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Abstract
Background  Due to the class imbalance issue faced when Alzheimer’s disease (AD) develops from normal 
cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the 
auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to 
construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to 
handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve 
multiclassification of NC, MCI, and AD.

Methods  We obtained patient data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, including 
clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. 
First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to 
the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of 
NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework 
utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them 
based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the 
clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, 
AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer’s Coordinating Center (NACC) dataset was 
employed to assess the impact path consistency of the features within the optimal subset.

Results  Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework 
had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, 
respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy 
(87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility 
index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the 
ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their 
SHAP values. Specifically, the higher SHAP values of CDRSB, ADAS13, ADAS11, ventricle volume, ADASQ4, and FAQ 
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Background
Alzheimer’s disease (AD) is a progressive neurode-
generative disease that affects an estimated one out of 
nine people over 65 years of age worldwide [1–3]. The 
main clinical symptoms of AD include memory impair-
ment, cognitive decline, and in severe cases, personality 
changes, loss of self-care ability, and possible fatality [4]. 
The prodromal status of AD is mild cognitive impairment 
(MCI), which is more pronounced than normal age-
related decline but with preserved functional abilities [5], 
and this condition requires early intervention. Accord-
ing to the World Alzheimer Report 2021, the number of 
patients with AD will reach 131 million globally, and the 
estimated cost will stand at one trillion dollars by 2050, 
placing a heavy financial burden on society [6]. How-
ever, no effective medications are currently available, and 
diagnosing people living with AD in a timely manner is 
paramount.

When making AD diagnoses, experienced neurologists 
normally consider examinations consisting of patient his-
tories, neuropsychological tests, neuroimaging results, 
and gene markers [7]. The Trail Making Test (TMT-B), 
Mini-Mental State Examination (MMSE), Alzheimer’s 
Disease Assessment Scale-Cognitive Behaviour (ADAS-
cog), Rey Auditory Verbal Learning Test (RAVLT), and 
Functional Assessment Questionnaire (FAQ) are common 
neuropsychological tests that help differentiate between 
various degrees of cognitive impairment [8]. Chandra et 
al. used magnetic resonance imaging (MRI) to illustrate 
distinct brain damage patterns that can differentiate AD 
from other brain disorders, brain abnormalities that are 
linked to an increased risk of progressing to AD from 
MCI, and other behavioural outcomes [9]. The apolipo-
protein E ε4 (APOE-ε4) gene is an important risk factor 
for AD [10]. However, manual diagnostic approaches 
have been shown to be unsatisfactory [11]. Therefore, an 
improved diagnostic approach is needed.

Machine learning (ML) is used for data mining and 
classification, enabling generalization and optimization 
[12]. In most cases, supervised learning models, such 
as random forest (RF) and AdaBoost, and unsupervised 
learning models, such as recurrent neural networks 
(RNNs), are utilized to understand disease patterns and 

prognoses and have potential to perform clinical auxil-
iary diagnoses [13–15]. However, they are accompanied 
by some inherent limitations: (1) imbalanced outcome 
classes are responsible for skewed performance, translat-
ing to lower sensitivity and higher misdiagnosis rates; and 
(2) complex ML algorithms contribute to higher accuracy 
but also possess greater learning difficulties and more 
uninterpretable internal mechanisms. Two main strate-
gies are available for dealing with imbalanced scenarios 
[16]. The first is a data-level approach, in which the given 
data are preprocessed into a balanced dataset for clas-
sification. The second is an algorithmic-level approach, 
where classifiers are adapted to handle imbalanced 
data; one such algorithm is extreme gradient boosting 
(XGBoost), which was proposed by Chen et al. This algo-
rithm can better perform imbalanced multiclassification 
by weighting the minority class by changing the sample 
weight distribution [17]. Understanding how a model 
makes an accurate prediction plays a role in the interpre-
tation of many applications [18]. Lundberg et al. intro-
duced Shapley additive explanations (SHAP), a post hoc 
interpretable algorithm that uses additive attribution to 
convert SHAP values from the machine learning feature 
space to the clinical variable space. This transformation 
improves the interpretability of previously difficult-to-
explain algorithms [19].

It would be of great significance if, by using ML in aux-
iliary diagnosis cases, skewed classification performance 
and clinical misdiagnoses could be avoided and clini-
cal confidence in decision-making could be enhanced 
while the medical burden is eased. To this end, our study 
sought to develop an interpretable ML framework by 
connecting XGBoost to SHAP with various features 
(e.g., clinical information, neuropsychological tests, and 
neuroimaging-extracted biomarkers and gene markers). 
We believe that it will facilitate the multiclassification 
of imbalanced classes (normal cognition [NC], MCI and 
AD), output valuable classification features, and deter-
mine the directions and sizes of interpretable effects. In 
addition, we compared its performance with other algo-
rithms, such as a RF, Bagging, AdaBoost, and a naive 
Bayes (NB) classifier, and an external dataset was used to 

were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL, mPACCdigit, RAVLT_
immediate, and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset.

Conclusions  The proposed interpretable framework contributes to achieving excellent performance in imbalanced 
AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby 
facilitating disease management and offering new research ideas for optimizing AD prevention and treatment 
programs.
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further evaluate the important features that assist with 
multiclassification diagnoses concerning AD progression.

Related works
Prior research on predicting AD risk factors utilized 
standard ML models. Lin et al. developed a method for 
calculating scores based on different modalities (MRI, 
positron emission tomography [PET], cerebral spinal 
fluid [CSF], and genes) and applied these scores as inputs 
to an extreme learning machine (ELM)-based decision 
tree classifier to distinguish between subjects with pro-
gressive and stable MCI [20]. The suggested method was 
validated using the Alzheimer’s Disease Neuroimag-
ing Initiative  (ADNI) cohort, achieving an accuracy of 
84.7% in terms of predicting AD within a timeframe of 3 
years. Tufail et al. proposed a 2D classification architec-
ture that utilizes multiple separable convolutional layers 
to differentiate between healthy individuals and patients 
with AD by analysing cross-sectional structural MRI 
(sMRI) images [21]. The architecture they constructed 
using the idea of cross-validation exhibited a fluctuat-
ing accuracy between 0.62 and 0.65. However, these two 
studies involved binary classification; they failed to real-
ize the multiclassification task for AD, which remains a 
challenge.

Akter et al. explored state-of-the-art resampling 
techniques, including random oversampling, random 
undersampling, synthetic minority oversampling tech-
nique-adaptive synthetic sampling (SMOTE-ADASYN), 
SMOTE-Tomek, and SMOTE-edited nearest-neighbour 
(SMOTE-ENN) sampling, to handle severely imbalanced 
datasets before developing a novel hybrid ML model, 
AD-CovNet, which employs a long short-term memory-
multilayer perceptron (LSTM-MLP) approach to identify 
AD in patients with and without COVID-19 [22]. In addi-
tion, Lin et al. proposed a linear discriminant analysis 
(LDA) method fusing multimodal data such as PET, MRI, 
CSF, and gene data and utilized an ELM-based decision 
tree approach for the multiclassification of NC, MCI, and 
AD by fusing data as new predictions [23]. However, the 
categories in this study were imbalanced (200 individu-
als with NC, 441 with MCI, and 105 with AD), no resam-
pling techniques were employed, and the performance of 
the ELM was not satisfactory, with accuracy and F1 score 
values of 66.7% and 0.649, respectively. Notably, both of 
these decision approaches based on resampling and non-
resampling pose potential drawbacks for the multiclas-
sification of AD progression, with the former potentially 
causing data leakage (overoptimism or overfitting) and 
the latter potentially reducing classification performance 
due to imbalanced classes. In recent years, with advance-
ments in neuroimaging techniques leading to the avail-
ability of large-scale multimodal neuroimaging data, 
deep learning has become the leading focus of research 

on the early detection and automated classification of 
AD [24]. One prominent type of approach is a convolu-
tional neural network (CNN), which has demonstrated 
excellent performance in terms of making decisions 
based on images. Instead of utilizing inputs based on vec-
tors, a CNN captures the structural information among 
adjacent pixels and leverages the spatial information of 
images to extract features. This is achieved by organizing 
convolutional layers to construct a feature hierarchy for 
decision-making [25]. Basheera et al. utilized a CNN for 
the binary and multiclassification of NC, MCI, and AD 
based on segmented grey matter derived from MRI [26]. 
The study included a total of 4463 participants, and the 
accuracy rates for identifying different conditions were 
as follows: 100% for AD-NC, 96.2% for AD-MCI, 98.0% 
for NC-MCI, and 86.7% for AD-MCI-NC. Hu et al. used 
raw T1 images to train a CNN model to discriminate AD, 
frontotemporal dementia, and the corresponding nor-
mal controls, with an accuracy of 91.83% [27]. However, 
one of the problems brought along with the high accu-
racy of this CNN for deep learning concerns its inherent 
complexity, making it difficult to gain insights into the 
internal mechanisms and intuitively uninterpretable clas-
sification results.

In short, previous studies had the following limita-
tions. First, they focused on binary classification and 
were unable to satisfy the need for the multiclassification 
of AD progression. Second, imbalanced datasets, if dealt 
with improperly, are responsible for overoptimism or 
overfitting. Third, while pursuing accuracy, these models 
generally ignore their own interpretability, causing a clin-
ical decision-making crisis. A detailed summary of these 
studies is presented in Table 1.

This work
The main contributions of this research can be summa-
rized as follows.

To realize multiclassification for NC, MCI, and AD, we 
utilized XGBoost with 3-fold cross-validation using the 
multiclassification strategy (one vs. rest) to transform 
these ML models into a multiclassification architecture.

We exploited the ability of the XGBoost algorithm, that 
is, we changed the sample weight distribution by tuning 
its hyperparameter (enhancing the weight of the minor-
ity class) to achieve a lower misdiagnosis rate and more 
accurate classification without other resampling tech-
niques, which may lead to data leakage.

We combined XGBoost and SHAP to construct an 
interpretable ML framework, which improved the inter-
pretability of the model and detected important features 
affecting the diagnosis of AD. Moreover, we sought an 
external dataset to validate the consistency of the clini-
cally meaningful subset output by the framework to 
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improve clinicians’ confidence in the decision-making 
results.

Methods
Data sources
The data used in this study were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu) and the National Alzheimer’s 
Coordinating Center (NACC) (https://naccdata.org/).

The ADNI was launched in 2003 as a public-private 
partnership led by principal investigator Weiner. The pri-
mary goal of the ADNI is to test whether serial MRI, PET, 
other biological markers, and clinical and neuropsycho-
logical tests can be combined to measure the progression 
of MCI and early AD. The NACC, established in 1999 by 
the National Institute on Aging/NIH, aims to facilitate 
collaborative research. It has developed and maintained a 
large relational database containing standardized clinical 
and neuropathological research datasets.

Data preprocessing and feature selection
The data acquired from the ADNI with a deadline of 
November 2021 contained subjects from ADNI 1, ADNI 
GO, ADNI 2, and ADNI 3. As a baseline, 714, 247, and 
379 individuals were diagnosed with AD, MCI, and NC, 
respectively. We included 42 features, including patients’ 
clinical information, neuropsychological tests, neuroim-
aging-extracted biomarkers, and the APOE-ε4 gene. To 
ensure the integrity of the data, we removed features with 

missing value rates that were greater than 50% (14 fea-
tures were excluded), and the remaining individuals with 
all features were included. Then, we applied information 
gain, Boruta, and elastic net to conduct feature selection 
for the most relevant features while eliminating redun-
dant and correlated features. We selected the final fea-
tures from those with the majority of votes from all three 
selection methods. Finally, we obtained data from 547 
individuals, including 189 with NC, 302 with MCI, and 
56 with AD; we also obtained 27 features, including four 
demographic features, 15 neuropsychological tests, seven 
neuroimaging-extracted biomarkers, and the APOE-ε4 
gene.

NACC data from 349 individuals were used as the 
external set containing nine features, which comprised 
three diagnoses: 171 patients with NC, 70 with MCI, 
and 108 with dementia due to AD. Notably, among the 
nine features we included, four were demographic fea-
tures that were equivalent to the demographic features 
of the ADNI dataset, while the other five were obtained 
by matching the top 10 important features in the dataset. 
Table  2 provides comprehensive information about all 
features contained in the two datasets.

Construction of the XGBoost-SHAP framework
XGBoost is an improved gradient boosting algorithm 
that incorporates a regression tree. The idea of XGBoost 
is to iteratively add trees by learning the negative gradi-
ent of the loss function between the value predicted by 

Table 1  Summary of related works
Authors Method Subjects Modalities Performance Limitation
Lin et al. (2020) [20] ELM 110 pMCI

vs. 205 sMCI
MRI, PET, CSF, 
and genes

ACC: 84.7% The multiclassification task for 
AD failed.

Tufail et al. (2020) [21] DL 90 nonAD vs. 90 AD sMRI Fluctuated accuracy:
0.62–0.65

Akter et al. (2022) [22] SMOTE-ENN + AD-
CovNet (long 
short-term 
memory-multilay-
er perceptron)

754 AD individuals with 
and without COVID-19

Demographic 
and clinical 
from medical 
records

ACC: 86%
AUC: 0.857

The method of imbalanced 
data potentially causes data 
leakage (overoptimism or 
overfitting).

Lin et al. (2021) [23] LDA + ELM 200 NC vs. 441 MCI vs. 
105 AD

MRI, PET, CSF, 
and genes

ACC: 66.7%
F1 score: 0.649

The 3 way classification 
performance is poor due to 
imbalanced problem.

Basheera et al. (2020) 
[26]

CNN 28 NC vs. 32 MCI
vs. 65 AD

MRI ACC AD-NC: 100%
AD-MCI: 96.2%
NC-MCI: 100%
AD-MCI-NC: 86.7%

The internal mechanism 
is complex and poorly 
interpretable.

Hu et al. (2021) [27] DL-based 
networks

823 NC vs. 552 FTD vs. 
422AD

MRI ACC FTD vs. FTD_NC: 
93.45%
AD vs. AD_NC: 
89.86%
FTD vs. AD vs. NC: 
91.83%
FTD vs. AD: 93.05%

ELM: extreme learning machine; DL: deep learning; SMOTE-ENN: synthetic minority oversampling technique-edited nearest neighbour; LDA: linear discriminant 
analysis; CNN: convolutional neural network; FTD: Frontotemporal dementia; pMCI: progressive MCI; sMCI: stable MCI; ACC: accuracy; AUC: area under the receiver 
operating characteristic curve

https://naccdata.org/
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the previous tree and the true value, and feature split-
ting is also continuously performed to grow an ensemble 
tree [28, 29]. This algorithm learns the negative gradient 
using the second-order derivative of the loss function, 
which enables faster convergence to global optimality 
and improves efficiency [30]. Furthermore, the algorithm 
introduces a penalty term for regularization to prevent 
overfitting. It can also maintain a balance between the 
negative and positive weights of classes by calculating 
the inverse of the ratio of negative to positive samples 
as a weighting operator, thus outshining many other 
algorithms.

The understandability of a prediction model is impor-
tant in clinical practice. The interpretability of a model 
provides insights into the internal mechanisms of how it 
works. As a model-agnostic explanation approach, SHAP 
aids in interpreting predictive models such as XGBoost 
[31]. It assumes that each feature represents a “contribu-
tor” to the predictions of the XGBoost model and assigns 
them SHAP values; that is, the final prediction can be 
interpreted as the sum of the SHAP values of all features 
and the average prediction. SHAP transforms XGBoost’s 
feature space into a clinical variable space, where each 
transformed SHAP value corresponds to an original 
variable. SHAP usually graphically visualizes XGBoost 

predictions for a better presentation effect. For example, 
the SHAP summary plot offers a concise demonstration 
of the magnitudes and directions of predictions. The size 
of a SHAP value represents the contribution of one spe-
cific feature towards prediction performance: the larger 
the value, the higher the contribution [32]. The SHAP 
dependency plot depicts the SHAP value distribution 
across individuals for a feature. As the SHAP values of 
features vary between individuals, so do the predictions 
of the corresponding feature mappings for individuals.

In this study, we first tuned the hyperparameter range, 
after which a grid search was used for the best values to 
maximize the performance of XGBoost, thereby achiev-
ing multiclassification of the NC, MCI, and AD patients 
in the ADNI and NACC datasets. As the weights of the 
classes differed between the two datasets, we manually 
tuned the scale_pos_weight parameter. The ADNI data-
set contained 189, 302, and 56 NC, MCI, and AD sam-
ples, respectively. The weight of the NC samples was set 
to 1, and the weight of the MCI samples was calculated 
to be approximately 0.62 (189/302), while the weight of 
the AD samples was approximately 3.4 (189/56). Simi-
larly, the NACC dataset included 171, 70, and 108 NC, 
MCI, and AD samples, respectively. The weight of the 
NC samples was set to 1, and the weight of MCI samples 

Table 2  Details of the features used on the ADNI and NACC datasets
Features ADNI NACC
Demographic information AGE (Subject’s age) NACCAGE

PTGENDER (Subject’s sex) SEX

PTEDUCAT (Years of education) EDUC

PTMARRY (Marital status) MARISTAT

Gene APOE4 (Number of APOE-ε4 alleles)

Neuropsychological
tests

ADAS11 (Alzheimer’s Disease Assessment Scale-Cognition 11 items)

ADAS13 (Alzheimer’s Disease Assessment Scale-Cognition 13 items)

ADASQ4 (Score from Task 4 (Word Recognition) of the Alzheimer’s Disease Assessment Scale)

MMSE (Total Score of Mini-Mental State Examination) NACCMMSE

FAQ (Total Score of Functional Activities Questionnaire) FAQ-sum

MOCA (Total Score of Montreal Cognitive Assessment)

CDRSB (Clinical Dementia Rating-Sum of Boxes Score) CDRGLOB

RAVLT_immediate (Rey’s Auditory Verbal Learning Test_Immediate Recall)

RAVLT_learning (Rey’s Auditory Verbal Learning Test_Learning)

RAVLT_forgetting (Rey’s Auditory Verbal Learning Test_Forgetting)

RAVLT_perc_forgetting (Rey’s Auditory Verbal Learning Test_Percent Forgetting)

LDELTOTAL (Delayed total recall) MEMUNITS

TRABSCOR (Trail Making Test Part B Time)

mPACCdigit (Modified Preclinical Alzheimer Cognitive Composite with Digit test)

mPACCtrailsB (Modified Preclinical Alzheimer Cognitive Composite with Trails test)

Neuroimaging-extracted
biomarkers

Ventricles (Volume of ventricles) LATVENT + HIRVENT

Hippocampus (Volume of hippocampus)

WholeBrain (Volume of Whole Brain)

Entorhinal (Volume of entorhinal)

Fusiform (Volume of fusiform)

MidTemp (Volume of middle temporal gyrus)

ICV (Volume of intracranial)
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was calculated to be approximately 2.5 (171/70), while 
the weight of AD samples was approximately 2 (171/108). 
Detailed information can be found in Table 3.

Second, we linked SHAP to XGBoost to form an inter-
pretable framework and printed the top 10 features based 
on their SHAP values. The output of the framework was 
visualized using the SHAP summary and dependency 
plots. The XGBoost-SHAP framework’s performance was 
compared to that of a RF, Bagging, AdaBoost, and a NB 
classifier. The details of these comparison algorithms are 
provided in the supplementary materials 1. Figure 1 pres-
ents a flowchart of the study.

The analyses were performed using R 4.1.1. Feature 
selection was performed using the following packages: 
“glmnet,” “Boruta,” and “FSelector.” The classification 
algorithms were implemented using “xgboost,” “random-
Forest,” “adabag,” and “e1071.” The SHAP analysis was 
carried out using the “SHAPforxgboost” package.

Evaluation of the classification algorithms
The metrics used to evaluate the classification perfor-
mance of the tested algorithms included sensitivity, 
specificity, accuracy, and the area under the receiver 
operating characteristic curve (AUC). All metrics were 
acquired after weighting the possible classification 
results, where the arithmetic mean values of each statis-
tical index for the three categories were considered the 
final evaluation metrics. This was repeated for each of 
the three classes in both datasets. We also included the 
clinical utility index (CUI) to clinically evaluate the inter-
pretable framework. The CUI is divided into two parts, 
positive (CUI+) and negative (CUI-), which are calcu-
lated as positive predictive value * (sensitivity/100) and 
negative predictive value * (sensitivity/100), respectively. 
The following recommended diagnostic interpretations 
consist of “excellent utility” (CUI ≥ 81%), “good utility” 

(CUI ≥ 64%), “satisfactory utility” (CUI ≥ 49%), and “poor 
utility” (CUI < 49%) [3].

Results
Demographics of the ADNI and NACC datasets
The statistical descriptions of the demographic informa-
tion concerning both datasets are shown in Tables 4 and 
5, including age, gender, educational years, and marital 
statuses. The age, educational years (PTEDUCAT), and 
marital statuses (PTMARRY) in the ADNI dataset sta-
tistically differed between groups, whereas in the NACC 
dataset, the differences between groups were only statis-
tically significant for age (NACCAGE).

Performance of the proposed models
Figure  2-A-B shows the sensitivity, specificity, accuracy, 
AUC, CUI+, and CUI- of XGBoost and the other algo-
rithms with respect to the multiclassification of NC, MCI, 
and AD. After conducting the comparison, we found that 
(1) XGBoost did not perform well before changing the 
sample weight distribution, yielding the lowest sensitiv-
ity and AUC; however, the sensitivity and AUC increased 
by 5.59% and 0.03, respectively, after changing the sample 
weight distribution, and the specificity decreased by only 
0.87%. (2) XGBoost outperformed the other four algo-
rithms in terms of classifying NC, MCI, and AD after 
adjusting the sample weights, exhibiting superior sen-
sitivity, specificity, accuracy, and AUC. (3) Bagging and 
RF performed comparably, whereas AdaBoost and NB 
remained in need of improvement with sensitivity val-
ues lower than 80% and AUCs below 0.9. (4) Except for 
NB, all models offered good clinical utility (CUI ≥ 64%), 
with XGBoost being the best after modelling the sample 
weight distribution.

Interpretable framework and feature importance
The SHAP summary plot in Fig. 3 shows the top 10 fea-
tures produced by XGBoost in descending order accord-
ing to the SHAP values of all predictions, which express 
the positive/negative associations of the corresponding 
features, with the absolute SHAP value for each feature 
shown on the left. Each point on the plot corresponds 
to a sample, and the horizontal axis indicates the SHAP 
value of a given feature across subjects, which reflects the 
magnitude of the SHAP value from low (yellow) to high 
(purple). Evidently, higher values of CDRSB, ADAS13, 
ADAS11, volume of ventricles, ADASQ4, and FAQ were 
associated with higher risks of AD onset, so they can be 
interpreted as risk factors for AD, while higher values 
of LDELTOTAL, mPACCdigit, RAVLT_immediate, and 
MMSE were affiliated with lower risks of AD onset, so 
they can be interpreted as protective factors.

With the SHAP value as the vertical axis and the fea-
ture value as the horizontal axis, SHAP dependence plots 

Table 3  Hyperparameters tuning of XGBoost
Range of 
hyperparameters

Hyperparameters on
ADNI dataset

Hyperparam-
eters on
NACC dataset

Booster = gbtree Booster = gbtree Booster = gbtree

eta = (0.01: 0.3) eta = 0.01 eta = 0.01

gamma = (0.5: 1) gamma = 0.5 gamma = 0.5

max_depth = (5: 8) max_depth = 5 max_depth = 5

min_child_weight = 1 
(default)

min_child_weight = 1 min_child_
weight = 1

subsample = 1 (default) subsample = 1 subsample = 1

colsample_bytree = 1 
(default)

colsample_bytree = 1 colsample_by-
tree = 1

lambda = (1–3) lambda = 3 lambda = 3

nrounds = (75: 2000) nrounds = 482 nrounds = 482

scale_pos_weight scale_pos_weight = (1, 
0.62, 3.4)

scale_pos_weight 
= (1, 2.5, 2)
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make the values of many individuals available in one plot, 
facilitating an up-and-down trend of feature-attributed 
importance. Figure 4 shows the SHAP dependence plots 
for the top 10 features. The value on the horizontal-axis 
represents the original value of a feature, whereas the 
value on the vertical-axis represents the SHAP value of 
a feature across individuals. Those with CDRSB scores of 
10 exhibit higher SHAP values than those with scores of 
1, indicating a higher likelihood of AD prediction. In con-
trast with CDRSB, a higher LDELTOTAL score equates to 
a lower SHAP value, and associated individuals are less 
likely to be diagnosed with AD.

In fact, SHAP summary and dependency plots are 
complementary in that the former can visually reflect the 
direction and magnitude of the effect of a feature con-
tribution, whereas the latter can more clearly reflect the 
fluctuations exhibited by the SHAP values of a feature 
across individuals.

Framework performance on the external dataset
After determining the performance of the interpretable 
XGBoost-SHAP framework on the ADNI dataset and 
conducting comparisons with other algorithms, we found 
that the framework works well for the multiclassification 

Fig. 1  The flow chart of this study
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of NC, MCI, and AD. Therefore, we further evaluated 
the framework using an external dataset, particularly in 
terms of the effect of the optimal subset obtained from 

the ADNI dataset. As there were differences between 
the measures obtained on the two datasets, we matched 
the first 10 features that SHAP could offer, and features 
that failed to be matched were treated as missing vari-
ables. We matched five features: CDRSUM (matched to 
CDRSB), NACCMMSE (matched to MMSE), MEMU-
NITS (matched to LDELTOTAL), FAQ-sum (matched to 
FAQ), and LATVENT + HIRVENT (matched to the vol-
ume of ventricles).

Subsequently, we fed these five features into the inter-
pretable XGBoost-SHAP framework, yielding the follow-
ing performance metrics. (1) The sensitivity, specificity, 
accuracy, AUC, CUI+, and CUI- of XGBoost reached 
74.85%, 89.86%, 80.52%, 0.88, 0.56, and 0.68, respectively. 
(2) Similarly, we see in Figs. 5 and 6 that higher SHAP val-
ues of FAQ-sum, CDRSUM, and LATVENT + HIRVENT 
were associated with higher risks of AD onset, so these 
features can be interpreted as risk factors for AD, while 
higher values of NACCMMSE and MEMUNITS were 
associated with lower risks of AD onset, and these fea-
tures can be interpreted as protective factors for AD. (3) 
We can conclude that individuals with FAQ-sum values 
of 20 have higher SHAP values than those with FAQ-sum 
values of 1; hence, the former individuals have higher AD 
prediction probabilities. In contrast to FAQ-sum, a higher 
MEMUNITS score equates to a lower SHAP value, and 
these individuals have lower AD prediction probabili-
ties. It is noteworthy that the results are in line with both 
datasets used in this study.

Discussion
This study developed an interpretable XGBoost-SHAP 
framework using the ADNI dataset, and the ability of this 
framework to perform multiclassification on three imbal-
anced classes (NC, MCI, and AD) was assessed by chang-
ing the distribution of the sample weights. We sought to 

Table 4  Demographic information among individuals in ADNI 
dataset
Variable NC 

(n = 189)
MCI 
(n = 302)

AD (n = 56) P

AGE* 70.3 (66.9, 
75.0)

70.6 (64.8, 
75.8)

73.2 (68.3, 
79.3)

0.026

PTGENDER$ 0.054

Male 83 (43.9%) 166 (55.0%) 30 (53.6%)

Female 106 (56.1%) 136 (45.0%) 26 (46.4%)

PTEDUCAT* 18.0 (16.0, 
18.0)

16.0 (14.0, 
18.0)

16.0 (14.0, 
18.0)

0.005

PTMARRY$ 0.035

Other 138 (73.0%) 236 (78.1%) 50 (89.3%)

Married 51 (27.0%) 66 (21.9%) 6 (10.7%)
* Median (P25, P75) expressed continuous variables, analysed using the Kruskal-
Wallis H test. $ Categorical variables were expressed as percentage (%) and the 
χ2 test was employed

Table 5  Demographic information among individuals in NACC 
dataset
Variable NC 

(n = 171)
MCI 
(n = 70)

AD 
(n = 108)

P

NACCAGE* 77.0 (69.0, 
85.0)

82.0 (76.2, 
87.0)

81.0 (77.8, 
86.0)

< 0.001

SEX$ 0.079

Male 55 (32.2%) 28 (40.0%) 49 (45.4%)

Female 116 (67.8%) 42 (60.0%) 59 (54.6%)

EDUC* 15.0 (12.0, 
18.0)

14.0 (12.0, 
16.0)

14.0 (12.0, 
17.0)

0.258

MARISTAT$ 0.340

Other 78 (45.6%) 34 (48.6%) 59 (54.6%)

Married 93 (54.4%) 36 (51.4%) 49 (45.4%)
* Median (P25, P75) expressed continuous variables, analysed using the Kruskal-
Wallis H test. $ Categorical variables were expressed as percentage (%) and the 
χ2 test was employed

Fig. 2  Performance metrics of XGBoost-n (unweighted), XGBoost-w (weighted), RF, Bagging, AdaBoost, and NB with 3-fold cross-validation strategy on 
the ADNI dataset

 



Page 9 of 14Yi et al. BMC Medical Informatics and Decision Making          (2023) 23:137 

determine the practical value of this framework as a clini-
cal auxiliary diagnostic tool. External data from appro-
priately representative target-patient clinical cohorts are 
required to avoid overestimating the initial results, which 
leads to overfitting. Thus, we generalized this framework 
by matching the ADNI dataset as closely as possible with 

another dataset (NACC). Our results confirmed that the 
framework was stable for the two datasets and that con-
sistent feature contribution directions were produced.

Several issues were identified during this process. As 
these two datasets involved different population studies 
and disease testing centres, they were subject to subtle 

Fig. 4  The SHAP dependence plots for the top 10 important features in ADNI dataset

 

Fig. 3  The SHAP summary plot for the top 10 important features in ADNI dataset
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differences in their diagnostic outcomes. Certain ADNI 
dataset features were not present in the external dataset. 
However, we looked at the Researchers Data Diction-
ary of the NACC-UDS to match the features as closely 
as possible. The following are some examples: CDRSUM 
matched with CDRSB, NACCMMSE matched with 
MMSE, MEMUNITS matched with LDELTOTAL, FAQ-
sum matched with FAQ, and LATVENT + HIRVENT 
matched with the volume of ventricles. More importantly, 
we used the same parameters in both datasets to avoid 
between-dataset fluctuations among the features and 
classes as much as possible, as these could affect the use-
fulness of the algorithm. The parameter tuning process is 
described in detail in the “Construction of the XGBoost-
SHAP framework” section.

ML is data-driven and may be beset by imbalanced out-
comes. Prediction models established with imbalanced 
datasets are most frequently subjected to the majority 
class, meaning that there is a high risk of misclassifying 
minority examples; avoiding this bias is extremely crucial 
[33]. This also applies to AD diagnosis, especially with 
traditional ML models, because they operate under the 
assumption that the classification error costs are the same 
[34–36]. To address these concerns, researchers typically 
employ resampling techniques, including undersam-
pling, oversampling, and mixed sampling, followed by 
cross-validation for algorithm training and performance 
evaluation purposes [37–40]. Vinutha et al. improved 
the AD diagnosis performance by handling imbalanced 
data and demonstrating the performance of the SMOTE 

[41]. Additionally, five methods for imbalanced data, the 
SMOTE, Borderline-SMOTE, support vector machine 
SMOTE (SVMSMOTE), ADASYN, and SMOTE-Tomek, 
were examined by Bogdanovic et al., who suggested that 
the SMOTE method was best. Subsequently, XGBoost 
was used to classify the participants into five categories 
(NC, SMC, early MCI, late MCI, and AD) with an accu-
racy of 0.84 [42]. In addition, Dubey et al. concluded that 
an ensemble system comprising sparse logistic regression 
with robustness selection as a feature selection algorithm 
and the K-medoids complete undersampling approach 
excellently addressed the class imbalance issue associ-
ated with the ADNI dataset. The results demonstrated 
that the accuracy of NC vs. MCI Converter & AD based 
on SVM majority voting amounted to 0.85 [43]. However, 
the above strategies were first used to resample the entire 
dataset to achieve a completely balanced class distribu-
tion; then, cross-validation was applied, which could eas-
ily lead to potential data leakage (overoptimism) [44].

This study exploited the inherent parameter tuning 
of XGBoost to enhance the weight of the minority class 
(AD) by setting the weights of NC, MCI, and AD to 1, 
0.62, and 3.4, respectively. As such, we achieved multi-
classification without any resampling techniques that 
may have led to overoptimism or overfitting. Addition-
ally, our study achieved better results than XGBoost 
without changing the sample weight distribution, as 
represented by sensitivity, accuracy, and AUC increases 
of 5.59%, 0.83%, and 0.03, respectively. Our results were 
superior to those of similar previous studies.

Fig. 5  The SHAP summary plot for the five features matched in NACC dataset

 



Page 11 of 14Yi et al. BMC Medical Informatics and Decision Making          (2023) 23:137 

As Tsoy et al. suggested, collecting and measuring 
numerous neuropsychological tests as well as neuroim-
aging examinations is extremely challenging, as they are 
resource-intensive, time-consuming, and expensive [45]. 
A constructive subset of features can greatly ease the 
work of clinicians by algorithmically identifying the vari-
ables that play decisive roles in the classification process 
to facilitate rapid clinical diagnosis while also ensuring 
that the patient’s fatigue and burden are minimized. In 
our study, we maintained accurate detection rates while 
identifying key measures (“features”) to improve the 
effectiveness of dementia diagnosis wherever possible. 
According to the SHAP values, CDRSB, ADAS13, and 
LDELTOTAL were considered the most important fea-
tures, followed by mPACCdigit, ADAS11, RAVLT_imme-
diate, volume of ventricles, MMSE, ADASQ4, and FAQ, in 
terms of identifying NC, MCI, and AD. In other words, 
the above features can be considered an optimal subset 
that represents the major players in the auxiliary diagno-
sis regarding the multiclassification of AD processes. The 
optimal subset is interpretable because the effect direc-
tion of each feature and the size of its contribution to the 

prediction are captured and visualized. Among these fea-
tures, CDRSB, ADAS13, ADAS11, volume of ventricles, 
ADASQ4, and FAQ were positively associated with the 
occurrence of AD, whereas the others were negatively 
associated.

Next, we analysed the top three most significant fea-
tures that were employed. CDRSB, ADAS13 and LDEL-
TOTAL constitute classic neuropsychological tests and 
are experiencing great popularity in clinical practice [46, 
47]. CDRSB (ranging from 0 to 18) is a composite neuro-
psychological test that assesses both cognition (memory, 
orientation, judgement and problem solving) and func-
tion (community affairs, home and hobbies, personal 
care) and serves as a good candidate for predicting AD 
[48, 49]. ADAS was designed to evaluate both cogni-
tive and noncognitive impairment in AD severity, where 
ADAS-cog is the more commonly utilized measure. 
ADAS13 (ranging from 0 to 85) builds upon ADAS11 
by including two extra tasks, delayed recall and digi-
tal cancellation, thereby achieving improved sensitivity 
to early AD progression [50–52]. LDELTOTAL (rang-
ing from 0 to 25) is a revised version of the episodic 

Fig. 6  The SHAP dependence plots for the five features matched in NACC dataset
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memory assessment found in the Wechsler Memory 
Scale-Revised, which measures a subject’s ability to recall 
a short story that contains 25 items of information after 
a delay of 30 to 40 min [53]. The results are reflectors of 
cognitive and social functioning, and delayed recall. This 
is important for identifying people with AD, as they typi-
cally experience cognitive decline, decreased daily liv-
ing activities, and impaired episodic memory [54, 55]. 
Other neuropsychological tests in the optimal subset 
also identify disease progression in the domains of cog-
nition, memory, and independent living. The neuroim-
aging-extracted biomarkers in our study, however, did 
not exhibit great potential for identifying NC, MCI, and 
AD. Only one feature, the volume of ventricles, was part 
of the optimal subset, but it did not contribute signifi-
cantly (SHAP value of 0.017), which is in accordance with 
the results of Sanjay et al. [2]. One explanation for this 
finding relates to the unclear early changes in the brain 
anatomy in patients with MCI. Neuroimaging-extracted 
biomarkers can readily distinguish AD from NC but 
might not readily distinguish between NC and MCI [56].

Limitations
Our study had several limitations. First, suitable vari-
ables were unavailable for matching ADAS13, ADAS11, 
ADAQ4, mPACCdigit, and RAVLT_immediate in the 
NACC dataset. Since only some of the participants com-
pleted RAVLT_learning, we deleted it, although it enjoys 
some diagnostic significance in clinical practice. There-
fore, it was impossible to validate the impacts of these 
features on the multiclassification results. In addition, 
more clinical parameters (e.g., drug use) and imaging 
features (e.g., diffusion tensor imaging and resting-state 
functional MRI) were not included in this study. Our 
future research will involve the use of additional relevant 
modalities and features to improve the interpretability 
of our framework and validate its AD multiclassification 
capabilities on appropriate datasets.

Conclusions
In real-world clinical studies, it is common to classify dis-
eases based on multiple outcomes. In this case, an imbal-
ance between multiple classes is frequently observed, 
and if the relationship between resampling and model-
ling is not effectively handled before conducting training, 
it generally makes the obtained results overly optimistic 
and causes them to lose their authenticity. When gener-
alizing a model, the performance drops significantly. The 
algorithmic level, where classifiers are adapted to handle 
imbalanced data, can facilitate classification perfor-
mance. It is also important to understand how an effec-
tive algorithm works. The interpretable framework that 
we constructed, XGBoost-SHAP, perfectly handled the 
above defects. It not only achieved AD multiclassification 

with imbalanced classes by changing the sample weight 
distribution but also explained the directions and sizes 
of the features and optimized the required features dur-
ing the classification process; this will help clinicians 
make decisions. This framework offers a broad approach 
for connecting machine learning to disease pathophysi-
ology in a generalizable manner. Based on the results 
of our study, we believe that the proposed interpretable 
framework, XGBoost-SHAP, can be effectively applied to 
imbalanced clinical and imaging data, making it a valu-
able clinical tool for the early detection of AD. Our ongo-
ing work should emphasize the validation of the proposed 
interpretable framework by using more modalities and 
features that are important to AD multiclassification and 
exploring more AD-related features that matter to early 
AD screening.
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