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Abstract 
 
Differential transcript usage (DTU) plays a crucial role in determining how gene expression 
differs among cells, tissues, and different developmental stages, thereby contributing to the 
complexity and diversity of biological systems. In abnormal cells, it can also lead to deficiencies 
in protein function, potentially leading to pathogenesis of diseases. Detecting such events for 
single-gene genetic traits is relatively uncomplicated; however, the heterogeneity of 
populations with complex diseases presents an intricate challenge due to the presence of 
diverse causal events and undetermined subtypes. SPIT is the first statistical tool that quantifies 
the heterogeneity in transcript usage within a population and identifies predominant subgroups 
along with their distinctive sets of DTU events. We provide comprehensive assessments of 
SPIT's methodology in both single-gene and complex traits and report the results of applying 
SPIT to analyze brain samples from individuals with schizophrenia. Our analysis reveals 
previously unreported DTU events in six candidate genes. 
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Introduction 
Alternative splicing enables eukaryotic cells to produce a diverse batch of transcripts and, 
consequently, proteins from a single gene. While for some genes these distinct transcripts 
(isoforms) may be used interchangeably, many protein-coding genes have a dominant isoform 
that is favored in expression across the healthy individuals of a human population.1 
Predominant expression of alternative isoforms may subject these genes to changes and 
potential errors in their function.2 Differential transcript usage (DTU) analysis is conducted 
using RNA-Seq data to search for systematic differences in the expression ratios of isoforms 
that may explain changes in phenotype between cell types, tissues, or populations2, 3. 
 
Isoform abundance is often tissue-specific, and DTU (also called isoform switching) may result 
in proteins with distinct functions, which in turn may play different roles in the cell.2-6 There is 
also a growing interest in the effects of DTU in complex human diseases. Instances of DTU have 
been associated with DNA repair, numerous human cancer types, heart failure, and psychiatric 
diseases such as autism, schizophrenia, and bipolar disorder.7-9 State-of-the-art DTU analysis 
tools provide a framework to detect cases where the isoform proportions are consistent within 
and significantly different between any two groups of samples. However, transcriptomic 
profiles within populations comprising individuals affected by a complex disease are rarely 
consistent due to a multiplicity of causal events and disease subgroups; i.e., a cohort of patients 
diagnosed with the same disease might actually have several distinct underlying genetic 
disorders.10 Therefore, a DTU analysis method that measures and accounts for the structured 
heterogeneity within complex disease populations is still needed. 
 
We present SPIT, a statistical tool that identifies subgroups within populations at the transcript 
level and compares their isoform abundance measures. Using both simulated and real RNA-Seq 
data from human heart tissue, we show that SPIT improves specificity rates compared to the 
state-of-the-art tools with similar sensitivity, and detects DTU events exclusive to subgroups as 
well as DTU events shared amongst all case samples. Downstream of DTU analysis, SPIT uses 
detected DTU events to provide insight into potentially hierarchical subgrouping patterns 
present in complex disease populations using hierarchical clustering. 
 
Within the SPIT algorithm, subgroups with divergent abundances for each transcript are 
detected using a kernel density estimator, after which the distributions are compared via a 
nonparametric Mann-Whitney 𝑈 test. SPIT provides a conservative approximation of the 
biological and technical variability within datasets with its SPIT-Test module, significantly 
reducing false-discovery rates. Rather than estimating the expression variability per transcript, 
SPIT-Test samples a null distribution of minimal 𝑈 statistic 𝑝-values based on the control group 
and assumes that, for each transcript, the minimal 𝑈 statistic 𝑝-value is drawn from the same 
underlying distribution when there is no real disease association independent of biological or 
technical variability. 
 
We applied SPIT to search for DTU events associated with schizophrenia, a psychiatric disorder 
canonically recognized as a heritable complex disease with an undetermined number of 
subtypes.11-13 Genetic causes of schizophrenia have long been studied, however, a clear 
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consensus on the level of genetic liability or the acting set of causal events has not been 
reached to this day. Whole genome, exome and RNA sequencing studies suggest that a wide 
range of both common and rare genetic variations, including single-nucleotide polymorphisms 
(SNPs), copy-number variations (CNVs), ultra-rare coding variants (URVs), and alternative 
splicing events, may contribute to the pathogenesis of schizophrenia.9, 14-16 After analyzing RNA-
Seq data from the dorsolateral prefrontal cortex (DLPFC) of 146 schizophrenia patients and 208 
controls, SPIT identified six candidate genes that had statistically significant DTU events 
associated with schizophrenia. Previously-reported disease associations for these candidate 
genes include neurodegenerative and psychiatric disorders such as Alzheimer's disease, bipolar 
disorder, schizophrenia, major depressive disorder, attention-deficit hyperactivity disorder, and 
autism spectrum disorder. No previous report had identified DTU events in any of these genes. 
 
SPIT is open-source software freely available at https://github.com/berilerdogdu/SPIT. 
Additionally, a user-friendly Google Colaboratory configuration and step-by-step guide are 
provided at 
https://colab.research.google.com/drive/1u3NpleqcAfNz_0EAgO2UHItozd9PsF1w?usp=sharing. 
 
Results 
 
A demonstration on simulated data 
 
A DTU event is defined as a significant difference in the proportions of isoforms contributing to 
the overall expression of a locus between individual or groups of samples. We are particularly 
interested in cases where there is a clearly dominant isoform in healthy individuals, where DTU 
can potentially disrupt cellular function and cause anomalies. 
 
We describe a modeled DTU case with artificially generated data in order to exemplify such 
DTU events, and to demonstrate the key steps of the SPIT algorithm. Consider a locus from 
which two distinct isoforms, Isoform 1 and Isoform 2, are transcribed as represented in Figure 
1.a. Suppose that the protein translated from Isoform 1 is a functional protein, whereas Isoform 
2 gets translated into a dysfunctional, aberrant protein. Consequently, the primary expression 
profile of this locus in a healthy individual is expected to be Isoform 1. Figure 1.b shows the 
relative abundances of Isoform 1 and Isoform 2 for four individuals with varying levels of 
expression at the locus. The left panel of Figure 1.b demonstrates a clear example of DTU 
between Individual 1 and Individual 2, with Isoform 1 dominant for Individual 1 and Isoform 2 
dominant for Individual 2. The right panel of Figure 1.b illustrates why changes in overall 
expression at the gene/locus or transcript/isoform level are not sufficient indicators of DTU, as 
illustrated for the same isoforms in Individuals 3 and 4, where overall expression changes but 
the relative proportion of the isoforms remains the same. 
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Figure 1: DTU detection demonstration a. Gene locus going though alternative splicing to produce Isoform 1 and Isoform 2. b. 
Left panel: Isoform abundances in a sample case of DTU between individuals 1 and 2. Right panel: Isoform abundances in a 
sample case without DTU but with changes in overall expression between individuals 3 and 4. c. Three SPIT-Test iterations 
demonstrated with random splits of the Control-Complex group. Samples (dots) are color coded based on their dominant 
isoforms for the locus in c-f, with blue=isoform 1 and red=isoform 2. d. Left panel: Conventional DTU analysis assumption with 
no structured heterogeneity in either group. Right panel: Heterogeneity structure in complex disease samples, where a subset 
of cases share the same genetic abnormality (Case-Complex). e. Corresponding isoform fraction (IF) distributions for the 
samples represented in groups Control-Complex and Case-Complex. f. Random forest regression representation when there is 
not a significant confounding effect in the DTU transcript (Upper panel) vs. when there is a clear confounding effect by the 
covariate “age” (Lower panel). Corresponding permutation importance scores for age and 𝑣! are shown on the right. 

 
DTU analysis usually entails comparing two groups of samples rather than individuals. In the 
interest of brevity, suppose for any given individual, either Isoform 1 or Isoform 2 is significantly 
dominant for the locus in our model DTU case, and note that each individual is color-coded 
based on their dominant isoform in Figure 1.c-e. Small sample sizes are quite common in RNA-
Seq experiments17, and the left panel of Figure 1.d represents a typical experiment setup for 
DTU analysis with 12 samples in each group. If a DTU event between Isoform 1 and Isoform 2 
has a causal link to a disease, the left panel of Figure 1.d depicts the expected scenario for a 
simple genetic disease where the disease is caused by a single or a small set of genes. In this 
scenario, one assumes that all or nearly all controls have normal gene expression patterns, 
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while the cases all share a distinct but abnormal gene or transcript expression pattern that has 
caused them to be placed in the disease cohort.  
 
In contrast, the causal set of genes or events are not expected to be shared amongst all 
individuals affected by a complex disorder. The idea that the majority of complex disorders are 
likely polygenic, and that distinct combinations of causal events might lead to similar 
pathogenesis in different patient groups is widely accepted.18 When focusing on a particular 
causal event such as the DTU case between Isoform 1 and Isoform 2, this implies that only a 
subgroup of patients within the case group are likely to have this event among their causal 
factors, as depicted in the right panel of Figure 1.d. By segregating this subgroup from the 
remaining case group, we gain the capability to detect a DTU event that might have otherwise 
gone unnoticed, and to differentiate potential subclusters of the disease group based on shared 
DTU events.  
 
In order to do so, we compare the distributions of isoform fractions (𝐼𝐹s) between the two 
groups, which refers to the proportion of total expression attributed to each isoform. Figure 1.e 
shows the 𝐼𝐹 levels for Isoform 1 in both Control-Complex and Case-Complex groups, which is 
expectedly high for individuals with Isoform 1 as the dominant isoform at the locus, and low for 
individuals with Isoform 2 as the dominant isoform. By fitting a kernel density estimator (KDE)19-

21 on the 𝐼𝐹 distributions, we can search for bimodality, which if found indicates a separation 
within the groups themselves. The right panel of Figure 1.e demonstrates the clear partition of 
the Case-Complex subgroups by a global minimum marked with a cross on the KDE curve. We 
should note that SPIT does not presuppose the existence of a partition in populations and still 
detects any shared DTU events in the absence of bimodality.  
 
Partitioning of subgroups 
 
The transcript counts are transformed into 𝐼𝐹s for each sample as follows:  
(1) 

𝐼𝐹!,# =
𝑡!,#

∑ 𝑡!,#$!
(  

where 𝐼𝐹!,#  is the isoform fraction for transcript 𝑗 in sample 𝑖, 𝑡!,#  is the transcript count for 
transcript 𝑗 in sample 𝑖, and 𝐺#  stands for the set of all transcripts that belong to the same gene 
as transcript 𝑗. We fit a KDE with Gaussian kernel19-21 (details on bandwidth selection are 
described in the Methods section on parameter fitting) on the two vectors of 𝐼𝐹%",#, where 𝐼&  
stands for the samples in groups 𝑐 ∈ {case, control}. If the 𝐼𝐹%"#$%,# 	distribution is bimodal, 
indicating a significant stratification of two subgroups based on the dominance status of 
transcript 𝑗, we observe this as a global minimum of the KDE (Figure 1.e). While we 
acknowledge the possibility of observing a similar divergence within the control group due to 
technical or biological variability, our primary objective is to identify subgroups within the case 
samples for potential associations with disease status. The KDE on control group is utilized for 
flagging the most significant candidate DTU genes as described in the Methods section. 
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There are several advantages to detecting subgroups based on density estimation, the most 
important of which is the ability to avoid an underlying distribution assumption for the data set, 
which can be challenging for RNA-Seq driven data even after multiple normalization steps.22 
Furthermore, while outlier samples can alter the shape of a KDE, they have a relatively 
negligible impact on the global minima/maxima as long as appropriate smoothing is applied.21 
Unlike 𝑘-means or hierarchical clustering methods, there is not a hyperparameter that 
fundamentally effects whether or not clusters are detected in the data, and the choice of the 
bandwidth parameter (ℎ) works in our advantage to account for overdispersion by 
oversmoothing (see Methods section on parameter fitting). 
 
In the presence of a global minimum in the case group at 𝐼𝐹!,# = 𝑚&'(), we define the left tails 
of the case and control 𝐼𝐹#  distributions as the samples that fall to the left of point 𝑚&'(), and 
the right tails as the samples that fall to the right: 
(2) 

𝑙&'() = {𝑖	 ∈ 𝐼&'() 	|𝐼𝐹!,# ≤ 𝑚&'()} and 𝑟&'() = {𝑖	 ∈ 𝐼&'() 	|𝐼𝐹!,# > 𝑚&'()}, 
𝑙&*+,-*. = {𝑖	 ∈ 𝐼&*+,-*. 	|𝐼𝐹!,# ≤ 𝑚&'()} and 𝑟&*+,-*. = {𝑖	 ∈ 𝐼&*+,-*. 	|𝐼𝐹!,# > 𝑚&'()}. 

 
To search for candidate DTU events in 𝑙&'() and 𝑟&'() independently, the left tails of the case 
and control 𝐼𝐹#  distributions are compared internally, as are the right tails, using the non-
parametric Mann-Whitney 𝑈 test. I.e. ⋃ 𝐼𝐹!,#!∈."#$%  is compared with ⋃ 𝐼𝐹!,#!∈."&'()&* , while 
⋃ 𝐼𝐹!,#!∈-"#$%  is compared with ⋃ 𝐼𝐹!,#!∈-"&'()&* . This analysis determines whether the samples in 
𝑙&'() could have been drawn from the left-tail control samples with 𝐼𝐹!,# ≤ 𝑚&'(), or if they 
exhibit significant differences. Likewise, the same rationale applies for the right tails.  
 
In the absence of a global minimum, a Mann-Whitney 𝑈 test is conducted between the entire 
groups of 𝐼&'() and 𝐼&*+,-*.. 
 
Estimating dispersion with SPIT-Test and detecting DTU 
 
Although the use of non-parametric statistical tests can help control the false discovery rate 
(FDR) in differential analyses, the effectiveness of several competing methods is notably 
diminished when the input data is overdispersed with outliers23, a common characteristic of 
RNA-Seq data24. This prevalent phenomenon suggests that we are not capable of precisely 
estimating dispersion for each individual transcript or gene, in addition to not being able to 
adequately correct for the vast number of hypotheses being tested. To overcome this 
challenge, we choose to estimate a single null distribution for the minimal Mann-Whitney 𝑈-
statistic 𝑝-values, and assume that these observed minimal 𝑝-values reflect the upper threshold 
of dispersion in the input dataset. 
 
The true null distribution 𝑃0 of the minimal 𝑈-statistic 𝑝-values represents the lowest expected 
𝑝-values when there is no real association between the phenotype of interest, such as a 
disease, and the changes in isoform dominance among individuals or groups. To estimate 𝑃;0, 
SPIT-Test takes advantage of the control group in which disease association is absent, yet 
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individual differences due to biological, technical, or other confounding factors can be 
observed. As illustrated in Figure 1.c, SPIT-Test is an iterative process which randomly splits the 
control group in half, and identifies the most significant difference in isoform fractions between 
the two halves. Later on, the candidate DTU events between the case and control groups are 
compared, in terms of their significance, to the observed differences between random halves of 
the control group. 
The following steps are performed at each iteration 𝑠: 
 

1. Randomly split the control samples into two sets of equal size, namely ℎ1,( where 𝑘 ∈
{1, 2} represents each half for iteration 𝑠. 

2. Select a random split point 𝜊(, to define the left and right tails of each half as: 
𝑙2+,$ = A𝑖	 ∈ 𝐼2+,$ 	B𝐼𝐹!,# ≤ 𝑜(} and 𝑟2+,$ = A𝑖	 ∈ 𝐼2+,$ 	B𝐼𝐹!,# > 𝑜(}, 
𝑙2-,$ = A𝑖	 ∈ 𝐼2-,$ 	B𝐼𝐹!,# ≤ 𝑜(} and 𝑟2-,$ = A𝑖	 ∈ 𝐼2-,$ 	B𝐼𝐹!,# > 𝑜(} 

3. For each transcript 𝑗, conduct a Mann-Whitney 𝑈 test between the sets of 𝑙2+,$  and 𝑙2-,$, 
yielding a Mann-Whitney 𝑈-statistic 𝑝-value 𝑝#*,$	. Similarly, conduct a Mann-Whitney 𝑈 
test between the sets of 𝑟2+,$  and 𝑟2-,$, yielding 𝑝#),$	.  

4. Assign 𝑝#,( = 	min(	𝑝#*,$	 , 𝑝#),$	) to each transcript 𝑗 for iteration 𝑠. 
5. Among the 𝑈-statistic 𝑝-values assigned to all transcripts, store 𝑝′( = min⋃ 𝑝#,(3 . In 

order to avoid excessive influence from outlier transcripts, we only sample 𝑝′ once from 
the same transcript throughout all iterations. In other words, in iteration 𝑠 we consider 
transcripts from which 𝑝′(+,…,('/+have not been sampled. 

6. 𝑃;0 = 𝑃;0 ∪ 𝑝′(. 
 
SPIT-Test estimates dispersion on a global scale, assuming that any transcript could have been 
subject to the highest observed level of dispersion. Therefore, for an arbitrary transcript 𝑗, 𝑃;0 is 
considered as an empirical null distribution of the minimal 𝑈-statistic 𝑝-value. This approach 
emulates the min-P and max-T procedures25, and is employed to set a 𝑝-value threshold, 
𝑝′,2-)(2*.5, based on 𝑃;0 that determines the set of candidate DTU transcripts between case and 
control samples as: 
(3) 

𝑝,2-)(2*.56 = K𝜅 ∗ B𝑃;0BNth smallest 𝑝-value in 𝑃;0, 
 
where 𝜅 is a user-set parameter. For instance, if 𝜅 = 0.1 for 1000 iterations, the threshold 
would be the 100th smallest 𝑝-value. SPIT-Test deviates from a traditional permutation test in 
its randomization steps 1 and 2, and its exclusion of the case samples due to the potential 
presence of unknown subgroups. Although 𝜅 cannot directly translate into a target family-wise 
error rate (FWER), we experimentally show that smaller values of 𝜅 achieve remarkable control 
over FWER.  
 
DTU simulation and evaluation 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


Simulated RNA-Seq reads are conventionally used to evaluate differential analysis tools, as we 
lack knowledge of ground truth in real data. However, research has consistently shown that 
simulated reads do not accurately represent the overdispersion levels in real RNA-Seq 
experiments, leading to underestimation of FDR.23, 26 In order to obtain a more accurate 
assessment of SPIT’s performance, we make use of both simulated and real RNA-Seq data. In 
these two types of evaluation sets, we compare the true positive rate (TPR) and FDR outcomes 
of SPIT, and the state-of-the-art tools DEXSeq27 and DRIMSeq28 used together with the stage-
wise adjustment tool stageR.29 
 
Evaluation with simulated RNA-Seq reads 
 
We borrow the DTU simulation with the largest sample sizes from the “Swimming 
Downstream” pipeline by Love et al.30 as our test dataset with simulated RNA-Seq reads. 
(Please see the corresponding Methods section for details.) This dataset simulates a large 
number of (> 1500) DTU events in relatively homogenous populations, resembling the 
scenario depicted in the left panel of Figure 1.d. While dispersion is incorporated into the 
transcript expression patterns, there are no subgroups or divergence in the DTU events. 
 
The TPR and FDR at the gene level are reported for each tool in Figure 2.b, where both DEXSeq 
and DRIMSeq have 3 outcomes corresponding to stageR target overall FDR (OFDR) values 
0.01, 0.05, 0.1. For SPIT, we report 5 outcomes corresponding to setting hyperparameter 𝜅 =
0.2, 0.4, 0,6, 0.8	and	1 on 1000 iterations. Although the tuning of target OFDR for stageR and 𝜅 
for SPIT are not directly comparable, lower values of both parameters lead to more 
conservative behavior, allowing better control over FDR and often yielding decreased TPR.  
 
TPR and FDR outcomes of DEXSeq and DRIMSeq were consistent with the “Swimming 
Downstream” evaluation. Both tools yielded high sensitivity levels while DEXSeq maintained a 
slightly better control over FDR. On the same simulated dataset, SPIT yielded a comparable yet 
slightly lower TPR value while always keeping the FDR lower than 0.05. Different values of the 
hyperparameter 𝜅 did not result in noticeable differences in TPR or FDR on this dataset. 
 
Evaluation with real RNA-Seq reads 
 
To form the basis of our test dataset with real RNA-Seq reads, we quantified Illumina reads of 
235 normal heart (left-ventricle) samples obtained from the Genotype-Tissue Expression (GTEx) 
project31. Figure 2.a shows the mean-standard deviation plots of the two datasets, revealing a 
significantly higher level of dispersion in the GTEx dataset compared to the “Swimming 
Downstream” dataset of simulated RNA-Seq reads. 
 
Next, we conducted 20 separate experiments in each of which we compared random halves of 
the GTEx dataset after introducing 100 simulated DTU events into one of the halves (please see 
the corresponding Methods section for details). In an effort to model the expected 
heterogeneity in a complex disease group, we distributed the 100 DTU events between 5 
subgroups in such a way that some DTU events are shared between the subgroups while some 
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are exclusive (see Figure 2.c for an example).  For the rest of the paper we’ll refer to any such 
subgroup that shares the same DTU events as a ”splicotype” group.  
 
In any random partition of real RNA-Seq samples into two groups, it is not certain that there are 
no actual DTU events beyond the ones we introduced. Therefore, the TPR and FDR measures 
for the GTEx experiments are only estimates. Our hypothesis in evaluating these experiments 
was that if any method consistently detected additional DTU events between random partitions 
of a healthy sample group, the discoveries were either noise or else due to biological variance 
that are not of interest. As such, we present the mean estimated FDR and TPR values of 20 
experiments for SPIT and DRIMSeq+stageR pipeline in Figure 2.b with error bars indicating the 
minimum and maximum FDR/TPR values obtained. Additionally, in Figure 1.d, we show the 
individual Venn diagrams representing the overlap between the DRIMSeq+stageR pipeline and 
SPIT results with the simulated DTU genes for the first experiment out of the 20 conducted. 
Venn diagrams for the remaining experiments showing similar results are provided in 
Supplementary Fig.1. 
 
Due to its generalized linear model (GLM) fitting step, DEXSeq requires significant compute time 
for large sample sizes. After running for 168 hours on 24 cores and 256 GB RAM, dispersion 
estimation for the first experiment remained unfinished. Therefore, we only compare DRIMSeq 
+ stageR and SPIT results for the GTEx experiments.  
 
In line with the “Swimming Downstream” evaluation, we applied DRIMSeq followed by stageR 
with target OFDR values of 0.01, 0.05, and 0.1 to the GTEx experiments. Because the SPIT pre-
filtering process is included in the DTU simulation, we performed DRIMSeq + stageR analysis on 
the SPIT-filtered counts and bypassed DRIMSeq filters.  
 
In contrast to the TPR and FDR values obtained with the simulated “Swimming Downstream” 
dataset, the DRIMSeq + stageR pipeline yielded a wider range of estimated TPR and FDR values 
on the GTEx experiments. For the GTEx experiments, the DRIMSeq + stageR pipeline produced 
lower TPR and notably higher FDR estimates for all target OFDR values (0.01, 0.05, and 0.1), 
with a more significant difference in performance between each OFDR value. We also note the 
wide error bars in the pipeline, indicating a large range of performance across all 20 
experiments. This variability could be attributed to the distinct biological differences between 
the random partitions in each experiment or to the level of heterogeneity introduced in the 
simulation through varying compositions of shared DTU events between random splicotypes. 
 
As with the “Swimming Downstream” dataset, we report TPR and FDR estimates for SPIT 
obtained by setting hyperparameter 𝜅 = 0.2, 0.4, 0,6, 0.8	and	1. For input datasets with large 
number of control samples (𝑛 ≥ 32), SPIT offers an optional cross-validation procedure to 
estimate the optimal value 𝜅∗ based on inferred dispersion, which is detailed in the Methods 
section on parameter fitting. In Figure 2.b, the TPR and FDR obtained using the estimated 𝜅∗ is 
represented by a triangle, which for this dataset is 0.6. Overall, the estimated TPR and FDR 
levels for SPIT remained comparable to the values obtained for the “Swimming Downstream” 
dataset with a slight increase in both TPR and FDR. The gain in sensitivity is expected for SPIT 
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with large sample sizes since it uses the Mann-Whiney 𝑈 test when comparing any two sets of 
𝐼𝐹 values. While the optimal 𝜅∗ parameter still has an estimated FDR < 0.05, SPIT’s control 
over FDR also diminished with real RNA-Seq reads compared to the simulated test set. A clear 
increase in both TPR and FDR was observed for 𝜅 = 0.8	and	𝜅 = 1, which are included to 
demonstrate the effects of using radically large values for hyperparameter 𝜅. The range 
represented by the error bars in Figure 2.b is smaller for SPIT compared to that of DRIMSeq, 
which indicates higher consistency across all 20 experiments. 
 
Upon detecting the DTU events for any given dataset, SPIT outputs a binary matrix 𝑀 of DTU 
events that marks the presence (1) or absence (0) of a DTU event at the gene level for any 
sample in the case group relative to the control group. We show that using SPIT’s output matrix 
𝑀, we are able to cluster the case samples into their separate splicotype groups based on their 
shared events by applying hierarchical clustering. The chosen distance metric calculates the 
proportion of unique events between any two samples relative to the total number of DTU 
events. As shown in Figure 2.c, SPIT perfectly captures the five clusters that were artificially 
created. Clustering on the first experiment is shown in Figure 2.c based on the SPIT output with 
𝜅∗; the remaining experiments are shown in Supplementary Fig.1. 
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Figure 2:a. Mean vs. standard deviation of the transcript counts are plotted for the Swimming Downstream and GTEx 
experiment samples to represent relative dispersion levels. b. Gene-level DTU-performance evaluation on both Swimming 
Downstream and GTEx test datasets. Radical values of 𝜅 = 0.8	and	𝜅 = 1 are included (as unfilled circles) to show the effects of 
hyperparameter adjustment. c. The DTU event sharing Venn diagram for the first experiment in the GTEx simulations (Right), 
and the corresponding final subcluster dendrogram based on the SPIT DTU matrix (Left). The subclusters are color coded based 
on their distinct sets of simulated DTU events (splicotypes). d. Overlap of DRIMSeq+stageR pipeline (Top) and SPIT (Bottom) 
results with simulated DTU genes in the first experiment. 
 
Detecting known tissue-dependent DTU events 

 
As a positive control experiment, we next investigated a set of four tissue-dependent DTU 
events that had been previously confirmed individually by various studies and also collectively 
validated by Reyes & Huber in 201832. For this analysis, we utilized samples from the GTEx 
dataset (Supplementary Table 1) that were aligned as part of the CHESS 3 project.33 Figure 3 
visually illustrates differentially expressed transcripts between tissues at each locus. All 
transcriptional landscape were created using the sashimi plot module in TieBrush after 
aggregating read alignments from all samples in each tissue. SPIT results on all four DTU events 
are detailed below. 
 
SLC25A3 
The mitochondrial phosphate transporter gene SLC25A3 exhibits a phenomenon known as 
“mutually exclusive exons”3, which refers to the observation that specific exons within the gene 
are spliced into distinct isoforms but they are not simultaneously present within the same 
isoform. We compared 497 samples of heart tissue and 380 samples of colon tissue from the 
GTEx dataset, and SPIT was able to confirm that one of these isoforms, which is recognized as 
the primary expression preference in heart and skeletal muscle, is indeed more prevalent in 
heart tissue samples (Figure 3.a). 
 
ANK3 
Together with two more ankyrin genes, ANK3 plays a crucial role in generating a diverse array 
of ankyrin proteins in mammals. Tissue-specific splicing of ANK3 has previously been shown in 
skeletal muscle and tibial nerve tissues32, 34. A total number of 480 muscle and 339 nerve tissue 
samples from GTEx were analyzed using SPIT, confirming the presence of an isoform switch 
characterized by alternative start sites and distinct patterns of exon splicing (Figure 3.b). 
 
MEF2C 
MEF2 transcription factors are significant in regulating cell differentiation and expression, and 
they undergo tissue-specific alternative splicing, adding to their functional diversity. MEF2C in 
humans has two mutually exclusive exons, one of which is shown to be more prevalent in 
skeletal muscle35. We compared 480 muscle tissue samples from GTEx with 361 thyroid 
samples using SPIT and were able to detect the isoform switching as a significant DTU event 
(Figure 3.c). 
 
MYO1C 
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Myosin IC encodes a protein of the myosin family, which serves multiple cellular functions 
including vesicle transportation, transcription and DNA repair36, 37. The presence of a tissue-
dependent transcription start site in Myosin IC has been demonstrated, leading to splicing of an 
alternative first exon36, which SPIT successfully detects upon comparing 497 heart and 199 
pancreas samples from GTEx (Figure 3.d).  
 

 
Figure 3: Sashimi plots with normalized coverage and junction values from GTEx samples of CHESS 3 project. Only the relevant 
isoforms and junction values are included for readability. The normalized coverage values for each tissue were subtracted from 
the normalized coverage of the entire GTEx dataset, and the results were illustrated as the Δ track. a. SLC25A3 DTU event 
between heart and colon tissues. b. ANK3 DTU event between muscle and nerve tissues. c. MEF2C DTU event between muscle 
and thyroid tissues. d. MTO1C DTU event between heart and pancreas tissues. 
 
Schizophrenia application 

 
After evaluating its performance, we explore the application of SPIT in identifying DTU genes 
associated with schizophrenia, where we expect a divergence in the causal mechanisms 
underlying pathogenesis for individual or groups of patients. We obtained RNA-Seq samples of 
post-mortem DLPFC tissue from a total of 354 adult brains, which were sequenced by the Lieber 
Institute for Brain Development.38 After applying various quality filtering criteria that are 
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described in detail in the Methods section, we selected 146 schizophrenia samples and 208 
control samples for comparison in our analysis (Supplementary Table 2). 
 
The parameter-fitting process was applied to the control samples, resulting in 𝜅∗ = 0.4. Prior to 
confounding analysis, SPIT detected 135 potential DTU events between the case and control 
samples. The binary DTU matrix for these 135 transcripts was then inputted to the confounding 
control module of SPIT which is described in the Methods section. Covariates considered for all 
samples included sex, race, age, batch identification, and RNA integrity number (RIN) which 
highly correlates with RNA degradation.39 129 candidate transcripts were eliminated based on 
their permutation importance scores, leaving a final set of six DTU transcripts in six genes 
(Figure 4.c). The SPIT-Chart for this analysis (Figure 4.a) shows the relationship between the 
median p-values obtained from 1000 iterations of SPIT-Test and the p-values resulting from 
comparing control and schizophrenia samples for transcripts. 
 
Amongst the six candidate genes, four (BDH2, CLDND1, GAS8, TRIP4) displayed DTU events in all 
schizophrenia samples, while the other two genes (LARP4, NVL) showed significant DTU events 
in specific subgroups. Figure 4.b depicts the clustering of schizophrenia samples based on 
identified DTU events, revealing a partitioning into four subgroups in this dataset. We present 
short descriptions of the functions and associations of the six candidate genes below. 
 
GAS8 (Growth Arrest Specific 8): A multi-tissue study examined SNPs for enrichment of 
expression quantitative trait loci (eQTL) across 11 genome-wide association studies (GWAS) 
focused on schizophrenia and affective disorders (including bipolar disorder, major depressive 
disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder)40. The study 
identified GAS8 amongst genes affected by the high-confidence cis-eQTLs in multiple brain 
regions, and reported its cross-disorder associations as well as specific associations with bipolar 
disorder. 
 
NVL (Nuclear VCP Like): This gene is a member of the AAA family (ATPases associated with 
diverse cellular activities) and encodes for two proteins with recognized distinct functions, NVL1 
and NVL241, the latter of which is involved in regulating ribosome biogenesis in eukaryotes42. 
There is a growing body of evidence suggesting correlations between disrupted ribosome 
synthesis and aging, as well as neurodegenerative diseases like Alzheimer's disease and 
Parkinson's disease43-48. In the subset of schizophrenia samples where NVL is implicated in DTU, 
we observed that the NVL1 isoform was preferred, potentially indicating perturbed ribosomal 
synthesis (Supplementary Figure 3). 
 
LARP4 (La Ribonucleoprotein 4): The protein encoded by this gene enables RNA-binding activity 
and plays a critical role in translation regulation49. LARP4 has been found to show differential 
expression between the unaffected siblings and first-degree relatives of schizophrenia patients 
compared to unaffected individuals unrelated to the patients50. 
 
BDH2 (3-Hydroxybutyrate Dehydrogenase 2): This gene is responsible for encoding a 
siderophore that plays a crucial role in maintaining iron balance within cells, offering protection 
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against oxidative stress51. Studies have indicated a significant downregulation of BDH2 in 
response to inflammation and endoplasmic reticulum (ER) stress52. Disrupted iron homeostasis 
and ER stress have long been associated with neurodegenerative diseases like Alzheimer's 
disease and Huntington's disease53, 54. Recent studies report BDH2 to be directly implicated in 
Alzheimer’s disease progression55. 
 
TRIP4 (Thyroid Hormone Receptor Interactor 4): The protein encoded by this gene is one of the 
four components of the activating signal cointegrator 1 (ASC-1) complex. Mutations in ASC-1 
components have been described as shared anomalies between the neurodegenerative 
diseases Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA)56. Mutations in 
TRIP4 and ASCC1, another component of ASC-1 complex, are widely recognized as a cause of 
SMA57, 58.  
 
CLDND1 (Claudin Domain Containing 1): This gene encodes transmembrane proteins of tight 
junctions, which play a role in regulating the permeability of brain endothelial cells59. CLDND1 
has been linked to Alzheimer's disease60, with one study indicating a potential correlation 
specifically with a subgroup of the condition61.  
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Figure 4: a. Dendrogram representation of hierarchical clustering applied on the SPIT DTU matrix for schizophrenia samples b. 
SPIT-Chart for the schizophrenia analysis: For each transcript that passed the initial filtering steps, the median 𝑝-value that has 
been observed through 1000 iterations of the SPIT-Test (median	(⋃ 𝑝!,#$ )) is plotted on the 𝑥-axis, and the 𝑝-value observed in 
the actual comparison of the schizophrenia samples to the controls is plotted on the 𝑦-axis, both on −𝑙𝑜𝑔%& scale. c. Box plots 
of permutation importance scores (generated from 100 permutations) of the SPIT output vector and provided covariates for the 
final 6 DTU genes.  
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Discussion 
 
Transcriptomic profiles in populations with complex diseases can exhibit inherent complexity 
where differentially expressed events are not necessarily shared among all individuals affected 
by the specific disorder. Consequently, applying the same statistical assumptions for these 
populations as those used for simple genetic disorders can lead to misleading results in 
differential analyses. SPIT is the first DTU tool built to accommodate and detect structured 
heterogeneity within populations. Through DTU simulations built on GTEx samples, we show 
that SPIT not only achieves improved sensitivity and specificity in detecting DTU genes in 
heterogeneous populations, but also successfully captures the specific DTU events for the 
prevalent subpopulations present. 
 
Our results on the “Swimming Downstream” dataset by Love et al. also demonstrate that SPIT is 
equally effective on relatively homogeneous populations, and proves to be applicable for 
diverse scenarios, including simple genetic disorders, tissue-to-tissue comparisons, and other 
types of DTU studies. SPIT consistently maintains notably low false discovery rates regardless of 
the level of dispersion in the datasets.  
 
In addition to simulated experiments, we present four previously confirmed tissue-specific DTU 
cases that SPIT successfully detected in GTEx samples, as well as six novel DTU associations with 
schizophrenia. However, to establish any causal link between these six candidate DTU events 
and schizophrenia, a much more comprehensive investigation is needed, which is beyond the 
scope of this paper. 
 
Methods 
 
Pre-filtering 
 
The main input SPIT requires is transcript-level count data from an RNA-Seq quantification tool, 
a mapping file that assigns gene names to each of the transcripts, and any metadata for the 
samples.  Pre-filtering the transcripts before DTU analysis has been shown to improve 
performance for state-of-the-art tools30, 62, which also holds true for SPIT. The default behavior 
of SPIT involves the stringent pre-filtering steps listed below which build upon the DRIMSeq 
filtering criteria: 
 

1. Each transcript must have a Counts per million (CPM) value of at least 10 in at least 
𝑛(8'..  samples, where  𝑛(8'..  is a user-set parameter that defines the smallest sample 
size presumed for the subgroups within populations. 

2. Each transcript must have a positive read count in at least a fraction 𝑝-  of the samples in 
both the case and control groups, respectively. 𝑝-  is a user-set parameter and defaults 
to 0.20. 

3. Each gene must have a read count of at least 𝑔&  in at least 𝑔+ samples, where 𝑔&  and 𝑔+ 
are user-set parameters and default to 10. 
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4. Each transcript must have an 𝐼𝐹 value larger than 𝑓 in at least 𝑛(8'..  samples, where 𝑓 
is a user-set parameter and defaults to 0.1. 

5. After the filtering steps above, there must remain at least 2 transcripts for each gene. 
6. The control group must have a consistently dominant isoform for each gene. This 

criterion is met for a gene when the same isoform of the gene has the largest 𝐼𝐹 in at 
least a fraction 𝑝5  of the control samples, where 𝑝5  is a user-set parameter and defaults 
to 0.75. 

 
As is the case for any filtering criteria prior to differential analyses, these steps may 
inadvertently exclude genuine DTU cases and lower sensitivity. Thus, while these steps are 
included and recommended in the SPIT pipeline, any or all of them can be excluded from the 
analysis by the user. Supplementary Figure 2 outlines the application of this filtering pipeline on 
the schizophrenia samples discussed in the Results section. 
 
Test set with simulated RNA-Seq reads: “Swimming Downstream” 
 
Love et al. simulated DTU events in 1,500 genes by swapping Transcript Per Million (TPM) 
abundance values between two isoforms. In an additional 1,500 genes, they simulated 
differential transcript expression (DTE) by altering the abundance value of a single isoform by a 
fold change between 2 and 6. For these DTE genes, if the differentially expressed transcript is 
not the only isoform, they were also considered DTU cases as the relative isoform abundances 
were also expected to change. We include both types of these DTU events in our analysis. 
 
Love et al. conducted four experiments with various sample sizes in the case and control groups 
(𝑛 = 3	vs.	3, 𝑛 = 6	vs.	6, 𝑛 = 9	vs.	9, 𝑛 = 12	vs.12) to evaluate state-of-the-art DTU tools 
DEXSeq, DRIMSeq, RATs, and SUPPA2. They reported that while SUPPA2 and RATs always 
controlled their FDR, their sensitivity levels remained consistently low across all experiments, 
hovering around 50%. DRIMSeq and DEXSeq had considerably higher sensitivity (≥ 75%) while 
sometimes exceeding their target FDR. Both DRIMSeq and DEXSeq demonstrated improved FDR 
control with larger sample sizes, and 12	vs.	12 yielded the most favorable TPRs and FDRs. 
 
Based on these findings, we choose to reproduce the “Swimming Downstream” results 
obtained with DEXSeq and DRIMSeq on the 𝑛 = 12	vs.	12 experiment and to evaluate SPIT’s 
performance on the same dataset. We first ran DEXSeq and DRIMSeq on the released Salmon 63 
quantification files by Love et al.64 as outlined in the “Swimming Downstream” workflow. We 
then applied the stage-wise adjustment tool stageR on the preliminary results from both 
DEXSeq and DRIMSeq using target OFDR values 0.01, 0.05,	and	0.1. The “Swimming 
Downstream” evaluation first applied the DRIMSeq pre-filters on the simulated counts and 
defined the set of true positives as the DTU genes and transcripts that pass the DRIMSeq filter. 
To be able to replicate the reported TPR and FDRs and compare results, we applied the same 
filters and skipped the SPIT pre-filtering process. 
 
Test set with real RNA-Seq reads: GTEx simulation 
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To simulate each of the 20 GTEx experiments the following steps were executed: 
 

1. Randomly divide the 235 GTEx samples into two sets to create case and control groups, 
𝐼&'() and 𝐼&*+,-*., comprising of 117 and 118 samples, respectively. 

2. Apply the SPIT pre-filter outlined above assuming the randomly assigned 𝐼&'() and 
𝐼&*+,-*.. Note that we skip step 6 of the pre-filtering as it could create an unfair bias in 
the pre-filtered set of genes towards the DTU genes selected in the next step. 

3. We apply the criteria outlined in step 6 of the pre-filtering process to identify genes with 
consistently dominant isoforms within the 𝐼&*+,-*.  group. Out of these genes with 
dominant isoforms, we randomly select 100 to compose our superset of DTU genes, 
D = {d9, d:, … , d9;;}. 

4. For each splicotype group (subgroup of samples that share the same DTU events) 𝜋(,
𝑠 ∈ {1, 2, 3, 4, 5}, we randomly select 30 DTU genes from set 𝐷 with replacement to 
form 𝐷<$. This results in a complex and structured partition within 𝐼&'(), where some 
DTU genes are shared between the five splicotypes while others are unique to a specific 
splicotype. 

5. For a DTU gene 𝑑1 ∈ 𝐷<$, let 𝛼1 be the dominant isoform of 𝑑1 in 𝐼&*+,-*.  with 𝐼𝐹iii = 𝑢, 
and 𝛽1 be the least dominant isoform in 𝐼&*+,-*.  with mean 𝐼𝐹iii = 𝑣.  
We switch the dominance status of 𝑎1 and 𝛽1 in 𝐼&'() by allowing 𝐼𝐹'0,! = 𝑣 ± 𝜖 and 
𝐼𝐹=0,! = 𝑢 ± 𝜖 for all 𝑖 ∈ 𝐷<$, where noise parameter 𝜖 = 0.05. 

6. Within all simulated DTU cases, the original transcript counts for	𝑎1 and 𝛽1 are updated 
by multiplying the gene counts by 𝐼𝐹'0,!  and 𝐼𝐹=0,!, respectively. The gene counts are 
updated subsequently as the sum of all updated transcript counts, and 𝐼𝐹 values are 
calculated once again with equation (1) so that within each gene 𝐼𝐹 values add up to 1. 

 
Addressing confounding variables 
 
After completing the preliminary DTU analysis, the main output of the SPIT pipeline is a binary 
vector 𝑣# 	for each transcript indicating the presence (1) or absence (0) of a DTU event in each 
sample in comparison to the control group. Note that 𝑣#  carries a 0 for all samples of the 
control group. Moreover, notice that for the transcripts that SPIT reports as significant DTU 
events, the 𝑣#  vector represents a partitioning of all samples, case and control, into two groups 
with relatively high and low 𝐼𝐹#  values. 
 
In the presence of a confounding effect, this partition of the high and low 𝐼𝐹#  values can also be 
achieved via the confounding variable if included in the experimental design. Based on this 
assumption, SPIT filters out the DTU events with potential confounding effects using a random-
forest-based method.  
 
Given a set of covariates 𝑋 = {𝑥9, 𝑥:, … , 𝑥1}, we define a matrix Χ#  for every candidate DTU 
transcript 𝑗 such that Χ#! = [𝑣#! , 𝑥9! , 𝑥:! , … , 𝑥1!] for any sample 𝑖 in either group. We also 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


define a vector 𝑦#  based on the 𝐼𝐹#  values such that 𝑦#! = 𝐼𝐹#!  in the same sample order as in 
Χ#.  
 
We then fit a random forest regressor65, 66 𝜙#KΧ#N → 𝑦#  on each candidate DTU transcript. The 
same number of samples as in the input matrix is bootstrapped for the construction of each 
tree with maximum tree depth 1, and we minimize the 𝐿: loss on the mean 𝐼𝐹# 	in terminal 
nodes. Notice that with tree-depth 1, our goal is not to precisely predict 𝐼𝐹#!  for samples as 
much as it is to assess which covariates might be contributing into observable variance in 𝐼𝐹#  
values. We require at least 𝑛(8'..  number of samples to split the root node. An illustrative case 
of detecting a confounding effect can be seen in the random forest depicted in Figure 1.d. 
Building on the modeled demonstration in Figure 1, assume that a candidate DTU event was 
detected for the subgroup in Case-Complex samples. Supposing one covariate (age) was 
provided as input, the random forest attempts to regress 𝐼𝐹#  based on Χ#! = [𝑣#! , age!]. On the 
upper panel, the first tree 𝑇9 finds the expected effectiveness of vector 𝑣#  in separating low 𝐼𝐹#  
values, as it was primarily inferred based on 𝐼𝐹#. A similar effective partition cannot be achieved 
with the provided covariate age in tree 𝑇:. 
 
On the lower panel, however, a partition by age in 𝑇′: demonstrates that age works as well as 
𝑣#  in 𝑇9, which implies that the identified DTU event cannot be confidently distinguished from a 
possible confounding effect of the covariate. 
 
With the objective of estimating the importance of each covariate as well as 𝑣#  in the 
partitioning of high vs. low 𝐼𝐹#  samples, we conduct a permutation importance test66, 67 on each 
random forest 𝜙#. The permutation importance test is based on the coefficient of 
determination 𝑅#: of 𝜙#, which is a score of how well 𝐼𝐹#  is predicted in tree leaf nodes. 
 
Let	𝜙#  have 𝐿 leaf nodes 𝜆9, … , 𝜆. , … , 𝜆> with 𝐼𝐹#  means 𝐼𝐹?@*

iiiiii . Then, 

𝑅#: = 1 −	𝑢# 𝑣#} , where  

𝑢# =	∑ ∑ ~𝐼𝐹#! − 𝐼𝐹?@*
iiiiii�

:
∀!∈@*

>
.B9 , and 

𝑣# =	∑ ~𝐼𝐹#! − 𝐼𝐹?
iiii�

:
% .  

 
Once the 𝑅#: of 𝜙#  is calculated on 𝜙#KΧ#N → 𝑦#, one of the covariate columns of the Χ#  matrix is 

randomly permuted to form Χ#
C0,1, where 𝜁1,D denotes a random permutation 𝜌 ∈ Ρ of the 

covariate 𝑥1 column. 𝑅#:
C20,1  is then calculated on 𝜙# ~Χ#

C20,1� → 𝑦#. The importance of 
covariate 𝑥1 is then defined as the decrease in score: 
(4) 

𝛾E0 =	𝑅#
: −	𝑅#:

C20,1.66 
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Although the significance criteria can be changed by the user, in the default settings of SPIT a 
candidate transcript is only labeled as DTU with the following condition: 
(5) 

𝑄9� 𝛾F!,D
G

	 > 	max� 𝑄H 	� 𝛾E0,D
GI

, 

 
where 𝑄9 and 𝑄H refer to the 1st and 3rd quartiles of the permutation importance scores, 
respectively. The number of permutations for the permutation importance test is a user-set 
parameter and defaults to 100.  
 
Parameter-fitting 
 
SPIT has two main hyperparameters that affect its behavior: bandwidth (ℎ) for KDE-fitting, and 
𝜅 for 𝑝-value thresholding. The choice of bandwidth (ℎ) directly determines the level of 
smoothing in the KDE function, with larger values of ℎ leading to oversmoothed and smaller 
values leading to undersmoothed 𝐼𝐹 distributions.68 In contrast to the conventional 
interpretation of an optimal bandwidth, selecting an optimal bandwidth for SPIT does not 
require achieving the highest possible accuracy in representing the underlying 𝐼𝐹 histograms. 
This is due to the fact that overdispersion in RNA-Seq data can lead to overly erratic histograms, 
which may be identified as multimodal by traditional approaches. Rather, selecting high values 
of ℎ allows us to reduce the risk of false discoveries by “oversmoothing” the input 𝐼𝐹 
distributions and only detecting only the most significant partitions in the data. 
 
Similar to the choice of bandwidth, the optimal 𝜅 value also depends on the level of dispersion 
present in the input dataset. Smaller values of 𝜅 lead to more stringent behavior by setting 
smaller 𝑝-value thresholds for detecting DTU events. To estimate the optimal values of ℎ and 𝜅 
for each dataset, SPIT implements a parameter-fitting process similar to cross-validation. This 
involves creating a set of experiments by introducing simulated DTU events into the input 
control group, following the same approach as used in the GTEx test experiments. Then, 
different combinations of ℎ and 𝜅 values are evaluated based on their accuracy. 
 
Given the set of case samples 𝐼&'() and the set of control samples 𝐼&*+,-*., we define a number 
(𝑛)) of experiments, 𝑇 = {𝑡9, 𝑡:, … , 𝑡+%}. To simulate each of the parameter-fitting experiments: 
 

1. Randomly divide 𝐼&*+,-*.  into two sets of equal size to create the simulation case and 
control groups, 𝐼&'()0  and 𝐼&*+,-*.0 , respectively. 

2. Apply the SPIT pre-filter outlined above assuming the randomly assigned 𝐼&'()0  and 
𝐼&*+,-*.0 . As with the GTEx test experiments, we skip step 6 of the pre-filtering process.  

3. We repeat the steps 3-5 of the GTEx test experiment simulation on 𝐼&'()0  and 𝐼&*+,-*.0 , 
where the number of splicotypes introduced into 𝐼&'()0  is a user-set parameter 
(𝑛J,	defaults to	5). For simple genetic disorders and experiments with small sample 
sizes, 𝑛J can be set to 1 as a complex partition within the case group is either not 
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expected or cannot be detected. The noise parameter 𝜖 can also be set by the user, and 
defaults to 0.05 as in the GTEx simulation. 

 
In order to estimate the optimal values of ℎ and 𝜅 (i.e. ℎ∗ and 𝜅∗) out of all combinations within 
user-set search ranges (with defaults 0.02 ≤ 	ℎ ≤ 0.20 and 𝜅 ∈ {0.1, 0.2, … ,	1}), we employ a 
leave-one-out cross-validation (LOOCV) approach on the simulated set of experiments, 𝑇. For 
each step 𝑠 in 𝑛)number of iterations: 
 

1. Let 𝑇(() = 𝑇	\	𝑡(. We run SPIT on 𝑇(() with all Kℎ! , 𝜅#N	|	ℎ! ∈ 	 {0.02, 0.03, … , 0.20}, 𝜅# ∈
	{0.1, 0.2, … ,	1} to yield estimated 𝐹-scores, 𝐹23,M! . 

2. Select (ℎ(∗, 𝜅(∗) such that 𝐹2$∗,M$∗ = max⋃ 	𝐹23,M!%,3 . 
3. Run SPIT on 𝑡( with (ℎ(∗, 𝜅(∗) to get 𝐹(. 

 
After 𝑛)  iterations, we obtain a set of optimal hyperparameters and their corresponding 𝐹-
scores: {(ℎ9∗ , 𝜅9∗), (ℎ:∗ , 𝜅:∗), … , (ℎ+%

∗ , 𝜅+%
∗ )} and {𝐹9, 𝐹:, … , 𝐹+%}. We select the hyperparameter 

values with the highest consensus among the iterations as our estimated optimal values 
(ℎ∗, 𝜅∗). The average 𝐹-score (𝐹)iiiii across all iterations can be interpreted as the overall 𝐹-score 
of the SPIT pipeline on the provided dataset, which can help determine if SPIT is an appropriate 
analysis tool for the dataset. In general, larger sample sizes of the control group (𝑛 ≥ 16) are 
expected to improve accuracy of SPIT test as the 𝑈-statistic is nearly normal with 𝑛 = 8	vs. 8.69 
Consequently, the parameter-fitting experiments are expected to reveal the best results with 
control group sizes ≥ 32.  
 
For the parameter-fitting experiments in this work, we used the default search ranges with 
𝑛) = 10 and 𝑛J = 	5. (ℎ∗, 𝜅∗) were estimated as (0.09, 0.6) for the GTEx simulation 
experiments, and (0.06, 0.4) for the Lieber brain samples. Final 𝐹i across 10 experiments were 
0.911and 0.930, respectively.  
	
SPIT's parameter-fitting process can be time-consuming and computationally intensive, and it is 
an optional step. Running 10 experiments (𝑛_𝑒 = 10) on a typical personal laptop can take up 
to 24 hours, however, multithreading is available through GNU parallel.70 Without parameter-
fitting, the default values of (ℎ, 𝜅) are set to the estimated optimal (ℎ∗, 𝜅∗) for the GTEx 
dataset, (0.09, 0.6). 
 
Removing outlier effects and tie-correction 
 
Assume that a global minimum was detected in the 𝐼𝐹 distribution of case samples in order to 
partition subgroups for an arbitrary transcript, and the left and right tails of the case and 
control groups were determined as 𝑙&'(), 𝑟&'(), 𝑙&*+,-*., and 𝑟&*+,-*..  
We define a parameter 𝑛(8'.., which defines the minimum size for subgroups that can be 
confidently detected and interpreted in the given dataset. If either or both of the sizes of 
𝑙&*+,-*.  and 𝑟&*+,-*.  are smaller, they can be expanded to the right and to the left, respectively, 
until each contains at least 𝑛(8'..  samples for comparison. Unlike the tails of the control group, 
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𝑙&'() and 𝑟&'() represent meaningful stratifications within the case group that may have 
biological implications. Therefore, the group sizes of both 𝑙&'() and 𝑟&'() need to be at least 
𝑛(8'... Otherwise, the stratification is considered unreliable due to potential influence of 
outliers. In such cases a Mann-Whitney 𝑈 test is conducted between the entire groups of 𝐼&'() 
and 𝐼&*+,-*..  
 
Additionally, in order to reduce the impact of insignificant differences between 𝐼𝐹 values in the 
Mann-Whitney 𝑈 test, SPIT rounds all 𝐼𝐹 values to two decimal points.71 The normal 
approximation for the 𝑈-statistic69 is used for tie-correction for group sizes larger than 8. 
Although SPIT works well with smaller sample sizes (𝑛 ≥ 12) for simple genetic architectures, it 
requires 𝑛 ≥ 24 samples for each group for the normal approximation to be reliable in SPIT-Test 
module. Exact 𝑈-statistic 𝑝-values are computed for group sizes smaller than 8 when there are 
no ties. 
 
Data availability 
 
The “Swimming Downstream” dataset is uploaded to Zenodo by Love et al.: 
Quantification files: https://zenodo.org/record/1291522 
Scripts and simulation data: https://zenodo.org/record/1410443 
 
All 20 of the GTEx simulation experiments are uploaded to Zenodo:  
https://zenodo.org/record/8128846 
 
Quantification files and phenotype information for the GTEx samples used in the detection of 
tissue-dependent DTU events are uploaded to Zenodo:  https://zenodo.org/record/8128945 
 
The RNA-Seq data used in the schizophrenia analysis are made available by the Lieber Institute 
for Brain Development at http://eqtl.brainseq.org/phase2/. 
 
Acknowledgements 
This work was supported in part by the U.S. National Institutes of Health under grants R01-
MH123567 and R01-HG006677. 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


References 
 
1. Ezkurdia, I. et al. Most highly expressed protein-coding genes have a single dominant 

isoform. J Proteome Res 14, 1880-1887 (2015). 
2. Davuluri, R.V., Suzuki, Y., Sugano, S., Plass, C. & Huang, T.H. The functional 

consequences of alternative promoter use in mammalian genomes. Trends Genet 24, 
167-177 (2008). 

3. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 
456, 470-476 (2008). 

4. Salomonis, N. et al. Alternative splicing regulates mouse embryonic stem cell 
pluripotency and differentiation. Proc Natl Acad Sci U S A 107, 10514-10519 (2010). 

5. de Morrée, A. et al. Self-regulated alternative splicing at the AHNAK locus. Faseb j 26, 
93-103 (2012). 

6. Kellermayer, D., Smith, J.E., 3rd & Granzier, H. Novex-3, the tiny titin of muscle. Biophys 
Rev 9, 201-206 (2017). 

7. Vitting-Seerup, K. & Sandelin, A. The Landscape of Isoform Switches in Human Cancers. 
Mol Cancer Res 15, 1206-1220 (2017). 

8. Gupta, M.P. Factors controlling cardiac myosin-isoform shift during hypertrophy and 
heart failure. J Mol Cell Cardiol 43, 388-403 (2007). 

9. Gandal, M.J. et al. Transcriptome-wide isoform-level dysregulation in ASD, 
schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018). 

10. Costa, V., Aprile, M., Esposito, R. & Ciccodicola, A. RNA-Seq and human complex 
diseases: recent accomplishments and future perspectives. European Journal of Human 
Genetics 21, 134-142 (2013). 

11. Arnedo, J. et al. Uncovering the hidden risk architecture of the schizophrenias: 
confirmation in three independent genome-wide association studies. Am J Psychiatry 
172, 139-153 (2015). 

12. Liu, Z. et al. Resolving heterogeneity in schizophrenia through a novel systems approach 
to brain structure: individualized structural covariance network analysis. Molecular 
Psychiatry 26, 7719-7731 (2021). 

13. Tsuang, M.T., Lyons, M.J. & Faraone, S.V. Heterogeneity of Schizophrenia: Conceptual 
Models and Analytic Strategies. The British Journal of Psychiatry 156, 17-26 (1990). 

14. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 
511, 421-427 (2014). 

15. Marshall, C.R. et al. Contribution of copy number variants to schizophrenia from a 
genome-wide study of 41,321 subjects. Nature Genetics 49, 27-35 (2017). 

16. Singh, T., Neale, B.M. & Daly, M.J. Exome sequencing identifies rare coding variants in 
10 genes which confer substantial risk for schizophrenia. medRxiv, 
2020.2009.2018.20192815 (2020). 

17. Soneson, C. & Delorenzi, M. A comparison of methods for differential expression 
analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013). 

18. Wray, N.R. et al. Research review: Polygenic methods and their application to 
psychiatric traits. J Child Psychol Psychiatry 55, 1068-1087 (2014). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


19. Murray, R. Remarks on Some Nonparametric Estimates of a Density Function. The 
Annals of Mathematical Statistics 27, 832-837 (1956). 

20. Emanuel, P. On Estimation of a Probability Density Function and Mode. The Annals of 
Mathematical Statistics 33, 1065-1076 (1962). 

21. Bernard, S.W. Density estimation for statistics and data analysis, Vol. 26. (CRC press, 
1986). 

22. Hawinkel, S., Rayner, J.C.W., Bijnens, L. & Thas, O. Sequence count data are poorly fit by 
the negative binomial distribution. PLoS One 15, e0224909 (2020). 

23. Li, J. & Tibshirani, R. Finding consistent patterns: a nonparametric approach for 
identifying differential expression in RNA-Seq data. Stat Methods Med Res 22, 519-536 
(2013). 

24. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
140 (2010). 

25. Westfall, P.H. & Young, S.S. Resampling-based multiple testing: Examples and methods 
for p-value adjustment, Vol. 279. (John Wiley & Sons, 1993). 

26. Varabyou, A., Salzberg, S.L. & Pertea, M. Effects of transcriptional noise on estimates of 
gene and transcript expression in RNA sequencing experiments. Genome Res 31, 301-
308 (2020). 

27. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq 
data. Genome Res 22, 2008-2017 (2012). 

28. Nowicka, M. & Robinson, M.D. DRIMSeq: a Dirichlet-multinomial framework for 
multivariate count outcomes in genomics. F1000Res 5, 1356 (2016). 

29. Van den Berge, K., Soneson, C., Robinson, M.D. & Clement, L. stageR: a general stage-
wise method for controlling the gene-level false discovery rate in differential expression 
and differential transcript usage. Genome Biology 18, 151 (2017). 

30. Love, M.I., Soneson, C. & Patro, R. Swimming downstream: statistical analysis of 
differential transcript usage following Salmon quantification. F1000Res 7, 952 (2018). 

31. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue 
gene regulation in humans. Science 348, 648-660 (2015). 

32. Reyes, A. & Huber, W. Alternative start and termination sites of transcription drive most 
transcript isoform differences across human tissues. Nucleic Acids Res 46, 582-592 
(2018). 

33. Varabyou, A. et al. CHESS 3: an improved, comprehensive catalog of human genes and 
transcripts based on large-scale expression data, phylogenetic analysis, and protein 
structure. bioRxiv, 2022.2012.2021.521274 (2022). 

34. Hopitzan, A.A., Baines, A.J., Ludosky, M.-A., Recouvreur, M. & Kordeli, E. Ankyrin-G in 
skeletal muscle: Tissue-specific alternative splicing contributes to the complexity of the 
sarcolemmal cytoskeleton. Experimental Cell Research 309, 86-98 (2005). 

35. Hakim, N.H.A., Kounishi, T., Alam, A.H.M.K., Tsukahara, T. & Suzuki, H. Alternative 
splicing of Mef2c promoted by Fox-1 during neural differentiation in P19 cells. Genes to 
Cells 15, 255-267 (2010). 

36. Sielski, N.L., Ihnatovych, I., Hagen, J.J. & Hofmann, W.A. Tissue specific expression of 
myosin IC isoforms. BMC Cell Biol 15, 8 (2014). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


37. Cook, A.W., Gough, R.E. & Toseland, C.P. Nuclear myosins – roles for molecular 
transporters and anchors. Journal of Cell Science 133 (2020). 

38. Collado-Torres, L. et al. Regional Heterogeneity in Gene Expression, Regulation, and 
Coherence in the Frontal Cortex and Hippocampus across Development and 
Schizophrenia. Neuron 103, 203-216.e208 (2019). 

39. Gallego Romero, I., Pai, A.A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on 
transcript quantification. BMC Biology 12, 42 (2014). 

40. Bhalala, O.G., Nath, A.P., Inouye, M. & Sibley, C.R. Identification of expression 
quantitative trait loci associated with schizophrenia and affective disorders in normal 
brain tissue. PLoS Genet 14, e1007607 (2018). 

41. Germain-Lee, E.L., Obie, C. & Valle, D. NVL: A New Member of the AAA Family of 
ATPases Localized to the Nucleus. Genomics 44, 22-34 (1997). 

42. Nagahama, M. et al. NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal 
protein L5 through its nucleolar localization sequence. Mol Biol Cell 15, 5712-5723 
(2004). 

43. Jiao, L. et al. Ribosome biogenesis in disease: new players and therapeutic targets. 
Signal Transduction and Targeted Therapy 8, 15 (2023). 

44. Stein, K.C., Morales-Polanco, F., van der Lienden, J., Rainbolt, T.K. & Frydman, J. Ageing 
exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601, 637-
642 (2022). 

45. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing 
haematopoietic stem cells. Nature 512, 198-202 (2014). 

46. Ding, Q., Markesbery, W.R., Chen, Q., Li, F. & Keller, J.N. Ribosome Dysfunction Is an 
Early Event in Alzheimer's Disease. The Journal of Neuroscience 25, 9171-9175 (2005). 

47. Ding, Q. et al. Increased 5S rRNA Oxidation in Alzheimer's Disease. Journal of Alzheimer's 
Disease 29, 201-209 (2012). 

48. Healy-Stoffel, M., Ahmad, S.O., Stanford, J.A. & Levant, B. Altered nucleolar morphology 
in substantia nigra dopamine neurons following 6-hydroxydopamine lesion in rats. 
Neuroscience Letters 546, 26-30 (2013). 

49. Yang, R. et al. La-related protein 4 binds poly(A), interacts with the poly(A)-binding 
protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Mol 
Cell Biol 31, 542-556 (2011). 

50. Glatt, S.J. et al. Similarities and differences in peripheral blood gene-expression 
signatures of individuals with schizophrenia and their first-degree biological relatives. 
Am J Med Genet B Neuropsychiatr Genet 156b, 869-887 (2011). 

51. Devireddy, L.R., Hart, D.O., Goetz, D.H. & Green, M.R. A mammalian siderophore 
synthesized by an enzyme with a bacterial homolog involved in enterobactin 
production. Cell 141, 1006-1017 (2010). 

52. Zughaier, S.M., Stauffer, B.B. & McCarty, N.A. Inflammation and ER stress downregulate 
BDH2 expression and dysregulate intracellular iron in macrophages. J Immunol Res 
2014, 140728 (2014). 

53. Vidal, R., Caballero, B., Couve, A. & Hetz, C. Converging pathways in the occurrence of 
endoplasmic reticulum (ER) stress in Huntington's disease. Curr Mol Med 11, 1-12 
(2011). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/


54. Matus, S., Glimcher, L.H. & Hetz, C. Protein folding stress in neurodegenerative diseases: 
a glimpse into the ER. Curr Opin Cell Biol 23, 239-252 (2011). 

55. Bai, B. et al. Deep Multilayer Brain Proteomics Identifies Molecular Networks in 
Alzheimer’s Disease Progression. Neuron 105, 975-991.e977 (2020). 

56. Chi, B. et al. The neurodegenerative diseases ALS and SMA are linked at the molecular 
level via the ASC-1 complex. Nucleic Acids Res 46, 11939-11951 (2018). 

57. Knierim, E. et al. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex 
Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. 
Am J Hum Genet 98, 473-489 (2016). 

58. Oliveira, J., Martins, M., Pinto Leite, R., Sousa, M. & Santos, R. The new neuromuscular 
disease related with defects in the ASC-1 complex: report of a second case confirms 
ASCC1 involvement. Clin Genet 92, 434-439 (2017). 

59. Shima, A., Matsuoka, H., Yamaoka, A. & Michihara, A. Transcription of CLDND1 in human 
brain endothelial cells is regulated by the myeloid zinc finger 1. Clin Exp Pharmacol 
Physiol 48, 260-269 (2021). 

60. Patel, H., Dobson, R.J.B. & Newhouse, S.J. A Meta-Analysis of Alzheimer's Disease Brain 
Transcriptomic Data. J Alzheimers Dis 68, 1635-1656 (2019). 

61. Neff, R.A. et al. Molecular subtyping of Alzheimer&#x2019;s disease using RNA 
sequencing data reveals novel mechanisms and targets. Science Advances 7, eabb5398 
(2021). 

62. Soneson, C., Matthes, K.L., Nowicka, M., Law, C.W. & Robinson, M.D. Isoform 
prefiltering improves performance of count-based methods for analysis of differential 
transcript usage. Genome Biol 17, 12 (2016). 

63. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and 
bias-aware quantification of transcript expression. Nature Methods 14, 417-419 (2017). 

64. Love, M.I., Edn. 1.0 (Zenodo, 2018). https://doi.org/10.5281/zenodo.1291522 
65. Breiman, L. Random Forests. Machine Learning 45, 5-32 (2001). 
66. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 

2825–2830 (2011). 
67. Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected 

feature importance measure. Bioinformatics 26, 1340-1347 (2010). 
68. Jones, M.C., Marron, J.S. & Sheather, S.J. A Brief Survey of Bandwidth Selection for 

Density Estimation. Journal of the American Statistical Association 91, 401-407 (1996). 
69. Mann, H.B. & Whitney, D.R. On a Test of Whether one of Two Random Variables is 

Stochastically Larger than the Other. The Annals of Mathematical Statistics 18, 50-60, 11 
(1947). 

70. Tange, O. GNU Parallel 2018. (Ole Tange, 2018). 
71. Neuhäuser, M. & Ruxton, G.D. Round Your Numbers in Rank Tests: Exact and Asymptotic 

Inference and Ties. Behavioral Ecology and Sociobiology 64, 297-303 (2009). 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.07.10.548289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.10.548289
http://creativecommons.org/licenses/by/4.0/

