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 Abstract 
 Objective:  Over half of US military veterans with posttraumatic stress disorder (PTSD) use alcohol 
 heavily, potentially to cope with their symptoms. This study investigated the neural underpinnings of 
 PTSD symptoms and heavy drinking in veterans. We focused on brain responses to salient outcomes 
 within predictive coding theory. This framework suggests the brain generates prediction errors (PEs) 
 when outcomes deviate from expectations. Alcohol use might provide negative reinforcement by reducing 
 the salience of negatively-valenced PEs and dampening experiences like loss. 
 Methods:  We analyzed electroencephalography (EEG) responses to unpredictable gain/loss feedback in 
 veterans of Operations Enduring and Iraqi Freedom. We used time-frequency principal components 
 analysis of event-related potentials to isolate neural responses indicative of PEs, identifying mediofrontal 
 theta linked to losses (feedback-related negativity, FRN) and central delta associated with gains (reward 
 positivity, RewP). 
 Results:  Intrusive reexperiencing symptoms of PTSD were associated with intensified mediofrontal theta 
 signaling during losses, suggesting heightened negative PE sensitivity. Conversely, increased hazardous 
 alcohol use was associated with reduced theta responses, implying a dampening of these negative PEs. 
 The separate delta-RewP component showed associations with alcohol use but not PTSD symptoms. 
 Conclusions:  Findings suggest a common neural component of PTSD and hazardous alcohol use 
 involving altered PE processing. We suggest that reexperiencing enhances the intensity of salient negative 
 PEs, while chronic alcohol use may reduce their intensity, thereby providing negative reinforcement by 
 muting emotional disruption from reexperienced trauma. Modifying the mediofrontal theta response could 
 address the intertwined nature of PTSD symptoms and alcohol use, providing new avenues for treatment. 

 Keywords:  PTSD, reexperiencing, alcohol, theta, mediofrontal, loss feedback, negative reinforcement, 
 prediction error 
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 1  Introduction 
 Combat veterans frequently encounter mental health issues like posttraumatic stress disorder 

 (PTSD) and heavy alcohol use. About 23% of combat veterans have PTSD  (Fulton et al., 2015)  , while 
 10.5% have alcohol dependence (AD)  (Seal et al., 2011)  . A substantial intersection exists between PTSD 
 and heavy drinking. 50-76% of PTSD-diagnosed veterans fulfill AD criteria  (Jakupcak et al., 2010; Panza 
 et al., 2021; Wisco et al., 2014)  , and it is possible that a larger proportion engage in heavy drinking as a 
 coping mechanism. As such, negative reinforcement (psychological benefit due to avoidance or escape 
 from aversive stimuli or states)  (Koob, 2013)  likely plays a prominent role in the link between heavy 
 drinking and PTSD. Despite high rates of alcohol use in veterans with PTSD, no studies that we are aware 
 of have identified neural activity related to PTSD and alcohol use that could explain their covariation in 
 military veterans. This study aims to elucidate the neural correlates of posttraumatic symptomatology and 
 heavy drinking by focusing on how combat veterans experience and respond to losses and rewards (i.e., 
 salient stimuli). 

 Individuals with PTSD perceive their surroundings as more threatening and show attentional 
 biases toward threat  (Clauss et al., 2022)  . Enhanced salience of cues for potential losses and gains is 
 linked to PTSD symptomatology and brain salience and reward system activation  (Jia et al., 2023)  . This 
 investigation, informed by predictive coding  (Friston & Kiebel, 2009)  , examines how PTSD and heavy 
 alcohol use affect brain processing of gains and losses  (Kube et al., 2020; Putica et al., 2022)  . Predictive 
 coding suggests the brain forms predictions ('priors') and adjusts them based on deviations from 
 expectations ('prediction errors;' PEs). PEs indicate whether outcomes are better (positive PE) or worse 
 (negative PE) than predicted. Traumatic experiences can lead to strong priors about potential threats, 
 intensifying processing of benign stimuli as overly salient and negative. This is linked to intrusive 
 reexperiencing of traumatic events  (Kube et al., 2020; Putica et al., 2022)  , where benign stimuli trigger 
 strong threat representations tied to past experiences, essentially turning them into negative PEs. We 
 suggest alcohol use might reduce the salience of these negative PEs, offering relief from reexperiencing 
 symptoms but risking reinforcing maladaptive drinking behaviors  (Berenz et al., 2021; Weiss et al., 2021)  . 
 Essentially, alcohol’s negatively reinforcing effects  (Koob, 2013)  may stem from reducing brain 
 responses to negative PEs. 

 We assessed brain responses to unpredictable gain/loss feedback using electroencephalography 
 (EEG). The EEG shows a mediofrontal feedback-related negativity (FRN), pronounced following loss 
 and appearing 250-350 ms post-feedback  (Gehring & Willoughby, 2002)  . Sometimes FRN measurement 
 overlaps with a similarly timed Reward Positivity (RewP)  (Proudfit, 2015)  . We applied principal 
 components analysis (PCA), a dimension reduction technique, to distinguish the frequency-specific 
 content of ERPs. In the time-frequency domain, the FRN corresponds with theta-band (4-8 Hz) activity 
 and likely reflects the output of the brain’s salience network  (Seeley et al., 2007)  , notably anterior 
 cingulate cortex  (Cavanagh & Shackman, 2015)  . The ACC might enact predictive coding by computing 
 negatively-biased surprise signals (or PEs) that assist with learning  (Alexander & Brown, 2019)  . The 
 theta-FRN, linked to ACC predictive coding mechanisms and indicative of negative emotion and 
 cognitive control, could illuminate how PTSD and heavy drinking influence brain salience processing. 

 Feedback-locked ERPs also show a RewP, more pronounced for gains than losses  (Proudfit, 
 2015)  . The RewP responds primarily to positive PEs and contains delta-band (0.5-3 Hz) activity 
 (Cavanagh, 2015)  . PCA identifies the RewP as a positive component separate from the FRN  (Hager et al., 
 2022; Yin et al., 2018)  . There is some dissociation between the stimulus-locked P300 and the RewP, as 
 the RewP has a more anterior scalp topography (maximal at Cz) and earlier onset (~200 ms) than the 
 stimulus P300 (maximal at Pz, onset ~300 ms). The RewP is nevertheless morphologically and 
 functionally similar to the stimulus-locked P300, which is associated with externalizing personality traits 
 (Bernat et al., 2011)  including impulsivity and aggressiveness  (Krueger et al., 2005)  . The P300 has a 
 strong genetic basis reflecting predisposition toward substance use  (Benegal et al., 1995; Iacono et al., 
 2003; Polich & Bloom, 1999)  . This relationship with externalizing appears also to extend to the RewP 
 (Bernat et al., 2011)  , underscoring its close relationship to the P300. In this study, RewP/P300 might 
 reflect a neural predisposition for alcohol use rather than the emotional distress associated with PTSD. 
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 Previous studies have shown that AD corresponds with diminished FRN and RewP  (Kamarajan et 
 al., 2010)  , whereas PTSD symptomatology is associated with amplified RewPs  (Lieberman et al., 2017)  . 
 The interplay between PTSD and heavy drinking, and specifically brain responses to salient loss and 
 reward, remains largely uncharted. This study, employing a gambling task, examines gain/loss outcome 
 processing in relation to PTSD and heavy drinking. We focus on theta-FRN and delta-RewP, because they 
 are linked to loss and gain processing. Our post-deployment veteran sample, characterized by prevalent 
 posttraumatic reexperiencing symptoms, offers insights into how emotional dysregulation following 
 trauma and heavy drinking are tied to brain responses to salient stimuli. We hypothesize that the severity 
 of reexperiencing symptoms and heavy drinking will be independently associated with neural salience 
 processing patterns. These results would deepen our understanding of PTSD's neural underpinnings and 
 suggest a model where heavy drinking maladaptively mitigates the exaggerated salience signaling typical 
 of intrusive reexperiencing. 

 2  Methods & Materials 
 2.1  Participants 

 The sample consisted of 128 US military veterans who had been deployed to Operations Iraqi 
 Freedom or Enduring Freedom (see  Table 1  for demographics). Recruitment targeted veterans with likely 
 posttraumatic stress disorder (PTSD) diagnoses as well as non-treatment-seeking veterans with similar 
 deployment experiences [see  (Davenport et al., 2014)  for complete recruitment information]. Study 
 procedures were approved by the Institutional Review Boards at the Minneapolis Veterans Affairs Health 
 Care System and the University of Minnesota, and study participants completed a written informed 
 consent process prior to undergoing the study procedures. No prior publications have involved the EEG 
 data collected using the gambling paradigm that is the focus of this manuscript. 
 2.2  Clinical Assessment 

 Trained and supervised interviewers conducted assessments for psychopathology using the 
 Structured Clinical Interview for DSM-IV Axis I Disorders [SCID-I;  (First & Gibbon, 2004)  ]. 
 Interviewers characterized posttraumatic stress symptoms using the Clinician-Administered PTSD Scale 
 for DSM-IV [CAPS, fourth edition;  (Blake et al., 1995; Weathers et al., 2001)  ]. We subdivided the CAPS 
 into four subscales based on previous meta-analytic research on the factor structure of the CAPS 
 (Palmieri et al., 2007; Simms et al., 2002; Yufik & Simms, 2010)  , which provided measures of the 
 severity of intrusive reexperiencing (B1 - B5), avoidance (C1, C2), dysphoria (C3 - D3), and hyperarousal 
 symptoms (D4, D5). Participants only completed the full CAPS if they met criteria A1/A2 and B of the 
 CAPS using DSM-IV-TR criteria (i.e. endorsed a traumatic event with an intense emotional response and 
 later experienced intrusive reexperiencing); as such, dimensional analyses included a subsample of 82 
 subjects who reported a traumatic event with current reexperiencing  (Marquardt et al., 2021)  . 

 Consensus teams, including at least one licensed doctoral-level clinical psychologist, reviewed all 
 available research and clinical information to generate consensus diagnoses which included PTSD, 
 subthreshold PTSD, and alcohol dependence (AD). Individuals were given a subthreshold PTSD 
 designation if they endorsed at least one symptom in each DSM-IV-TR symptom grouping for PTSD, 
 consistent with rating schemes meant to increase sensitivity for clinically meaningful presentations of 
 PTSD symptoms  (Marquardt et al., 2022)  . We assessed the severity of alcohol use with the Alcohol Use 
 Disorders Identification Test (AUDIT)-C  (Saunders et al., 1993)  , a 3-item self-report measure of 
 frequency of alcohol use, amount of alcohol use, and frequency of binge drinking. The scale has a 
 maximum score of 12, and the cutoff for clinically meaningful drinking is a score of 4 for men or a score 
 of 3 for women. We assessed for a history of mild traumatic brain injury (mTBI) using the 
 semi-structured Minnesota Blast Exposure Screening Tool [MN-BEST]  (Nelson et al., 2011)  , focusing on 
 the three most severe self-identified deployment-related blast exposure events. We achieved consensus on 
 mTBI via assessment teams that included at least one licensed clinical neuropsychologist. Importantly, the 
 study recruitment criteria used a diagnosis of pre-deployment psychopathology as part of exclusion 
 criteria, thus the clinical presentations of psychopathology assessed in the present study are likely to have 
 been acquired post-deployment [see  (Davenport et al., 2014)  ]. 
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 Table 1. Demographic and clinical characteristics of sample. Note that demographics are shown split by 
 four groups in order to provide full clinical information on the sample, but primary analyses used 
 continuous severity measures instead of diagnosis-based groups. 

 No PTSD  PTSD+Subthreshold 
 No AD  AD  No AD  AD 

 Variable  n  M  SD  n  M  SD  n  M  SD  n  M  SD 
 Total Count  59  12  38  19 
 Female  8  2  0  0 
 Race 

 White  52  12  35  19 
 Black  2  0  0  0 
 Asian  1  0  0  0 
 Multiracial  4  0  3  0 

 Age (years)  33.42  8.22  30.83  7.57  31.16  8.26  31.42  7.30 
 Education (years)  5.44  0.70  4.83  0.71  5.21  0.66  5.21  0.79 
 Depressive Disorder Diagnosis  5  3  16  9 
 mTBI Experienced  19  6  21  12 
 CAPS Intrusive Reexperiencing  10.22  4.62  9.14  4.53  16.76  5.79  19.37  6.29 
 CAPS Avoidance  3.83  2.85  4.14  3.85  8.68  3.11  9.37  3.73 
 CAPS Dysphoria  12.27  7.31  9.43  3.60  26.13  8.91  29.37  8.64 
 CAPS Hyperarousal  4.89  3.45  7.43  3.64  7.92  3.40  9.11  2.69 
 AUDIT-C  4.14  2.10  8.25  1.54  4.00  2.61  6.89  2.18 
 Above AUDIT-C Cutoff  36  12  17  17 
 MN-BEST Blast mTBI Severity  1.00  1.71  0.92  1.16  2.03  3.00  1.89  2.16 
 PTSD = posttraumatic stress disorder, AD = alcohol dependence, mTBI = mild traumatic brain injury, N 
 = count, M = mean, SD = standard deviation, CAPS = Clinician-Administered PTSD Scale, AUDIT-C 
 =Alcohol Use Disorders Identification Test , MN-BEST = Minnesota Blast Exposure Screening Tool. 
 “+Subthreshold” reflects individuals who meet criteria for at least one symptom from each symptom 
 domain of DSM-IV PTSD. The AUDIT-C cutoff was ≥ 4 for men and ≥ 3 for women. 

 2.3  Gambling Task 
 Participants completed a gambling paradigm originally described in  (Gehring & Willoughby, 

 2002)  . Each trial offered participants a two-option forced choice. Options were 5 or 25 cents, and could 
 be paired in any fashion (i.e. 5/5, 5/25, or 25/25) with all pairs being equiprobable. Choices were 
 presented within black squares which remained on the screen until participants selected one option. One 
 hundred ms following the choice, each square turned red or green (  Figure 2A  ). If the chosen option turned 
 green, the indicated amount was added to the participant’s running score. If the chosen option turned red, 
 the indicated amount was instead subtracted from the participant’s running score. The color of the 
 unchosen option also changed, to indicate what the outcome would have been if the participant had 
 instead chosen that option. Participants completed 256 trials, divided into 8 blocks with self-paced breaks 
 in between. 

 This task required approximately 20 minutes to complete. Participants received additional 
 monetary compensation at the end of the study session equivalent to their total United States dollar 
 amount earned during this task. An important feature of the task was the unpredictable nature of choice 
 feedback. The primary behavioral outcome was risky choice proportion, defined as the percentage of 
 times a participant chose the ‘25’ option when presented with a choice between ‘5’ and ‘25.’ This risky 
 choice proportion was calculated separately for trials following gains and losses Participants are often 
 more risk prone following losses compared with gains  (Gehring & Willoughby, 2002)  . 
 2.4  EEG Acquisition, Preprocessing, and Time-Frequency PCA Analysis 

 EEG was sampled at 1024 Hz using a 128-channel BioSemi ActiveTwo EEG system, acquired 
 reference-free (via CMS/DRL sensors). EEG data were preprocessed and analyzed exactly as described in 
 (Bernat et al., 2011)  ; the following is paraphrased. EEG were imported and re-referenced to linked 
 mastoids, epoched surrounding gain/loss feedback [−1,000 to 2,000 ms; extended to mitigate edge 
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 artifacts  (Cohen, 2014)  ], and baseline corrected (-150 - 0 ms). Disconnected sensors were identified and 
 interpolated. Ocular artifacts were removed via regression  (Gratton et al., 1983)  . Remaining artifacts were 
 removed by deleting trials where frontal activity (sensors C12/C25) exceeded 100 μV within a 1,500-ms 
 poststimulus window or an 800-ms prestimulus window. Additional movement and other artifacts were 
 identified and removed via visual inspection.  We then calculated ERPs at each sensor separately for 
 gain/loss trials. 

 We reduced ERP dimensionality using time-frequency principal components analysis [tf-PCA; 
 (Bernat et al., 2005; Buzzell et al., 2022)  ] calculated using the Psychophysiology Toolbox (PTB; 
 http://www.ccnlab.umd.edu/Psychophysiology_Toolbox/  ). To allow tf-PCA to define the boundary 
 between delta and theta, we pre-filtered ERP waveforms using a 4-Hz low-pass Butterworth filter for 
 delta, and 2-Hz high-pass Butterworth filter for theta (third order, zero-phase). Filtered waveforms were 
 transformed to a TF representation using the binomial reduced interference distribution  (Jeong & 
 Williams, 1992)  . We vectorized TF surfaces into a matrix of dimensions subjects-by-TF points and 
 applied PCA to the covariance matrix.  We chose the number of components to retain using an eigenvalue 
 scree plot, retaining one delta component (62% of variance) and three theta components (22%, 21%, and 
 9% of variance). We applied a varimax rotation  (Bernat et al., 2005, 2011)  to the loadings then reshaped 
 them into TF matrices. Delta loadings mapped well onto the scalp distribution and timing of the central 
 RewP, and the second theta-band component mapped well onto the scalp distribution and timing of the 
 FRN. The remaining theta components were not analyzed as they reflected the occipital N1 ERP 
 component and a 2.5-3 Hz non-FRN oscillation. Dependent theta-FRN and delta-RewP values were 
 calculated by averaging PC-weighted TF surfaces at sensors where component activation were maximal 
 (Cz for delta, FCz for theta). 
 2.5  Statistical Analysis 

 Statistics were conducted in R version 4.2.3. We had three outcome measures: risky choices, 
 delta-RewP, and theta-FRN activation. Our sample had a wide age range (22 - 59 years old), so we 
 screened DVs for associations with age. Theta-FRN was associated with age (  r  = -.25,  p  < .001), so 
 theta-FRN analyses contrived for age. We used robust linear mixed-effects models (rLMMs) fit with the 
 ‘robustlmm’ package, version 3.0-4  (Koller, 2016)  because theta-FRN and delta-RewP were highly 
 skewed (skewness = 1.9 and 1.7 respectively) relative to the assumptions of non-robust LMMs  (Arnau et 
 al., 2013)  . We estimated rLMM  p  -values using robust  t  -statistics and Kenward-Roger approximated 
 degrees-of-freedom. 

 RLMMs analyzing delta-RewP and theta-FRN had a within-subject factor of Outcome 
 (gain/lose). RLMMs analyzing risky choice percentage had a within-subject factor of Previous Outcome 
 (previous gain/ previous loss). RLMMs testing brain-behavior associations had a within-subject factor of 
 Previous Outcome (previous gain/ previous loss), and included delta-RewP and theta-FRN as continuous 
 predictors. 

 RLMMs also included between-subjects factors describing clinical presentation. In the first 
 analysis, we simultaneously entered between-subjects factors for clinical diagnoses of PTSD, mTBI, and 
 AD. In the second analysis, we simultaneously entered continuous between-subjects variables consisting 
 of the four CAPS subscales (intrusion/ avoidance/ dysphoria/ hyperarousal), AUDIT-C, and blast mTBI 
 severity. Noting that individual CAPS subscales are associated with each other, we assessed for 
 multicollinearity using variance inflation factor (VIFs) calculated for each model using the ‘performance’ 
 package version 0.10.8  (Lüdecke et al., 2021)  . All VIF were < 2.5, with a criterion of VIF ≥ 5 considered 
 evidence of multicollinearity. 

 All IVs and DVs were  z  -scored to reduce multicollinearity and obtain standardized effect size 
 estimates. All models contained a random intercept per participant and interaction terms between the 
 within-subjects Outcome factor and all between-subjects factors, but did not include interactions of 
 between-subjects factors. Post-hoc characterization of significant interactions used the ‘emmeans’ 
 package, version 1.7.4-1  (Lenth et al., 2022)  . 
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 3  Results 
 3.1  Risky Gambling Behavior is Related to Alcohol Use 

 A diagram of the gambling task and of risky choice rates is shown in  Figure 1  . Risky choice 
 behavior on the gambling task showed an expected main effect of Outcome (gain/loss) in all analyses,  ts  ≥ 
 7.13,  ps  < .001, indicating higher risky choice behaviors following loss outcomes. Group analyses 
 focusing on Diagnosis (yes/no, PTSD/mTBI/AD) showed no effects of PTSD or mTBI, but revealed a 
 main effect of an AD diagnosis,  t  (124) = 2.34,  p  = .021, indicating overall higher risky choice behavior in 
 participants with AD. Likewise, a dimensional analysis focusing on symptom severity (CAPS subscales, 
 mTBI severity, AUDIT-C score) revealed a main effect of AUDIT-C,  t  (75) = 2.03,  p  = .046, indicating 
 overall higher risky choice behavior in participants with greater alcohol consumption. This analysis failed 
 to show any independent effects of PTSD symptomatology or mTBI severity on risky choice behaviors 
 within the same models. 

 Figure 1. Risky Gambling Behavior is Related to Alcohol Use in Previously Deployed Veterans. 
 A: Design of the modified gambling task. 
 B: Risky choices were increased following losses compared to gains. Individuals with AD and with higher 
 AUDIT-C scores made more risky choices. Note that individual data points are shown to differentiate 
 gain/loss observations, but all statistics were main effects over both Gain/Loss conditions (thus there is 
 only one regression line, rather than separate regressions for gain and loss). AUDIT-C was standardized 
 for analysis and plotting; risky choice proportions were standardized for analysis but not for plotting. 

 3.2  Delta-RewP is Related to Amount of Alcohol Use 
 The tf-PCA separation of delta-band RewP from theta-band FRN is shown in  Figure 2.  Our 

 analysis of time-frequency delta PC-weighted activation (i.e. the centro-parietal delta-band activity 
 underlying the RewP) demonstrated a main effect of Outcome for all analyses,  t  s ≥ 3.53,  p  s ≤ .002, 
 indicating relatively greater activation for gains compared to losses. Group analyses focusing on 
 Diagnosis (yes/no, PTSD/mTBI/AD) showed no results. A dimensional analysis focusing on symptom 
 severity (CAPS subscales, mTBI severity, AUDIT-C score) revealed a significant main effect of 
 AUDIT-C total score,  t  (75) = -2.01,  p  = .048, indicating decreasing delta-RewP activation with increasing 
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 hazardous drinking, standardized AUDIT-C fixed effect estimate = -.19, 95% CI = [-.381, -.001]. There 
 were no effects of continuous measures of PTSD or blast-related mTBI severity. Thus, this analysis 
 revealed that blunted delta-RewP activation was related to increases in hazardous drinking, but was 
 unrelated to PTSD or mTBI (  Figure 3A  ). 
 3.3  Opposing Effects of Intrusive Reexperiencing and Alcohol Use on Theta FRN 

 The tf-PCA separation of theta-band FRN from delta-band RewP is shown in  Figure 2.  Our 
 analysis of time-frequency theta PC-weighted activation (i.e. the mediofrontal theta-band activity 
 underlying the FRN) demonstrated a main effect of Outcome for all analyses,  ts  ≤ -8.37,  ps  < .001, 
 indicating greater activation for losses than gains. Group analyses focusing on Diagnosis (yes/no, 
 PTSD/mTBI/AD) showed no results. Our analysis of individual differences using dimensions of PTSD 
 symptoms, alcohol use, and blast-related mTBI yielded a main effect of Intrusive Reexperiencing,  t  (75) = 
 2.93,  p  = .004. The main effect of Intrusive Reexperiencing was qualified by a significant interaction with 
 Outcome,  t  (75) = -2.09,  p  = .040. Finally, the model also simultaneously identified a significant 
 interaction between AUDIT-C and Outcome,  t  (75) = 2.09,  p  = .040. Post hoc examination revealed that 
 greater Intrusive Reexperiencing severity was associated with enhanced theta activation during loss 
 conditions, standardized fixed-effect estimate = 0.46, 95% CI = [0.20, 0.71],  t  (104) = 3.52,  p  < .001, but 
 not gain conditions, standardized fixed-effect estimate = 0.24, 95% CI = [-0.02, 0.49],  t  (104) = 1.94,  p  = 
 .065 (  Figure 3b)  . Post hoc examination of the significant AUDIT-C-Outcome interaction indicated that 
 more alcohol use was associated with reduced theta activation during loss conditions, standardized 
 AUDIT-C fixed-effect estimate = -0.19, 95% CI = [-0.35, -0.03],  t  (104) = -2.29,  p  = .022, but not gain 
 conditions, standardized AUDIT-C fixed-effect estimate = -0.05, 95% CI = [-0.21, 0.11],  t  (104) = -0.60,  p 
 = .546 (  Figure 3B  ). This analysis revealed no effects of blast-related mTBI severity. As such, loss 
 processing as embodied in frontal midline theta is simultaneously linked in opposing ways to the severity 
 of PTSD-related intrusive reexperiencing (positive association) and elevated hazardous alcohol use 
 (negative association) in previously deployed combat veterans. 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.07.12.547253doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.12.547253
http://creativecommons.org/licenses/by/4.0/


 8 

 Figure 2. Time-Frequency Principal Components Analysis was applied to separate overlapping ERP 
 activation. All TF surfaces and topoplots are plotted with zero (white) as midpoint. Data units are 
 arbitrary since plots depict PC-weighted power; thus, each plot is scaled to the range of the data. 
 A: Averaged ERP waveforms were filtered into delta (0.5-3 Hz; Cz electrode) and theta (4-8 Hz; FCz 
 electrode) bands. 
 B: ERP waveforms were decomposed, and components reflecting the delta-RewP and theta-FRN response 
 were selected for further analysis based on their PC weights. Components were selected for analysis 
 based on an average over gain/loss conditions. 
 C: To confirm the selected components, we calculated topographic maps and time-frequency surfaces for 
 the average subtraction of loss-gain loadings. As expected, delta-RewP showed greater activation for 
 gains than for losses (left panel), while theta-FRN showed greater activation for losses than for gains 
 (right panel). Inset bars indicate estimated marginal means (EMMs) and associated standard errors for 
 component averages. EMMs are for z-scored component amplitudes fit with a random effects model that 
 accounts for subject-specific intercepts. 

 3.4  Delta-RewP, but not Theta-FRN, is Related to Risky Choice Behavior 
 As previously noted, risky choice behavior on the gambling task showed an expected main effect 

 of Outcome (gain/loss) in all analyses that indicated higher risky choice behaviors following loss 
 outcomes (that is, loss feedback precipitated increased risky choices on the following trial). We next 
 examined whether these risky choice behaviors following gains and losses were differentially associated 
 with gain-related delta-RewP activation or loss-related theta-FRN activation. We observed a significant 
 interaction between Outcome (Previous gain/Previous Loss) and delta-RewP activation,  t  (129.37) = -4.40, 
 p  < .001. This was due to a significant negative association between delta-RewP and risky gambles 
 following gains, standardized delta-RewP fixed-effect estimate = -.29, 95% CI = [-.44 -.14],  t  (220) = 
 -3.86,  p  < .001 (  Figure 3a  ). There was no association between delta-RewP and risky choices following 
 loss feedback,  p  = .99. Similarly, there was no association between theta-FRN activation and risky 
 choices,  p  > .27. This analysis clarifies that decreased delta-band processing of gains is associated with 
 increased risk-taking behaviors on trials immediately following gains. That is, decreased delta activation 
 is predictive of individual differences in risky decision making. Theta-band processing of losses is not 
 similarly predictive of risk-taking. 
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 Figure 3. Delta and theta feedback components are related to alcohol use, intrusive reexperiencing, and 
 risky choices in combat veterans. 
 A: Delta-RewP activation was negatively associated with AUDIT-C scores and with risky choices 
 following gains. Delta-RewP and Alcohol Use (AUDIT-C) were standardized for analysis and plotting; 
 risky choice proportions were standardized for analysis but not for plotting. Note that for the left panel, 
 individual data points are shown to differentiate gain/loss observations, but statistics indicate a main 
 effect over both Gain/Loss conditions (thus there is only one regression line, rather than separate 
 regressions for gain and loss). 
 B: Theta-FRN activation was associated with less severe alcohol use (AUDIT–C scores), and more 
 Intrusive Reexperiencing symptoms related to traumatic events. Theta-FRN, Intrusive Reexperiencing, 
 and Alcohol Use (AUDIT-C) were standardized for analysis and plotting. 

 4  Discussion 
 In our study of neural responses to gains and losses in US military veterans, we found that the 

 neural processing of loss is differentially associated with dimensional measures of intrusive 
 reexperiencing of trauma and alcohol consumption. These associations were unapparent in the categorical 
 analyses of PTSD and alcohol dependence diagnoses. Intrusive reexperiencing, one of the cardinal 
 symptom domains of PTSD, was associated with enhanced mediofrontal theta loss signaling, indicating 
 increased salience for negative outcomes. Concurrently, increased alcohol use was linked to reduced theta 
 loss signaling, suggesting that heavy drinking may serve as a maladaptive coping mechanism to dampen 
 heightened salience. Decreased delta-band signaling during gains was associated with heavy alcohol use, 
 and was predictive of risky choices following gains on the gambling task. Results support using 
 dimensional measures to parse the heterogeneous clinical presentations of PTSD into elements that align 
 more closely with neural mechanisms of salience processing, potentially offering more precise 
 intervention targets. Similarly, quantifying the degree of alcohol use appears more informative than solely 
 relying on traditional diagnostic categories. 
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 Predictive coding theories suggest that the brain generates future predictions (“priors”) and 
 minimizes prediction error (PE) by updating these estimates using experience  (Friston & Kiebel, 2009)  . In 
 the context of PTSD, negative future predictions may be particularly intense, leading to enhanced 
 processing of negatively valenced information, or in predictive coding terms, elevated signaling of 
 negative prediction errors  (Kube et al., 2020; Putica et al., 2022)  . This heightened sensitivity to negative 
 PEs can be seen in the enhancement of theta-FRN power for loss compared to gain outcomes. In the 
 following, we argue in favor of predictive coding as an explanatory framework for the observed 
 associations between posttraumatic reexperiencing, alcohol use, and theta-FRN signaling. 

 The ACC is a crucial node in the brain’s salience network  (Seeley et al., 2007)  , and plays a role in 
 cognitive control  (Carter, 1998)  , processing negatively-valenced information  (Cavanagh & Shackman, 
 2015; Shackman et al., 2011)  , and valuation  (Shenhav et al., 2013)  . The ACC is argued to constrain 
 predictive coding within the frontal cortex by computing surprise signals (or PEs) that assist with learning 
 models of the environment  (Alexander & Brown, 2019)  . These PEs are neither entirely positively or 
 negatively valenced, but are primarily characterized by a deviation from expectations, necessitating 
 updating an internal model  (Alexander & Brown, 2019)  . Mediofrontal event-related potentials in theta 
 frequencies (4-8 Hz) are believed to originate in the ACC  (Cavanagh & Shackman, 2015)  . The theta-band 
 activity underlying the mediofrontal FRN is potentiated by losses compared to wins in simple 
 gain-maximization gambling tasks, but broader analyses suggest the FRN more generally reflects the 
 degree of surprise associated with outcomes  (Hager et al., 2022; Hird et al., 2018; Rawls et al., 2020; 
 Talmi et al., 2013)  . 

 A primary finding of our work is that enhanced theta-FRN signaling during loss processing is 
 positively associated with the severity of posttraumatic reexperiencing. The relationship between the 
 reexperiencing aspects of PTSD and brain salience signaling can be viewed through various theoretical 
 lenses. Fear extinction models suggest PTSD arises from persistent fear responses that exhibit a tendency 
 to overgeneralize to inappropriate contexts  (Duits et al., 2015; Zuj et al., 2016)  , leading to exaggerated 
 salience responses to everyday stimuli. Attentional control theories  (Marquardt et al., 2022; Schoorl et al., 
 2014)  propose that PTSD is linked to a failure regulating attention towards negative stimuli. These 
 theories, along with the predictive coding framework, all predict that reexperiencing should be associated 
 with enhanced brain salience signaling for negatively-valenced information. 

 Yet, our analysis of alcohol use adds nuance to these perspectives and clarifies existing theoretical 
 frameworks about the neural consequences of heavy alcohol use in the context of emotional distress. It is 
 important to note that the primary variable of interest in these models was reported average alcohol use, 
 rather than acute alcohol intoxication. Fear extinction theories predict long-term drinking should enhance 
 rather than suppress salience responses because chronic drinking impairs extinction  (Holmes et al., 2012; 
 Smiley et al., 2021)  ; this is in contrast to a short-term negative reinforcement explanatory model. 
 Similarly, attentional control theories predict long-term drinking should enhance salience responses by 
 disrupting attentional control  (Goldstein & Volkow, 2011)  . Plus, chronic alcohol consumption is 
 associated with increased, rather than decreased, negative emotional reactivity  (Goldstein & Volkow, 
 2011; Zilverstand et al., 2018)  . Thus, given some of the existing findings on people with alcohol 
 dependence, one might predict that heavy drinking, in individuals with current posttraumatic 
 reexperiencing, should be positively associated with even greater loss salience signaling. 

 This prediction is inconsistent with the pattern we report. Instead, when modeled simultaneously 
 with PTSD symptom severity, we found that increased drinking was linked to reduced salience signaling. 
 We interpret these effects as evidence that heavy alcohol use is indeed associated with reduced intensity 
 of salient negative PEs. Notably, this effect was not present when alcohol use was modeled separately 
 from PTSD symptoms. This suggests the neural impacts of negative reinforcement drinking in the context 
 of posttraumatic psychopathology might not be noticeable unless covarying for that psychopathology. 
 One potential mechanism underlying this effect could be that alcohol use in the longer term changes the 
 intensity of negatively-biased predictions. If this theorized mechanism were at play, it would imply that 
 alcohol use should be associated with decreased salience signaling during loss, as increasing alcohol 
 consumption would reduce the intensity of negative priors in individuals with PTSD. In line with this 
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 interpretation, prior evidence indicates that individuals with AD have lower anticipatory brain activity 
 prior to rewards, suggesting reduced ability to make accurate predictions in these contexts  (Luijten et al., 
 2017)  . 

 Our findings also reveal associations between heavy drinking, brain processing indexed by the 
 Reward Positivity [RewP], and risky choices following gains. The delta-band activity underlying the 
 RewP primarily reflects positive PEs  (Cavanagh, 2015; Sambrook & Goslin, 2015, 2016)  , indexing the 
 degree to which rewards exceed expectations. The delta-RewP was inversely correlated with risky choices 
 following gains. This suggests that diminished positive PE signaling could promote risk-seeking behavior. 
 PEs represent violations of expectations, and we intrinsically seek to minimize the magnitude of 
 expectancy violations (PEs) during value-based decision-making  (Friston & Kiebel, 2009; Putica et al., 
 2022)  . It follows that higher PE signaling should promote less risky decision-making, since in this 
 paradigm, the definition of “risky” rests solely on the magnitude of the choice stimulus  (Gehring & 
 Willoughby, 2002)  . Interestingly, while heavy drinking was associated with reduced delta-RewP 
 signaling, delta-RewP was not associated with PTSD symptom severity. This suggests that the mechanism 
 driving the association between alcohol use and delta-RewP amplitude may not be rooted in a 
 self-medication or negative reinforcement strategy. Instead this might indicate a separate neurally-based 
 impairment important for explaining a broader pattern of diminished response to PEs. Together with the 
 theta-FRN results, heavy alcohol use appears to be associated with reduced neural salience signaling for 
 negative and positive PEs alike via separate mechanisms. 

 The RewP is distinguished from the P300, a ubiquitous brain potential observed following 
 unexpected or salient stimuli, by its earlier onset and more anterior scalp distribution. However, our 
 delta-band component shows a broad scalp topography and extended timing akin to the P300, raising the 
 possibility that our component contains both RewP and P300 activity. Reduced P300 amplitudes reflect 
 externalizing personality traits  (Gilmore et al., 2010; Patrick et al., 2006)  , including impulsivity, 
 aggressiveness, disinhibition, and risky or antisocial behaviors  (Krueger et al., 2005; Patrick & Drislane, 
 2015)  . P300 amplitudes also reflect a genetic risk for alcoholism  (Benegal et al., 1995; Iacono et al., 
 2003; Polich & Bloom, 1999)  . As such, the negative association between delta power and alcohol use 
 could be explained not by reduced positive PE signaling, but instead by previously known genetic and 
 externalizing influences on P300 amplitude. Future investigation, perhaps with alternative methods 
 focusing on separating the RewP from the P300, will be needed to resolve these alternative 
 interpretations. 

 Despite informative findings, there are limitations to our study. Our cross-sectional sample 
 precludes assessing whether theta-FRN associations are a consequence of, or risk/vulnerability factor for, 
 posttraumatic stress  (Bonanno, 2005; Luthar et al., 2000; Polusny et al., 2017)  . Future longitudinal studies 
 involving new military recruits before and after exposure to military stressors could clarify whether 
 theta-FRN is a consequence or predisposing factor for reexperiencing  (Polusny et al., 2021)  . These data 
 could also develop reduction of theta loss signaling as a biomarker for PTSD treatment response. For 
 instance, if an individual’s reexperiencing symptoms were to improve, we would anticipate a 
 corresponding reduction of their theta-FRN response to losses. This reduction would be expected to 
 precede clinical symptom remission, reflecting a reduction in the salience of negative PEs over time. 
 Additionally, value-based decision-making encompasses a range of processes beyond just valuation, such 
 as prediction and action selection  (Rangel et al., 2008)  . Future studies should capture neural activation 
 during these other processes, possibly using gambling paradigms with semi-predictable outcomes like 
 multi-armed bandits  (O’Doherty et al., 2003)  to gain deeper insight into associations with negative 
 prediction biases. Finally, the predominance of males in our sample, reflecting the demographics of 
 combat veterans seeking care at VA facilities, points to a need for future research to include more diverse 
 samples, particularly with a higher representation of females who have well-characterized PTSD 
 symptoms and drinking patterns. 

 In summary, our study shows mediofrontal theta elicited by losses exhibits opposing influences of 
 intrusive reexperiencing and heavy drinking. This finding aligns with recent predictive coding models of 
 PTSD  (Kube et al., 2020; Putica et al., 2022)  , suggesting that chronic alcohol use might functionally 
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 reduce the intensity of salient negative prediction errors, thereby providing some relief from negative 
 emotional reactivity. These insights not only deepen our understanding of the unique influences of PTSD 
 and heavy drinking on brain salience signaling, but also suggest new avenues for 
 neurobiologically-informed interventions. Specifically, treatments focusing on modulating mediofrontal 
 theta activity  (Chiang et al., 2022)  could potentially address the exaggerated salience signaling associated 
 with intrusive reexperiencing, offering a promising direction for future computationally-informed 
 therapeutic approaches to PTSD management. 
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