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Abstract 

Transcriptional programs are often dysregulated in cancers. A comprehensive investigation of potential regulons 
is critical to the understanding of tumorigeneses. We first constructed the regulatory networks from single-cell RNA 
sequencing data in human lung adenocarcinoma (LUAD). We next introduce LPRI (Lung Cancer Prognostic Regulon 
Index), a precision oncology framework to identify new biomarkers associated with prognosis by leveraging the sin-
gle cell regulon atlas and bulk RNA sequencing or microarray datasets. We confirmed that LPRI could be a robust 
biomarker to guide prognosis stratification across lung adenocarcinoma cohorts. Finally, a multi-omics data analysis 
to characterize molecular alterations associated with LPRI was performed from The Cancer Genome Atlas (TCGA) 
dataset. Our study provides a comprehensive chart of regulons in LUAD. Additionally, LPRI will be used to help prog-
nostic prediction and developing personalized treatment for future studies.
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Background
Transcriptional program dysregulation is a hallmark of 
cancer. Transcriptional regulation plays a crucial role in 
the cell identity maintenance of cancer cells and cancer-
associated cells. Transcription factors (TFs) function by 
recognizing and binding specific sequences to regulate 
gene expression. The combinations of TFs and their tar-
get genes can sometimes control gene expression which 
may determine cell identity. Cancer is a complex ecosys-
tem that comprises many different cell types including 
malignant cells, immune cells, and stromal cells. Under-
standing how transcriptional programs control different 
cell states and cell types in the cancer ecosystem will pro-
vide opportunities for therapeutic benefits in cancer.

Lung cancer has been the focus of cancer research for 
many years. According to the GLOBOCAN 2020 estima-
tion, lung cancer is a leading cause of cancer death world-
wide [1]. Non-small cell lung cancer (NSCLC) patients 
account for nearly 85% of all lung cancer cases, and 
almost 50% of them suffer from lung adenocarcinoma 
(LUAD) [2]. Lung cancer is characterized by pronounced 
heterogeneity. In recent years, with the advances in 
genomics, the study from The Cancer Genome Atlas 
Research Network (TCGA) has characterized the major 
subtypes in the transcriptome and genome in LUAD [3]. 
Recently, single-cell RNA sequencing (scRNA-seq) has 
been used to assess transcriptional similarities and dif-
ferences within a population of cells in cancer. Kim et al. 
used scRNA-seq to establish the atlas of primary and 
metastatic LUAD from human patients [4]. Jacks and col-
leagues analyzed the single-cell epigenome in a mouse 
model and found changes in epigenomic states from nor-
mal cells to different states of malignant cells with cancer 
progression, which was controlled by key transcription 
factors [5]. Up until now, the underlying gene regulatory 
networks (GRNs) at the single cell resolution for human 
LUAD remain unclear. In this study, we sought to char-
acterize the GRNs in LUAD from scRNA-seq.  Here we 
used the SCENIC pipeline to construct the GRNs from 
the published dataset (GSE131907) [4, 6]. The SCENIC 
algorithm infers the TFs and their potential target genes, 
which are jointly named a regulon. Next, we identified 
the regulons that were associated with different states of 
malignant cells. Although previous studies established 
the prognostic model in NSCLC with different biological 
insights such as immune-related genes [7], RNA splic-
ing [8], a robust gene signature that considers to avoid 
the inherent technical biases across different sequencing 
platforms to predict prognosis is warranted. Additionally, 
the exploration and the identification of novel biomark-
ers associated with prognosis from GRNs would provide 
new insights into the progression of cancer and facilitate 
the translation of GRN-targeted therapies. Therefore, 

we designed a workflow to extract prognostic associ-
ated regulons by deconvoluting the patients’ cohorts with 
matched clinical data and bulk sequencing data. Here, we 
present and study a computational framework, termed 
as LPRI, to help prognostic stratification of patients. The 
prognostic model was tested and further validated in 
external datasets with the cross-platform cutoff. A mech-
anistic analysis was performed by utilizing the multi-
omics data from TCGA. The association between LPRI 
and genomic alterations, the transcriptome landscape, 
and the immune microenvironment was implicated. In 
summary, this work provides a new insight into that LPRI 
could facilitate survival prediction and the development 
of personalized therapies for patients with LUAD.

Materials and methods
Patient cohorts in this study
Patient cohorts used in this study are summarized in 
Additional file 1: Table S1.

Pre‑processing of single‑cell RNA sequencing data
The single-cell RNA sequencing dataset (GSE131907) 
was processed using Seurat (v4.0) in R v4.0.3 [9]. The 
annotation of cell types was provided by the authors. 
Firstly, the matrix of the filtered cells and genes was 
constructed as the input for Seurat. Cell filtering and 
gene selection were performed as mitochondrial genes 
(≤ 20%, unique molecular identifiers (UMIs), and gene 
count (from 100 to 150,000 and 200 to 10,000). We also 
excluded genes with min.cells < 0.1% cells. Then, we used 
the following parameters for the Seurat ScaleData func-
tion: do.scale = FALSE, do.center = TRUE, scale.max = 10. 
The mean gene expression variably expressed between 
0.0125 and 3 and quantile-normalized variance greater 
than 0.5 were screened. Finally, through PCA visualiza-
tion, the top 15 PCs were selected for the analysis, and 
the RunUMAP function was used for visualization.

pySCENIC analysis
To identify the regulons in GSE131907, SCENIC algo-
rithm was implemented by pySCENIC (v0.10.3) in 
python (3.6.11) [6]. The filtered single-cell expression 
matrix was taken as the input, and the co-expression 
module between TF and potential target genes was 
constructed and defined as a regulon. The module was 
inferred using GRNBoost2, and regulons were identified 
by RcisTarget. The regulon activity scores (RAS) for each 
cell was scored by AUCell. We next performed dimen-
sions reduction by using UMAP with binarized AUCell 
score matrix of regulons as input.
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Inference of cell‑type‑specific regulons
To identify the cell-type-specific regulons in each type 
of cell in primary and metastatic LUAD, an entropy-
based strategy developed by Suo et  al. was adopted 
[10]. Briefly, this metric could measure the cell-type 
specificity score by Jensen–Shannon Divergence. The 
RAS was first normalized. The probability distribution 
which presented normalized RAS, was defined as:

In this equation, n is the total number of cells, where:

Next, the cell-type-specific distribution which showed 
whether the cell was in a specific cell type or not was 
defined as:

Then, we used the R package Philentropy (v0.5.0) 
to calculate Jensen-Shannon Divergence (JSD), wide-
spread adopted for measuring the difference between 
two probability distributions, which was defined as:

In this equation, H means Shannon entropy of a 
probability distribution, defined as:

As a result, the regulon specificity scores (RSS) could 
be calculated by the following equation:

To a cell type C, the greater RSS value of regulon R 
was associated with the higher cell-type specificity. 
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Meanwhile, we got binding motif logos from the JAS-
PAR database (http://​jaspar.​gener​eg.​net/).

Construction of a gene signature from prognostic regulons
After identifying cell-type-specific regulons, the LUAD 
samples from TCGA (TCGA-LUAD) were considered as 
the training set for prognostic signature establishment. 
We filtered TFs and corresponding target genes, identi-
fied by the univariate cox regression analysis (P < 0.05). 
Next, the gene set variation analysis (GSVA), a non-para-
metric, unsupervised technique is used to estimate regu-
lon enrichment scores, which was implemented by GSVA 
function in the R GSVA package (v1.38.2). The expression 
matrix and list of regulons were as input while keeping 
all other parameters at their default settings. As a result, 
we obtained TCGA-LUAD samples enrichment score for 
each regulon. The risk score was constructed by utilizing 
the regression coefficients derived from univariable Cox 
proportional hazards regression analysis to multiply the 
enrichment scores to help patients’ prognostic stratifica-
tion, which we named as lung cancer prognostic regulon 
index (LPRI):

We next utilized it to construct survival analysis using 
maximally selected rank statistics to determine the cross-
platform cutpoint, which divided the patients into the 
high-risk subgroup or the low-risk subgroup. As the LPRI 
model was established, the LUAD samples from the GEO 
database were used as the testing set. Univariate and 
multivariate Cox regression by ezcox (v1.0.0) in R was 
utilized to analyze these data sets [11]. Meanwhile, the 
prediction capability of the LPRI was further evaluated 
by plotting Kaplan–Meier curves and calculating the area 
under the ROC curve (AUC) by using R survivalROC 
(v1.0.3) and R timeROC (v0.4) packages.

Clinical, transcriptome, epigenomic, genomic features 
analysis
The clinical traits were obtained from the TCGA-LUAD 
datasets, and we acquired TCGA transcriptome, epig-
enomic, and genomic features profiles from UCSCX-
enaShiny (v1.1.2) (https://​openb​iox.​github.​io/​UCSCX​
enaSh​iny/​refer​ence/​load_​data.​html), which were manu-
ally curated from previous TCGA publications [12]. Age 
was considered as an important factor [13]. Accord-
ing to the age categories in WHO and the mean age 
(65 years) in our cohort, we further stratify the patients 
into two groups (age < 60 and age ≥ 60). To interro-
gate subgroup-specific pathway activity, we performed 
pathway enrichment in each subgroup by using the 
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Mann–Whitney–Wilcoxon Gene Set test (MWW-GST) 
[14]. The Enrichmap application of Cytoscape were used 
to visualize the pathway enrichment [15]. To integrate 
DNA methylation and RNA expression, we adapted the 
ELMER pipeline [16]. The CpG sites located at the pro-
moter were firstly selected. We identified hypomethyl-
ated CpG sites (probes) between two subgroups with 
R get.diff.meth function. The nearby genes to CpG sites 
were identified with R GetNearGenes function. The 
gene-probe pairs were identified by R get.pair function. 
We performed the Wilcoxon rank-sum test (|log2FC| > 0 
and FDR < 0.0005) to find out the differentially expressed 
miRNAs between two subgroups. To identify sub-
group-specific functional miRNA targets, the R pack-
age miRNAtap was used and miRNA target genes whose 
expression were anti-correlated with miRNA expression 
in each subgroup were considered (Spearman’s correla-
tion, ρ < 0 and p < 0.05). After prediction, we performed 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment to distinguish two subgroups specific path-
way functions through miRNA perspective by target 
genes. The relations between miRNAs, target genes and 
pathway functions were visualized by Cytoscape [17].

Signature score estimation and immunotherapies analysis
The ESTIMATE algorithm could infer the overall infiltra-
tion levels of stroma and immune cells in tumor tissues 
using gene expression signatures. The expression data 
and clinical data from the IMvigor210 cohort were down-
loaded from http://​resea​rch-​pub.​gene.​com/​IMvig​or210​
CoreB​iolog​ies/ [18]. For characterization of the metabo-
lism, immune microenvironment, and other gene signa-
tures, we obtained gene signatures from IOBR package 
(https://​github.​com/​IOBR/​IOBR) and previous publica-
tions [19, 20].

Prediction of chemotherapy drug sensitivity
Drug sensitivity data of human cancer cell lines were 
achieved from the Cancer Therapeutics Response Portal 
(CTRP v.2.0 and v.1.0) (https://​porta​ls.​broad​insti​tute.​org/​
ctrp) and PRISM Repurposing dataset (v.19Q4) (https://​
depmap.​org/​portal/​prism/). Firstly, K-nearest neighbor 
(k-NN) imputation was applied to impute the missing 
AUC values by R impute (v1.68.0) package. Ridge regres-
sion was used in model training and predicting for drug 
sensitivity analysis, which was implemented by calcPhe-
notype function from the R pRRophetic (v0.5) package. 
Annotations for pathways of drugs are downloaded from 
Genomics of Drug Sensitivity in Cancer (GDSC, http://​
www.​cance​rrxge​ne.​org/​downl​oads) [21].

Drug docking analysis
Docking analysis was performed based on the highly 
sensitive drugs predicted from the above analysis and 
the transcription factors gene list from LPRI. Firstly, we 
searched the Chemical-Gene Interaction in the CTD 
database (http://​ctdba​se.​org/) to investigate whether 
the drugs could affect the expression of genes. Then, we 
downloaded the 3D structures of transcription factor 
proteins from the Uniprot database and the 3D struc-
tures of small molecule drugs from the PubChem data-
base. After obtaining the spatial structure of the drug 
and target protein, we used AutoDock (v4.2.6) software 
for molecular simulation docking to determine the drug 
target based on the minimum binding energy, and used 
PyMOL (Version 2.4.0 Open-Source) for molecular dock-
ing visualization.

Cell culture and antibodies
Human lung epithelial cells (BEAS-2B) and the lung 
cancer lines (A549, H358, PC9, 95  C, H520, SPCA-1 
and H23) obtained from the Cancer Research Institute 
of Central South University were cultured respectively 
in DMEM (Gibco), DMEM/F-12 1:1 (Biohome) and 
RPMI 1640 (Gibco) medium supplemented with 10% 
fetal bovine serum (FBS), and all cells were maintained 
at 37 °C with 5% CO2. Additionally, these cell lines were 
subjected to detection of mycoplasma contamination and 
verified to be negative. Besides, all cell lines were pas-
saged less than 10 times once revived from frozen stocks.

Real‑time quantitative PCR (RT‑qPCR)
The total RNA of different lung cancer cell lines was iso-
lated in accordance with the manufacturer’s instructions 
of RNAiso Plus (Takara clontech, Cat. 9109). Then cDNA 
of these cell lines was synthesized from RNA through 
reverse transcription reaction using PrimeScript™ RT 
reagent kit with gDNA Eraser(Takara clontech, RR047A). 
And finally, RT-qPCR assay was performed with 2× SYBR 
Green qPCR Master Mix (Bimake, B21203) and designed 
primers (Forward sequence: CTG​CGC​TCC​AAG​TAC​
GAG​GCG; Reverse sequence: TCG​GTG​GAC​TTG​ACG​
ATG​GTGA). The 2−ΔΔCT method was utilized to meas-
ure the relative mRNA expression of MAFK in different 
lung cancer cell lines.

Immunoblotting (IB) assay
Immunoblotting assay was conducted as previously 
described. Briefly, the cells or tissue were harvested and 
lysed in IP buffer containing cocktail (protease inhibi-
tor, bimake). The protein concentration was measured 
with Pierce™ BCA Protein Assay Kit (Thermo Scientific, 

http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://github.com/IOBR/IOBR
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
http://www.cancerrxgene.org/downloadsp
http://www.cancerrxgene.org/downloadsp
http://ctdbase.org/


Page 5 of 19Xiong et al. Journal of Translational Medicine          (2023) 21:499 	

Cat. 23225). Then, the protein samples were subjected to 
SDS-PAGE and immunoblotting with the indicated anti-
bodies overnight at 4 °C. After washing three times with 
PBST buffer (10 min every time), the corresponding sec-
ondary antibody was added and incubated at 37 °C  for 
another 1 h. Finally, the protein signal was detected using 
WesternBright Sirius Chemiluminescent Detection Kit 
(Advansta, Cat.k-12,043-D20) or WesternBright ECL kit 
(Advansta, Cat.k-12,045-D50).The following antibodies 
were obtained from commercial sources and used as pri-
mary antibodies: MAFK (GTX129240) was ordered from 
GeneTex, and β-actin (A5441) was gained from Sigma-
Aldrich. Moreover, two kinds of secondary antibody, 
including anti-rabbit (7074) as well as anti-mouse (7076) 
IgG HRP-linked antibody, were obtained from CST.

Statistics analysis
Continued variables between groups were compared 
by the Student’s t-test, one-way analysis of variance 
(ANOVA) test, or the Wilcoxon rank-sum test. Correla-
tions between continuous variables were evaluated by 
Spearman or Pearson correlation analyses. For all statis-
tical analyses, the P-value of 0.05 was taken as the sig-
nificant threshold in all tests. All statistical analyses were 
performed using R software, version 4.1.1 (The R Foun-
dation for Statistical Computing, http://​www.​rproj​ect.​
org/) or Python.

Result
Construction of a scRNA‑seq regulon atlas in LUAD
The workflow of this study is outlined in Fig.  1A. To 
provide a comprehensive insight into the gene regula-
tory networks (GRNs) in LUAD, we first constructed a 
single-cell RNA-seq regulon atlas by leveraging the pre-
viously published dataset (GSE131907) (Fig.  1B). This 
dataset includes a total of 208,506 cells from 44 sam-
ples including the normal tissues and early to metastatic 
stage cancer. The major cell lineages include epithelial 
cells (malignant cells, non-malignant cells), stromal cells 
(fibroblasts and endothelial cells), immune cells (T, B, 
NK, and MAST cells), and oligodendrocytes in brain 
metastases. Next, we used the SCENIC algorithm to infer 
the regulon for each cell type, which infers co-expression 
modules between transcription factors (TFs) and can-
didate target genes using machine learning regression 
techniques, resulting in regulons. While some regulons 
are universally expressed across cell types, we found that 

many regulons are cell-type specific (Fig. 1C). For exam-
ple, POU2F2 regulon is shown to be associated with B 
cell proliferation and differentiation [22]. In agreement 
with the literature, SPIC regulon is highly enriched in 
myeloid lineage cells, which is required for the develop-
ment of macrophages [23]. TCF21 regulon is an essen-
tial regulator in fibroblast development [24]. Our results 
indicated that regulons could uncover the GRNs of each 
cell type in non-malignant cells. We also observed that 
malignant cells and epithelial cells are clustered together, 
indicating the epithelial origin of the most malignant 
cells (Fig.  1B). We then asked if the regulon could also 
reflect the intra-tumoral heterogeneity. It is intriguing 
that despite of some shared regulators, the variety of 
regulon expression indicates transcription reprogram-
ming during metastasis. For example, the FOXA2 regu-
lon is expressed highly in the epithelial cells or malignant 
cells of the primary lung tumor, while its expression is 
decreased in tumors of the bronchus, which may be asso-
ciated with epithelial-to-mesenchymal transition [25] 
(Fig. 1C). The expression of the HOXA5 regulon is highly 
enriched in brain metastases, which may suggest its role 
in brain metastases. Taken together, our results indicate 
that our established single cell regulon atlas can faithfully 
uncover the heterogeneity of the GRNs in both malignant 
and non-malignant cells in LUAD (Fig. 1C).

LPRI: a computational method to guide prognostic 
prediction for LUAD patients
The inter-tumor and intra-tumor heterogeneity would 
expectedly take place on the transcription level regard-
ing cancer cells and the tumor microenvironment (TME). 
Here we focus on the intrinsic transcriptional hetero-
geneity of malignant cells. On the one hand, single-cell 
RNA sequencing has been limited to the cost and scarcity 
of samples. On the other hand, the bulk tumor expres-
sion data accompanied by clinical outcome metadata are 
abundant. Considering the advantages of scRNA-seq and 
bulk tumor sequencing data, we design the computa-
tional method to extract the core transcriptome program 
from the scRNA-seq data to guide patient stratification in 
large bulk tumor sequencing cohorts. We developed an 
algorithm to calculate an index for prognostic stratifica-
tion from regulons, which we denote as the “Lung can-
cer Prognostic Regulon Index” (LPRI) (Fig.  1A). Briefly, 
we initially identified the top 20 regulons that are specific 
to each tissue site of malignant cells (lung, bronchus, 

Fig. 1  SCENIC analysis of human adenocarcinoma single cell dataset. A The workflow for this study. B Visualization of the SCENIC regulons 
from 208,506 cells from GSE131907 by using uniform manifold approximation and projection (UMAP). Each dot represents one cell and is colored 
according to cell types. C Bubble plot shows specific regulons across cell types. Bubble size is proportional to the percentage of cell types 
with the binarized AUCell expression, and color intensity is proportional to the scaled AUCell score within a cell type. The motifs of representative 
regulons are shown. mBrain brain metastases, mLN lymph node metastases, tLung and tL/B, primary tumors in lung or bronchus

(See figure on next page.)

http://www.rproject.org/
http://www.rproject.org/
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Fig. 1  (See legend on previous page.)
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lymph node metastases, and brain metastases) by adapt-
ing the method as previously published [10]. In total, 63 
specific regulons were identified. Next, we performed a 
two-step feature selection to efficiently categorize clini-
cal outcomes of LUAD patients via regulons. In the first 
step, we performed the univariate cox regression analysis 
on 63 transcriptional factor genes from the regulons. 15 
transcriptional factor genes were identified as prognostic 
genes based on the criteria of P < 0.05. In the second step, 
we performed feature selection for target genes in the 15 
regulons retained. Prognostic target genes in each regu-
lon were identified by the univariate cox regression anal-
ysis (P < 0.05). Thus, we obtained a gene set that contains 
15 prognostic-associated regulons (Fig.  2A). Finally, to 
calculate the enrichment of prognostic regulons, gene set 
variation analysis (GSVA) was performed to score each 
sample with these gene sets. We first calculated the LPRI 
using the TCGA-LUAD dataset as the training set. To 
determine a clinically useful cut-off value across patients, 
we used the maximally selected rank statistics method 

on the TCGA-LUAD training set. The optimal cut-off 
point to stratify patients was 0.33 (Additional file 2: Fig. 
S1A). We divided patients into two groups with this cut-
off point. The patients with a higher LPRI had a lower 
survival probability. We named these patients as the 
high-risk subgroup. A systematic literature search was 
then performed to determine the inclusion of validation 
datasets in this study (Additional file  2: Fig. S1B). Sub-
sequently, we used the cross-platform cut-off point 0.33 
across validation datasets. High-risk subgroups showed 
consistently poorer clinical outcomes than low-risk sub-
groups (Fig. 3A–H). The prediction capability of the LPRI 
was further assessed by calculating the area under the 
ROC curves (AUCs). The AUCs of the LPRI for overall 
survival (OS) ranges from 0.7 to 0.96 for 1-year, 0.57–
0.79 for 3-year, and 0.58–0.81 for 5-year in different data-
sets (Additional file  2: Fig. S2A–H). We also performed 
subgroup analysis based on the TNM stage system, 
because patients with early (clinical stage I and II) and 
advanced stage diseases (clinical stage III and IV) require 

Fig. 2  Development of LPRI and clinical features associated with LPRI. A Identification of prognostic regulons. Large bubbles represent the TFs. 
Small bubbles represent the targets. Bubble size is proportional to the number of target genes. Colors represent the beta coefficient for each 
regulon from the univariate COX regression analysis. B The clinical and molecular features associated with the LPRI in the TCGA-LUAD dataset. C–G 
Box plots of LPRI in individual samples, stratified by stage, gender, TCGA subtype, KPS, smoking status, and age. ‘ns’ means no statistical significance, 
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001
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different therapy strategies and hold different progno-
ses. We found that in both the early and advanced stages, 
LPRI could stratify patients (Additional file 2: Fig. S3A–
D). We also observed that when patients are stratified 
by age, LPRI demonstrates good performance to predict 
patients’ survival (Additional file 2: Fig. S3E, F). In addi-
tion, we performed multivariate Cox regression analysis, 
which showed that LPRI was an independent prognostic 
factor after adjusting other clinical-pathologic features 
(Fig. 3I). Next, we also validated the survival associations 
of LPRI in an independent cohort (GSE200563) included 
44 NSCLC patients in which different regions-of-interest 
(ROIs) were sequenced using the NanoString GeoMx 

DSP platform. We found that high-LPRI was associated 
with poor overall survival (P < 0.001) (Fig.  3J). Interest-
ingly, we also found that high-LPRI patients have shorter 
duration to develop brain metastases (BrMs) (Fig.  3J). 
Pan-cancer analysis was performed to further validate 
the prognostic value of LPRI. We observed a significant 
association of LPRI and risk in multiple cancers includ-
ing low-grade glioma (LGG) (Fig. 3K). Since an RNA-seq 
database from lung cancer brain metastasis with survival 
information is unavailable now, we found that high LPRI 
was associated with worse survival in LGG, which may 
have some shared features with BrMs.

Fig. 3  Prognostic value of LPRI. A–H Kaplan–Meier survival curves showing overall survival for patients grouped as high-and low-risk subgroups 
in the training set and validation set. I Multivariate Cox regression analysis for overall survival in the TCGA-LUAD dataset. J Kaplan–Meier survival 
curves in GSE200563. K LPRI stratifying survival probabilities in the TCGA-PANCAN dataset
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LPRI reclassify LUAD patients with distinct clinical features
The LPRI was ranked from low to high to explore the 
associations between LPRI and clinical traits in the 
TCGA-LUAD datasets (Fig.  2B). Patients had signifi-
cantly elevated LPRI at the advanced stage (III/IV) 
(Fig. 2C). Regarding sex, male patients had higher LPRI 
than female patients (Fig.  2D). The previous study had 
proposed a transcriptome nomenclature: the terminal 
respiratory unit (TRU), the proximal-inflammatory (PI), 
and the proximal-proliferative (PP) [3]. The PP and PI 
subtypes had the highest LPRI (Fig.  2E). The PP and PI 
subtypes harbored KRAS, TP53, and NF1 mutations were 
associated with a worse prognosis, which is consistent 
with our study [3]. LPRI was also elevated in smoking 
patients (Ever or current vs. never, all p < 0.05) (Fig. 2F). 
Additionally, we found that younger patients (age < 60) 
had elevated LPRI (Fig. 2G).

LPRI contributes to distinct transcriptomic, epigenomic 
and miRNAs landscapes
Given the substantial difference of the two groups, we 
further explored the potential biological pathways linked 
with LPRI through the transcriptome (Fig.  4A). Analy-
sis of the Gene Ontology enrichment map showed that 
pathways related to cell cycle, OXPHOS, DNA repair and 
the spliceosome complex were enriched in the high-risk 
subgroup while immune-related pathways and arachi-
donic acid metabolism/fatty acid metabolism pathways 
were enriched in the low-risk subgroup (Fig. 4B, C). As 
DNA methylation in the promotor usually anticorrelates 
with gene expression, we also investigated the methyl-
omic differences in parallel with gene expression. We first 
identified Differentially Methylated CpGs (DMCs) occur-
ring at promotor probes. Among them, 14,174 CpG sites 
exhibited hypomethylation in high-risk subgroup, while 
631CpG sites were hypomethylated in low-risk subgroup. 
We next probed the nearby genes at these CpG sites 
and found significant probe-gene pairs. 2618 and 245 
probe-gene pairs were identified for hypomethylation in 
the high-risk subgroup and low-risk subgroup, respec-
tively. GO enrichment analysis of hypomethylated genes 
showed that pathways related to cell cycle regulation and 
post-translational protein modification were enriched 
in high-risk subgroup (FDR < 0.05) (Fig.  4E). However, 
we failed to identify statistically significant pathways 
enriched in low-risk subgroup. This suggests that the 
methylome and transcriptome may only have a synergis-
tic effect in the high-risk subgroup. We next identified 
subgroup-specific miRNAs and functional miRNA tar-
gets. In the high-risk subgroup, we identified downreg-
ulated miRNAs which target genes associated with the 
cell cycle, spliceosome, proteasome, and cellular senes-
cence related process (Fig. 4F). In contrast, the low-risk 

subgroup had low expression of several miRNAs that 
target genes associated with immune-related pathways, 
fatty acid metabolism and arachidonic acid metabolism 
(Fig.  4G). Overall, these results suggest that epigenetic 
and microRNA regulation coordinate with the transcrip-
tome to mediate the different biological activities in dif-
ferent subgroups.

Correlation of LPRI with the genome features
Somatic mutations and copy number variations (CNVs) 
are features of genome structures which impact gene 
expression. As we observed the dramatic difference in 
transcriptome between two subgroups, we further sought 
to explore the difference in genome features, which may 
partially explain the one in the transcriptome. Firstly, we 
found that the high-risk group had significantly higher 
non-silent tumor mutations, which indicates higher 
tumor mutation burdens (TMBs). Of the most frequently 
altered genes, the high-risk group had the most frequent 
mutations in TP53, TTN, CSMD3, MUC16 genes, while 
the low-risk group had the most frequent mutations in 
TP53, TTN, MUC16, RYR2 genes (Fig. 5A). Of differen-
tially altered genes, TP53 is a known tumor suppressor. 
ZFHX4 is a transcription factor and has been shown to be 
associated with the maintenance of tumor-initiating cells 
in glioblastoma [26, 27]. XIBP2 encodes an actin-bind-
ing protein and its mutations in XIBP2 were observed 
frequently in human lung adenocarcinoma [3]. How-
ever, the mechanism behind how mutations in this gene 
arise in cancers remains unclear [28]. Therefore, further 
investigation of the role of this gene and other differen-
tially mutated genes in human cancers is still warranted. 
Somatic mutations in the cancer genome could be caused 
by both exogenous and endogenous factors. Mutational 
signatures had been used to categorize the mutational 
patterns. Thus, potential exogenous and endogenous 
factors could be linked with the mutational patterns via 
mutational signatures. Mutational signature analysis 
revealed that MutSig5 (associated with smoking) had the 
highest score among all signatures. We found that the 
MutSig6 score was significantly different between the 
high-risk and low-risk groups, which was associated with 
CpG islands, indicating the potential epigenetic differ-
ences. MutSig9 was associated with ABOBEC mutagene-
sis, the difference of which between the high and low-risk 
subgroups may suggest various immune-associated activ-
ities (Fig. 5B). In addition to the somatic mutations, the 
high-risk subgroup had significantly higher copy number 
loss or gain, especially the 3q26, 3p27, 3q28, 3p29, 7p11, 
7p12, 7p13 amplifications and 5q15, 5q22, 5q23, 5q31, 
5q35 deletions. Chromosome 3q amplification was asso-
ciated with lung cancer progression [29]. The higher fre-
quency of 3q amplifications in the high-risk group may 
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Fig. 4  Characterization of transcriptome/epigenome features in LPRI subgroups. A The landscape of transcriptome profiles. B, C Enrichment 
map network of enriched GO categories in high-risk (B) or low-risk subgroup (Q value < 0.001, NES > 0.6) from two-sided MWW-GST analysis. 
D Identification of hypo-methylated probes and regulated genes. E GO enrichment of hypo-methylated genes in the high-risk subgroup. F, 
G Differentially expressed microRNA and the target genes in the high-risk (F) or low-risk subgroup (G)



Page 11 of 19Xiong et al. Journal of Translational Medicine          (2023) 21:499 	

Fig. 5  Characterization of genome alterations in LPRI subgroups. A Oncoprint shows the differentially altered gene mutations or CNV regions 
between high and low-risk subgroups. B Difference in mutational signatures between high and low-risk subgroups. C–E Comparisons 
of the stemness, loss of heterozygosity, genome alterations, and instability between low- and high-risk subgroups. ‘ns’ means no statistical 
significance, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001



Page 12 of 19Xiong et al. Journal of Translational Medicine          (2023) 21:499 

explain the deteriorated prognosis in this group. Moreo-
ver, we also found higher loss of heterozygosity, homolo-
gous recombination deficiency (HRD) score, aneuploidy 
score, sub-clonal fraction, and CNA alteration fraction in 
the high-risk subgroup, indicating higher genome insta-
bility (Fig. 5C–E). The substantially higher stemness indi-
ces also revealed the tumor aggressive phenotype in the 
high-risk subgroup, which also indicates higher tumor 
metastases propensity [30]. We further explored the dif-
ference of genomic features stratified by patient age. We 
observed substantial difference in mutation frequency of 
several genes such as TP53 (64% in patients < 60 vs. 47% 
in patients ≥ 60) (Additional file 2: Fig. S4A, B). We also 
observed that loss of heterozygosity, homologous recom-
bination deficiency (HRD) score and CNA alteration 
fraction are higher in the high-risk subgroup in both age 
groups. Moreover, we found that aneuploidy score and 
sub-clonal fraction are higher in the high-risk subgroup 
only in patients ≥ 60. These analyses indicate age could 
be considered as a factor which might contribute to the 
genome instability (Additional file 2: Fig. S4C–M).

Correlation of LPRI with the TME and immunotherapies
The significant correlations between LPRI and immune-
related pathway alterations prompt us to hypothesize 
that different risk subgroups may link to altered tumor 
microenvironments (TME). The association between 
ESTIMATE scores of tumor immune infiltrates as well 
as immune checkpoint expression between subgroups 
were further explored. ESTIMATE scores could be used 
to infer the fraction of stromal and immune cells in solid 
tumors. ESTIMATE purity was significantly elevated in 
the high-risk subgroup, while the ImmuneScores and 
StromalScores were higher in the low-risk subgroup 
(Fig.  6A). These results implicate higher tumor signal-
ing in the high-risk subgroup while higher immune/
stromal signaling in the low-risk subgroup. Gene signa-
tures that reflect the TME, tumor-TME interaction, and 
tumor behavior were further evaluated. We found that 
the high-risk subgroup is associated with tumor pro-
liferation, and matrix remodeling process, whereas the 
low-risk subgroup highly expresses T cells, endothe-
lium, and Th2 signature (Fig. 6B). Next, we checked the 
expression of immune checkpoint genes. The differential 
expression of immune checkpoint genes indicates the 
dynamics of TME (Fig.  6C, D). Further, we hypothesize 
that the different immunogenomics would contribute 
to the TME difference. Genomic alterations may impact 
TME activity. Subsequently, links between CNVs and 
subgroups were studied. We mapped the immunoregu-
latory genes onto the altered CNV regions. We found 
that CNVs may contribute to the alterations in the tran-
scriptome for some immunoregulatory genes (Fig.  6E). 

For example, TNFRSF14, ITGB2, and CX3CL1 (locate 
at 1p36.3, 21q22.3, and 16q21, respectively) were highly 
expressed in the low-risk subgroup while deletions in 
these regions were observed more frequently in the high-
risk subgroup. TNFRSF14 encodes a member of the TNF 
(tumor necrosis factor) receptor superfamily, which can 
function as an inflammatory activator. ITGB2 encodes 
an integrin beta chain, which can be involved in cell-cell 
interactions. CX3CL1 encodes proteins in the CX3C sub-
group of chemokines, which is a regulator in chemokine 
activity. Alterations in other immunoregulatory genes in 
the transcriptome level may not directly associate with 
CNVs, suggesting possibly more complex regulatory 
mechanisms.

Finally, we checked the concordance of our subtype 
and previously reported subtypes (Fig.  6F). The high-
risk subgroup is associated with the immune-desert sub-
type, while the low-risk subgroup is associated with the 
immune-riched, fibrotic subtype [19]. Additionally, the 
high-risk subgroup is associated with the wound-healing 
subtype while the low-risk subgroup is associated with 
the inflammatory subtype [31].

The potential therapeutic value of stratification of LUAD 
patients with LPRI
Next, we sought to investigate the potential treatment 
value for patients stratified with LPRI. We first retrieved 
drug response data from three databases: PRISM, CTRP 
v1, and CTRP v2. A total of 1492 compounds were col-
lected (Fig. 7A). We then used ridge regression to train a 
model with CCLE datasets which contain drug response 
data in cancer cell lines. We next utilized the pre-trained 
model to predict drug sensitivity in the TCGA-LUAD 
and GEO-meta datasets. A lower AUC value is associ-
ated with higher drug sensitivity (Fig. 7B). We identified 
477 correlated pairs and 802 correlated pairs between 
LRPI and predicted AUC values in the TCGA-LUAD and 
GEO-meta datasets, respectively. Compounds with the 
most different AUC values are shown in Fig. 7C and Fig. 
S4A. We found that drugs targeting mitosis (docetaxel, 
paclitaxel, et  al.) or DNA replication signaling (gemcit-
abine, mitoxantrone, et  al.) were associated with high 
sensitivity in LRPI-high patients (Fig.  7C, D and Addi-
tional file 2: Fig. S5A, B).

On top of chemotherapy, therapies targeting immune 
pathways have revolutionized the treatment of cancers. 
We sought to investigate whether LPRI could be used to 
predict efficacy in immunotherapies. We first obtained 
the TIDE prediction score for two datasets. TIDE pre-
diction score correlates with T cell dysfunction and 
exclusion. A higher TIDE prediction score is associ-
ated with a worse response from immunotherapies 
[32]. We found that the high-risk subgroup had a lower 
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TIDE prediction score indicating less sensitivity to the 
immunotherapy (Fig.  7E). Furthermore, we surveyed 
the publicly available databases including GEO, and the 

literature. However, the pre-treatment whole transcrip-
tomics files together with therapy response or survival 
of lung adenocarcinoma patients are unavailable due 

Fig. 6  Characterization of immunogenomic features in LPRI subgroups. A Comparisons of the Purity, ImmuneScores, and StromalScores 
from the ESTIMATE software between low- and high-risk subgroups. B Pearson’s correlation between LPRI and TME signatures in the TCGA-LUAD 
and GEO-meta dataset. C, D Differences in immune genes between and GEO-meta dataset. E Altered CNV between low- and high-risk subgroups 
in the TCGA-LUAD in immunogenomics. F Comparison of risk subgroups in the current study with immune subtypes from previous studies. ‘ns’ 
means no statistical significance, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001
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to limited sample size or limited access to data. Alter-
natively, we further validated this in the IMvigor210 
dataset, which comprises 378 patients receiving atezoli-
zumab (anti-PD-L1) in metastatic urothelial cancer. 
We found that LPRI could stratify patients by survival 

probability from the IMvigor210 cohort (Fig.  7F). The 
patients with progression diseases (PD) showed higher 
LPRI than patients with other types of responses (Addi-
tional file  2: Fig. S5C). We also observed that LPRI 
of the “immune inflamed” type was higher than the 

Fig. 7  LPRI predict drug response in the chemotherapy and immunotherapy. A Veen plot shows the number of potential drug candidates 
from three databases, PRISM, CTRP v1, and CTRP v2. B Strategy for discovering potential sensitive drugs associated with LPRI. C Spearman’s 
correlation between LPRI and predicted AUCs of drugs. D Pathway annotation of potential sensitive drugs. E TIDE prediction scores 
between low- and high-risk subgroups. F Kaplan–Meier curves of overall survival in the high and -low (blue) subgroups based on LPRI 
after the PD-L1 blockade immunotherapy in the IMvigor210 cohort. ‘ns’ means no statistical significance, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 
and ∗∗∗∗P < 0.0001
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“immune excluded” type (Additional file 2: Fig. S5D). In 
summary, these results indicate that LPRI can be used 
as a biomarker for treatment stratification and to build 
appropriate treatment options.

LPRI‑aided identification of potential cancer biomarkers 
in LUAD
In this study, we identified 15 prognostic regulons, which 
could serve as candidates for further exploration of their 
function in tumorigenesis (Fig.  2A). As a proof of con-
cept, we focused on MAFK. Our findings showed that the 
MAFK regulon was highly expressed in the high-risk sub-
group and advanced stage (III and IV) in LUAD (Fig. 8A, 
B). To further explore the significance of MAFK in 
LUAD, RT-qPCR and Immunoblotting assays were per-
formed to detected the expression of MAFK both at the 
mRNA and protein level in human normal lung epithelial 
cells (BEAS-2B) and various lung cancer cell lines. The 
results demonstrated that MAFK was highly expressed in 
cancer cell lines at the RNA and protein level, although 
the expression levels varied across cell lines (Fig. 8C, D). 
MAFK was highly expressed in paired cancerous tissue 
compared to adjacent normal tissue in human patients’ 
samples (Fig.  8E). MAFK could also serve as a cancer 
essential gene in several lung cancer cell lines (Fig.  8F) 
from the Depmap dataset [33]. GO enrichment analysis 
revealed that MAFK may regulate cell-substrate adhesion 
(Fig. 8G). Further functional validation of the mechanism 
of MAFK in tumorigenesis is warranted.

After conducting the drug sensitivity analysis and 
obtaining a list of potential drugs, we wanted to deter-
mine whether and how these drugs could affect the 
expression of genes in LPRI. Using a simulated approach, 
we pinpointed drugs that specifically target prognos-
tic transcription factors. For instance, we found that 
Clofibrate was shown to effectively decrease the mRNA 
expression level of MAFK (docking energy of − 1.98 kcal/
mol). Clofibrate is a medication used to lower lipid lev-
els in the bloodstream, specifically targeting high lev-
els of cholesterol and triacylglyceride (Fig.  8H). FOSL1 
was also a predictor for worse prognosis. We also found 
that Cholecalciferol, a type of vitamin D, could result in 
decreased expression of FOSL1 mRNA, also had ability to 
bind to FOSL1, with binding energy of − 3.67 (kcal/mol) 
(Fig. 8I). Our study has indicated that high expression of 
PPARG is a good prognostic indicator. PPARG has been 

shown to inhibit cancer cell proliferation and induce 
apoptosis [34]. We found that the chemotherapy adjuvant 
drug Buthionine Sulfoximine and the commonly used 
chemotherapy drug Cytarabine can also promote the 
expression of PPARG mRNA (Fig.  8H, I). Docking sim-
ulation analysis for PPARG protein and these drugs has 
shown that the binding energy of Buthionine Sulfoximine 
with PPARG is − 3.6 kcal/mol, and the binding energy of 
Cytarabine with PPARG is − 2.73 kcal/mol. Our analysis 
found that these drugs have the potential to specifically 
bind to the PPARG protein.

Discussion
Dysregulation of regulatory programs is a significant 
factor in tumor development. Single-cell omics studies 
increasingly demonstrate that intratumor heterogeneity 
is a crucial marker of tumor development. We utilized 
scRNA-seq data from GSE131907 to construct an atlas of 
a single-cell regulatory network for LUAD via the SCE-
NIC algorithm, comprising a total of 208,506 cells. We 
identified cell-specific regulatory programs and hypoth-
esized their association with tumor development and 
clinical relevance. As such, we developed an algorithm 
to extract prognostic-associated regulons from bulk gene 
expression profiles and single-cell sequencing datasets. 
To aid patient stratification, we created an index, LPRI, 
which we validated in both training and validation data-
sets. We then conducted a comprehensive investigation 
of the landscapes of the tumor transcriptome, tumor 
genome, and TME of stratified patients in the TCGA-
LUAD dataset. We observed significant alterations in 
genomics, biological pathways, and TME among differ-
ent groups, indicating treatment vulnerability for various 
subgroups (Fig. 8L).

In this study, we proposed an index, LPRI, consisting 
of 15 prognostic-associated regulons. To gain insight into 
the biological significance of this gene signature, we dis-
cuss the core transcription factor genes included in this 
gene signature. Several candidates have been reported 
to play a role in tumorigenesis in lung cancer or other 
cancer types. For instance, XBP1, which regulates the 
unfolded protein response (UPR) during endoplasmic 
reticulum (ER) stress, promotes NSCLC tumorigen-
esis, invasion, and metastasis by regulating the IGFBP3/
MMP-9 axis [35]. Additionally, IRE1α-XBP1 signal-
ing is essential for NSCLC progression, and ablation of 

(See figure on next page.)
Fig. 8  MAFK serves as a biomarker in LUAD. GSVA score of MAFK regulon between low- and high-risk subgroups (A) or clinical stages (B) 
in the TCGA-LUAD dataset. C RT-qPCR detection of MAFK expression in normal BEAS-2B cell line and lung cancer cell lines. D Western blot detection 
of MAFK expression in normal NP69 cell line and lung cancer cell lines. E Western blot detection of MAFK expression in patients’ cancerous tissue 
and adjacent normal tissue. F DepMap score of MAFK in different lung cancer cell lines. G GO enrichment analysis of genes in MAFK regulon. 
H–K Visualization of the docking results of proteins encoded by prognostic genes with small molecular compounds. L Summary of this study. ‘ns’ 
means no statistical significance, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001



Page 16 of 19Xiong et al. Journal of Translational Medicine          (2023) 21:499 

Fig. 8  (See legend on previous page.)
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IRE1α-XBP1 signaling extends survival in vivo by eliciting 
adaptive anti-cancer immunity [36]. The CREB3 family of 
ER-localized, bZIP transcription factors has been impli-
cated in the ER and Golgi stress responses as regulators 
of the cell secretory capacity and cell-specific cargos [37]. 
SEC61G participates in endoplasmic reticulum stress by 
interacting with CREB3 to promote the malignant pro-
gression of lung adenocarcinoma [38]. Krüppel-like fac-
tors (KLFs) are DNA-binding transcriptional regulators 
involved in various cellular processes, including prolif-
eration, migration, inflammation, and angiogenesis [39]. 
KLF16 overexpression promoted lung cancer cell growth 
and invasion [40]. The Maf proteins (Mafs) belong to the 
activator protein-1 (AP-1) superfamily and are basic leu-
cine zipper transcription factors. MafG, MafF and MafK 
belongs to small Mafs (approximately 150–160 amino 
acids) [41]. MafG accelerates cell proliferation and inhib-
its cell apoptosis in lung adenocarcinoma [42], while 
MafF promotes tumor invasion through heterodimeriz-
ing with Bach1 and activating the IL11/STAT3 pathway 
in breast cancer [43]. MafK Induces EMT and promotes 
tumor invasion in  vivo in breast cancer [44]. Our study 
reveals that MafK is essential for LUAD tumorigenesis 
and is highly expressed in cancer tissue/cell lines. Bioin-
formatics analysis indicates that MafK promotes tumor 
invasion via the cell-substrate adhesion pathway.

Moreover, we divided all samples into low- and high-
risk groups based on the LPRI. We observed that the low-
risk group was primarily enriched in immune processes 
and immune-related pathways, suggesting that the risk 
score could serve as a potential predictive indicator for 
patients undergoing immunotherapy. To investigate this 
further, we evaluated immune infiltration gene signature, 
immune checkpoints, and associated inflammatory genes 
from different perspectives. Our findings indicated that 
low-risk groups are associated with T cell gene signature 
and have high expression levels of immunoregulatory 
genes such as TNFRSF14, ITGB2, and CX3CL1. Moreo-
ver, we observed that the low-risk groups are associated 
with the immune-rich, fibrotic subtype or inflamma-
tory subtype, indicating that these patients have higher 
immune activity.

Lastly, we identified potential druggable targets and 
corresponding compounds for LUAD patients using the 
PRISM and CTRP databases based on the developed prog-
nostic models. We predict that drugs will have varying sen-
sitivity in different subgroups of patients. Using molecular 
docking analysis, we discovered that some drugs can tar-
get prognostic transcription factors specifically. Although 
these drugs have not yet been adopted in the clinic, they 
hold great promise as future antitumor drugs.

While our work initially focuses on the stratification of 
lung adenocarcinoma patients, the algorithm presented 

here is applicable to other cancer types and non-can-
cerous diseases. We acknowledge the limitations of this 
study, namely that the prognostic efficacy of LPRI was 
tested in retrospective cohorts, and prospective studies 
are required to validate its clinical utility. Further inves-
tigation into the functional mechanisms of regulons in 
cancers is also warranted.

Conclusion
To summarize, this study established a single-cell regu-
lon atlas in human lung adenocarcinoma (LUAD) and 
developed a workflow called LPRI based on the inte-
gration of single-cell regulon and clinical bulk sequenc-
ing cohort. This led to a significant advancement in the 
prognostic classification of LUAD. The integrated multi-
omic analysis revealed that the two subgroups based on 
LPRI had different survival outcomes, tumor genom-
ics, tumor microenvironment, and different responses 
to chemotherapy and immunotherapy. These findings 
have important clinical implications as they provide a 
more comprehensive understanding of the heterogene-
ity of LUAD and the potential for personalized treatment 
strategies. Further research is required to validate these 
findings and to explore additional markers that could 
enhance the accuracy of LUAD prognostic classification.
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