, a volume change penalty, and a mask alignment of the lung segmentations. Note 

that the lung segmentation has to be available for each pair of images to be registered. This 

is in contrast to our method, which also uses a boundary loss (Eq. 7), but this requires the 

masks to be only available during training, not during testing.
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4.5. Robustness

To analyze the robustness of our method, we evaluate the 30% lowest Dice Scores of all 

cases. This gives a good overview of the hardest cases and how good our method can 

register those.

4.6. Plausibility of the deformation field

Besides accurately and robustly transferring anatomical annotations, medical image 

registration should also provide plausible deformations and therefore should not generate 

deformations with foldings. Hence, we evaluate the Jacobian determinant as it is a local 

measure for volume change and in particular for (local) change of topology. If det ∇y > 1
1 a volume expansion occurred and if det ∇y < 1 the volume decreased and for det ∇y ≤ 1
there is a folding.

4.7. Applicability

In a clinical setting, the registration of two scan pairs has to be available quickly in order 

not to slow down the routine workflow. In other situations such as screenings, the large 

number of required registration demands efficient deformable image registration methods. In 

both cases, the runtime of the algorithms is a crucial factor. For the conventional registration 

method, we measured the time of the registration without the time needed to load and warp 

the images. For the network, we measure the time of one forward pass through the cascade 

of networks. Both measurements were run on the same system with an Intel(R) Core(TM) 

i7–770K CPU and an Nvidia Titan XP GPU.

4.8. Transferability and comparison to state-of-the-art

To show the transferability of our method to other datasets and to compare our method to 

other registration methods, we apply our trained network as-is to the ten images pairs of 

the DIRLAB 4DCT. To evaluate the registration accuracy, the target registration error of the 

landmarks was computed.Moreover, we evaluate the impact of the dataset used to train the 

registration network. Therefore, we train the widely used Voxelmorph (Balakrishnan et al., 

2019) framework using the COPDGene data. We adapt the public implementation slightly 

by choosing a higher regularization weight λ = 2  to obtain smooth deformation fields 

Furthermore, we applied our trained model on the 30 scan pairs of the EMPIRE10 challenge 

and submitted the displacement fields to the organizers who performed the evaluation which 

includes a lung boundaries, fissures, landmarks and singularities (foldings).

4.9. Ablation study

In an ablation study, we study the impact of the components of the proposed method. We 

investigate the influence of the number of levels in the multilevel framework on the accuracy 

and plausibility of the registration results. For all experiments, the overall number of epochs 

was 75. Furthermore, we explore the additional penalty terms in our loss function by setting 

the weighting parameters in the loss function to zero and compare it with the proposed loss 

function.
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5. Results

The results of our experiments on the COPDGene dataset are summarized in Table 1. We 

performed a one-sided Wilcoxon signed-rank test that show that the improvement to the 

method of Rühaak et al. (2017) is statistically significant for the Dice score, average surface 

distance (ASD) and Hausdorff distance(HD) and the runtime on the CPU. In the following 

subsections, we describe the results of each experiment in more detail.

5.1. Accuracy

Our proposed method achieves on average significant better Dice Scores than the 

conventional registration method (0.95 vs. 0.92) with a smaller standard deviation (0.026 

vs. 0.046). Also for the symmetric average surface and the Hausdorff distance our method 

achieves better results (1.72 ± 0.89mm vs. 1.97±1.24 and 26.84 ± 14.27 vs. 27.24 ± 

13.70mm, respectively). The distribution of the Dice Scores, of the average surface distance, 

and of the Hausdorff Distance of both methods are shown in Fig. 5.

5.2. Robustness

On the 30% of cases with the lowest Dice Scores, our method achieves an average Dice 

Score of 0.93 ± 0.01 within a range of [0.85, 0.94]. Compared to the method of Rühaak et al. 

(2017) with an average Dice Score of 0.86 ± 0.03 within a range of [0.78, 0.90], our method 

propagates the lobes more robustly.

5.3. Plausibility

For our proposed methods, on average fewer than 0.1% voxel positions of the deformation 

field showed a negative Jacobian determinant and therefore a folding. The full elimination 

of foldings as in the conventional registration methods of Rühaak et al. (2017) is not 

guaranteed. However, the percentage of foldings is within acceptable ranges. Fig. 6 shows 

four exemplary Jacobian determinant colormaps overlaid on the fixed image. The volume 

changes are smooth and mostly around 1 (yellow overlay). Due to large motion in the upper 

right case, some foldings (dark red overlay) occur on the left inferior border.

5.4. Applicability

The proposed method needs for registration of an image pair on average 0.75 seconds when 

executed on a GPU and 32 seconds on the CPU. In contrast, the conventional method takes 

on average 160 seconds executed on a CPU. Moreover, for the execution, only 4GB of GPU 

memory are required and therefore our method could also be used on standard computers 

with less powerful GPUs. The prediction is instantaneous and requires no further manual 

tuning of parameters. This makes our proposed method very applicable for clinical tasks.

5.5. Qualitative results

To illustrate the registration results, we show the difference images ℱ − ℳ y  of four 

exemplary cases in Fig. 8. In all cases, the respiratory motion was successfully recovered 

and most inner structures are well aligned. The first row shows one example of a more 

accurately registered image pairs in terms of the average Dice Score (after affine: 0.85, after: 
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0.96) and keypoint distance (after affine: 8.51mm, after: 0.99mm). The last row shows the 

worse case regarding the Dice Score. In this case, the average Dice Score improved from 

0.69 to 0.85 and the keypoint distance could be reduced from 13.57mm to 1.9mm, showing 

also for the cases with large deformations, our registration methods works robustly. Even 

with masking the distance measure only to the region inside the lung, the surrounding tissue 

is mostly well aligned. During training, the model learned to align edges and because no 

lung mask is given during inference, it also aligns edges outside the lung.

5.6. Ablation study

We provide an ablation study to further verify the efficiency of proposed components of our 

method. Results of this ablation experiment on the COPDGene data are presented in Table 

2. The multi-level experiment shows that increasing the number of level from L = 1 to L = 2
and L = 3 results in a increasing Dice Score from 0.927 to 0.939 to 0.946, a decreasing 

TRE fron 3.95mm to 2.22mm to 2.00mm, and decreasing number of foldings from 0.1% to 

0.09% to 0.06%. The mask alignment loss not only improve the alignment of the pulmonary 

lobes resulting in a higher Dice Score (0.93 vs 0.946) but also enhance the TRE from 

2.16mm to 2.00mm. By integrating our volume change loss, the percentage of foldings 

can be reduced from 0.3% to 0.06%. Furthermore, it also improve the TRE from 2.16mm 

to 2.00mm. To further enhance the alignment of smaller structures as vessels and smaller 

airways, we incorporate keypoint correspondences into the loss function. This decrease the 

TRE from 4.59mm to 2.00mm. However, the percentage of foldings slightly increase from 

0% to 0.06%. Fig. 7 shows a comparison of the target registration errors of the DIRLab 

4DCT dataset of all compared settings and after affine registration and the initial errors.

5.7. Transferability and comparison to state-of-the-art

In Table 4, quantitative results on the DIRLAB 4DCT dataset of deep-learning-based and 

conventional registration methods are reported. On average the target registration error 

(TRE) of our method was 1.14 ± 0.76mm and is therefore better as the currently best deep-

learning-based method of Fu et al. (2020). In cases 6, 8, and 10 which have a large initial 

landmark error, our method achieves much better registration results. Training Voxelmorph 

on the large COPDGene dataset results in a lower TRE than when trained by leave-one-out 

on the DIRLAB dataset (1.71mm vs 3.65mm). The best conventional registration method of 

Rühaak et al. (2017) has still a lower TRE, however, it needs about 5 minutes to compute the 

deformation field, whereas our method only needs less than a second. A detailed evaluation 

of all ten cases for different deep-learning-based registration methods is given in Table 5. On 

the EMPIRE10 challenge data, our method achieves a target registration error of 1.01mm on 

all cases and a TRE of 0.91mm if ovine data is excluded. A summary of the results is shown 

in Table 3 and a more detailed evaluation on the challenge website1.

6. Discussion

This paper presents a coarse-to-fine multilevel framework for deep-learning-based image 

registration that can compensate for and handle large deformations using computing 

1 https://empire10.grand-challenge.org/mevis_virnet/ 
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deformation fields on different scales. Our method shares many elements with the 

conventional registration method of Rühaak et al. (2017). We have identified key strategies 

of this method and successfully developed a deep-learning counterpart. The advantage of our 

deep learning approach is that the expensive annotation and detection of the lobe masks and 

keypoints is only necessary as training data. This important knowledge is then embedded in 

our model and therefore the inference is cheap and fast.

We employ a Gaussian-pyramid-based multilevel framework that can solve the image 

registration optimization in a coarse-to-fine fashion. To prevent foldings of the deformation 

field and restrict the determinant of the Jacobian to physiologically meaningful values, 

we combine the curvature regularizer with a volume change penalty in the loss function. 

Furthermore, we also integrate weak keypoint correspondences into the loss function 

to focus more on the alignment of smaller structures. The keypoints are computed 

automatically and can be considered as noisy labels with residual errors of 1 − 2mm. 

However, we showed that the use of these noisy labels is nevertheless advantageous and 

leads to a better alignment of vessels and smaller airways and therefore also results in a 

better target registration error on the DIRLab dataset.

We validated our framework on the challenging task of large motion inspiration-to-

expiration registration using image data from the multi-center COPDGene study. To assess 

the accuracy of our network, we performed an extensive evaluation of 200 pulmonary CT 

scan pairs from the large-scale COPDGene study and demonstrated that our method can 

perform accurate registration between two affine pre-aligned images. Especially for the task 

of lobe propagation, we could show that our method performs better than conventional 

approaches. It achieves higher Dice scores and lower surface and Hausdorff distances 

(0.95, 1.72 mm, and 26.8 mm) compared to conventional registration (0.92, 1.97 mm, 

and 27.2 mm, respectively). This better performance can be explained by the use of the 

mask-alignment loss. As demonstrated in previous studies (e.g. Balakrishnan et al. (2019); 

Hering et al. (2019c)), the combination of the complementary strength of global semantic 

information (weakly-supervised learning with segmentation labels) and local distance 

metrics improves the registration performance during inference. In contrast to conventional 

registration methods, such additional information only needs to be available in the training 

dataset.

Furthermore, we have evaluated the proposed method using the DIRLab and EMPIRE10 

dataset and showed that we achieve excellent TRE of 1.14 mm and 1.01 mm, respectively. 

Note that our network was not trained on those datasets. This is strong evidence that our 

network can generalize well. Although previous works (e.g. de Vos et al. (2019); Eppenhof 

et al. (2019); Jiang et al. (2020); Sentker et al. (2018)) contribute much to improving 

the registration accuracy, there is still a misalignment of smaller structures, which leads 

to a high TRE. To focus more on the alignment of vessels, Fu et al. (2020) introduced 

a preprocessing step to enhance the vessels in the input images by segmenting vascular 

structures and increasing the intensity value inside the vessel mask. In their paper, they 

demonstrated the efficiency of this preprocessing step. Since this step is performed on the 

input images, it is also required during application. To avoid this problem and thus not 

increase the execution time, we integrate additional information on smaller structures using 
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the keypoint loss. The advantage of this procedure is that the keypoints, as well as the masks 

of the boundary loss, are only needed during training. Nevertheless, the best conventional 

registration methods still achieve lower TRE than our method. One reason for this might be 

that convectional registration methods mostly work on the original image data. In contrast, 

for the deep-learning approaches, the input images have to be downsampled due to memory 

restrictions on the GPU. Especially for smaller structures and small errors (we are speaking 

about a TRE difference of 0.2–0.4mm), it is easily imaginable that this resolution is not 

high enough. Moreover, the training data used also influence the performance. Our network 

was trained on inspiration-expiration scan pairs from humans. In the EMPIRE10 dataset, 

a variety of lung registration tasks including ovine lung registration has to be performed. 

Although our method does not register the ovine data perfectly, we achieve a TRE of 1.69 

mm on the ovine data which shows that our method is capable of generalizing well. We 

would assume that with a wider variety in training data, the performance of deep-learning-

based registration methods can further improve. We showed this effect when training the 

Voxelmorph network. By using the larger COPDGene dataset to train the Voxelmorph 

network, the target registration error on the DIRLab dataset improved from 3.65 mm to 1.71 

mm compared to a leave-one-out training on the DIRLab dataset. This illustrates the large 

impact of the training dataset. Since Voxelmorph and our framework are very similar, this 

experiment also shows that the addition of more loss functions and a multilevel approach is 

beneficial.

Besides accurately transferring anatomical annotations, medical image registration should 

also provide plausible transformations and therefore should not generate deformations with 

foldings. In conventional registration methods, this is achieved by using a regularizer in 

the cost function. Recently deep-learning-based methods like Eppenhof et al. (2019) and 

Jiang et al. (2020) also integrated a regularizer into their loss functions to enforce a 

smooth deformation field resulting in an acceptable amount of foldings (0.42% and 0.1% 

of foldings). In our work, we additionally use a volume change control which penalizes 

occurring foldings more severely than the regularizer does, resulting in on average fewer 

than 0.1% and 0.0005% voxel positions in the deformation field with folding on the 

COPDGene and DIRLab dataset, respectively. Without the volume change control penalty, 

the deformation fields produced by our method show on average 0.30% of voxel positions 

with foldings, which is comparable to the values of other deep learning registration methods. 

This shows that the addition of the volume change control mitigated the occurrence of 

foldings. The higher number of foldings on the COPDGene dataset can be explained by the 

noise difference between the expiration and inspiration scan due to different doses during 

acquisition (see Fig 8 for some example images). The full elimination of foldings as in some 

conventional registration methods is not guaranteed. Another way to reduce the number 

of foldings was presented in the works of Dalca et al. (2018), Krebs et al. (2019), and 

Qiu et al. (2021) who are using the scaling and squaring algorithm (Arsigny et al., 2006) 

to integrate the predicted stationary velocity field. With a sufficient number of integration 

steps, these methods should theoretically guarantee diffeomorphic transformation. However, 

in the presented works they reported ”nearly no non-negative Jacobian voxels” (Dalca et 

al., 2018) and 0.023% to 0.151% of voxels with a negative Jacobian determinant (Qiu et 

al., 2021). As discussed in (Qiu et al., 2021), this has two major factors. First, the velocity 
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field could be not sufficiently smooth. This can be solved by increasing the regularization 

weight. However, this often yields a drop in the registration accuracy. Secondly, the number 

of chosen integration steps was too small. Increasing this can reduce the number of foldings 

which occur but increase the computational cost as well. In summary, the scaling and 

squaring approach and the volume-change-control penalty presented achieve similar results 

preventing foldings. Besides, our approach regulates volume changes.

In our experiments, we focused on the complex task of CT lung registration, as the 

registration results can be evaluated more accurately than only with an overlap of a larger 

structure. However, our method could also be trained for a different task or on a different 

modality. Except for keypoint detection, no component is lung-specific and the keypoint loss 

can be used with landmarks in different organs.

In future studies, we will investigate the impact of instance optimization to fine-tune 

the deformation field for those image pairs for which the registration result is not yet 

satisfactory.

7. Conclusion

This paper presents a deep-learning-based registration approach for deformable image 

registration, targeting in particular the challenging task of lung registration. We introduce 

a keypoint matching term and a volume change penalty to increase the alignment of smaller 

structures and to prevent foldings and restrict the deformation field to physiologically 

meaningful values. Our multi-level registration framework equipped with these components 

achieves state-of-the-art registration accuracy on the COPDGene and DIRLab datasets with 

a very short execution time.
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Fig. 1. 
Schematic representation of the training process. In the loss function, we compare the fixed 

image, pulmonary lobes mask and keypoints to the deformed moving image, pulmonary 

lobes mask and keypoints, respectively. To enforce smoothness and to prevent foldings, 

a regularizer and a volume change penalty are integrated into the loss function. During 

inference, only the fixed and moving image is required to estimate the deformation field. For 

a better visualization, we have placed the windowed CT image in the background of the used 

keypoints. Best viewed in colors.
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Fig. 2. 
A graphical illustration of both standard log-barrier (a), the proposed log-barrier extension 

(b) and examples of penalty functions (c). The solid curves in colors show the 

approximations for several t values of functions ψt z  and ψt z  respectively.
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Fig. 3. 
Overall scheme of the proposed multilevel framework, where ℱ indicates the fixed image, 

ℳ the moving image, y the deformation field and ℳ y  the warped image. Each CNNs is 

trained separately for a fixed amount of epochs and the weights stay fixed afterwards. The 

deformation fields from all preceding coarse levels are used as an initial guess by combining 

them by functional composition and warp the moving image on the highest resolution. 

Subsequently, the warped moving image is downsampled to the current image level. The 

dotted lines illustrate the initialization of the network weights with the learned parameters of 

the previous level.
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Fig. 4. 
The Image shows a) an inspiration scan and b) and expiration scan of the lungs subdivided 

into  upper left lobe,  lower left lobe,  upper right lobe,  lower right lobe and 

middle right lobe.
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Fig. 5. 
Comparison of the Dice overlaps, average surface distance and Hausdorff distance for all 

test images and each anatomical label (  average of all labels,  upper left lobe,  lower 

left lobe,  upper right lobe,  lower right lobe and  middle right lobe). For each one the 

distributions of the Dice coefficients after affine pre-alignment, after conventional method of 

Rühaak et al. (2017) and after our proposed registration are shown.
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Fig. 6. 
Example Jacobian determinant colormaps overlaid on coronal slices of the fixed images. The 

volume changes are smooth and mostly around 1 (yellow overlay). Due to large motion in 

the upper right case, some foldings (dark red overlay) occur on the left inferior border. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 7. 
Cumulative distribution of target registration error (TRE) in millimeters for all variations of 

our loss function, after affine registration and initially on all landmark pairs of the DIRLAB 

4DCT dataset. In addition, the dotted lines visualize the 75th percentiles of the TRE, which 

are 1.40mm (our VIRNet), 1.51mm (noVCC), 1.64mm (noKP), 1.54mm (noMask), 2.22mm 

(singleLevel), 1.54mm (twoLevel), 4.46mm (affine), 12.55mm (initial).
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Fig. 8. 
Example coronal slices extracted from four exemplary cases. Input images ℱ and ℳ, the 

warped moving image ℳ y , the difference image ℱ − ℳ (fourth column) and the difference 

image ℱ − ℳ y  after registration with the proposed method (fifth column). In all cases the 

respiratory motion was successfully recovered and most inner structures are well aligned. 

Due to altered density of lung tissue during breathing, intensity changes occur and therefore 

higher values in the difference images are reached without registration errors.
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Table 1

Registration results of Rühaak et al. (2017) and our method on the COPDGene dataset. We performed a one-

sited Wilcoxon signed-rank test to test if improvements to the method of Rühaak et al. (2017) are statistically 

significance.

Rühaak et al. (2017) ours

Dice 0.92 ± 0.05*** 0.95 ± 0.03

ASD 1.97 ± 1.24mm*** 1.72 ± 0.89mm

HD 27.24 ± 13.70mm* 26.84 ± 14.27mm

Dice30 0.86 ± 0.03 *** 0.93 ± 0.01

Foldings 0% 0.06%

Runtime CPU 160s *** 32s

Runtime GPU - 0.75s

GPU memory - 4GB

Significance levels are defined as

*
p < 0.05

**
p< 0.01

***
p< 0.001.
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Table 3

Results of the EMPIRE10 challenge for the method of Rühaak et al. (2017) and our proposed method. The 

average score over all 30 cases for the lung boundaries, fissure alignment, landmark error and singularities is 

shown. Detailed results can be found on the challenge website.

Lung B. Fissures Landmarks Singularities

Rühaak 0.00 0.09 0.63 0.00

ours 0.07 0.09 1.01 0.02
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