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Abstract

Obtaining accurate binding free energies from in silico screens has been a longstanding goal for the
computational chemistry community. However, accuracy and computational cost are at odds with one
another, limiting the utility of methods that perform this type of calculation. Many methods achieve
massive scale by explicitly or implicitly assuming that the target protein adopts a single structure, or
undergoes limited fluctuations around that structure, to minimize computational cost. Others simulate
each protein-ligand complex of interest, accepting lower throughput in exchange for better predictions of
binding affinities. Here, we present the PopShift framework for accounting for the ensemble of structures
a protein adopts and their relative probabilities. Protein degrees of freedom are enumerated once, and
then arbitrarily many molecules can be screened against this ensemble. Specifically, we use Markov state
models (MSMs) as a compressed representation of a protein’s thermodynamic ensemble. We start with
a ligand-free MSM and then calculate how addition of a ligand shifts the populations of each protein
conformational state based on the strength of the interaction between that protein conformation and
the ligand. In this work we use docking to estimate the affinity between a given protein structure and
ligand, but any estimator of binding affinities could be used in the PopShift framework. We test PopShift
on the classic benchmark pocket T4 Lysozyme L99A. We find that PopShift is more accurate than
common strategies, such as docking to a single structure and traditional ensemble docking—producing
results that compare favorably with alchemical binding free energy calculations in terms of RMSE but
not correlation—and may have a more favorable computational cost profile in some applications. In
addition to predicting binding free energies and ligand poses, PopShift also provides insight into how
the probability of different protein structures is shifted upon addition of various concentrations of ligand,
providing a platform for predicting affinities and allosteric effects of ligand binding. Therefore, we
expect PopShift will be valuable for hit finding and for providing insight into phenomena like allostery.

I INTRODUCTION

Developing strategies to accelerate and simplify hit discovery in drug development is one of the core foci
of computational chemistry. Because huge arcs of chemical space must be subtended, methods that scale
well per ligand predominate.1 Most of these methods are based on docking a set of compounds to a single
protein structure as rapidly as possible to maximize the chemical space that can be considered. The scores
predicted by these methods correlate so poorly with true binding affinities that they are typically judged
by how much the high scoring compounds are enriched for tight binders compared to randomly selected
compounds.2,3 Of course, a wide range of methods have been developed to make different trade-offs
between speed and accuracy. Of these, alchemical free energy calculations are some of the most physically
rigorous and should, in principle, be capable of quantitatively accurate predictions.4,5 However, routinely
achieving quantitative predictions with any method remains difficult.6

One striking feature of all these methods is the extent to which they assume proteins adopt a limited
set of highly similar structures. Many docking algorithms don’t include any protein conformational
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heterogeneity. The cross docking problem highlights the limitations this assumption imposes (i.e. docking
a library of compounds against a protein structure obtained by removing a ligand from a ligand-bound
structure is more predictive than docking against a structure obtained in the absence of ligand).7 To address
this, some docking algorithms allow limited protein flexibility, such as rotations of side-chains. However,
many do not find that incorporating conformational heterogeneity in this way is worth the additional
computational cost.8 In principle, alchemical free energy calculations should be able to deal with protein
conformational heterogeneity as every degree of freedom is allowed to move as dictated by the force field.
However, in practice, alchemical free energy simulations are so short that the protein only undergoes
limited fluctuations around the starting structure.9 Phrased differently, ignoring receptor conformational
heterogeneity for the sake of computational performance is one of the key approximations of most digital
screening campaigns.

Ensemble docking has emerged as a strategy to address protein conformational heterogeneity but still
faces significant limitations.10 In ensemble docking, one generates a set of protein structures (often via
molecular dynamics simulations) and then docks a library of compounds against each of these structures.
Typically, one then ranks the compounds based on their best score against any protein structure, though
there are other flavors of ensemble docking. While this ensemble docking approach recognizes there is
uncertainty in which protein structure is relevant, it still essentially assumes that a single structure is
relevant in the end. It also throws out thermodynamic information from the simulations, instead giving all
protein structures equal weight. These methods are still generally incapable of quantitative predictions and
suffer from some strange pathologies. For example, it has been reported that ensemble docking against
short simulations outperforms docking to a single structure but that adding more simulation data often
hurts performance rather than helping.10–13 Other efforts to include conformational heterogeneity into
docking have included the existence of multiple conformations using some assessment of their relative
abundance, but have done so in an ad-hoc fashion.14,15

Here, we propose a reweighting approach called PopShift that uses Markov state models (MSMs)
of a ligand-free protein to account for the populations of different protein structures and how they are
shifted upon binding to a ligand. MSMs can be viewed as a compressed representation of the system’s
thermodynamic ensemble.16 Thus, MSMs representing the ligand-free protein ensemble contain all the
receptor information needed to estimate ligand binding.17 In order to weight the contribution of state
populations in the apo context versus how tightly they bind ligand, we estimate binding to representative
conformations from each state, obtaining a per-state binding free energy by averaging them. We then use
a binding polynomial approach to track which states actually contribute to the macroscopic affinity for
the ligand that might be observed in an experiment like ITC or similar.18 Equivalently, the presence of the
ligand can be viewed as a perturbation to the state in the sense of the Zwanzig formula.19 Thus, instead of
taking the best score against any structure, as in traditional ensemble docking, we take a correctly weighted
average over all structural states. This is made tractable by the MSM, since it means we only need one or,
to be more confident, a handful of binding estimates per MSM state. A related idea that treats affinity per
conformation using the same math, but does not leverage an MSM to index conformational heterogeneity,
is the Implicit Ligand Theory.20,21

By capturing how ligands shift the relative probabilities of different protein conformations, PopShift
also provides an opportunity to understand how ligands remodel their binding sites or even allosterically
impact distant sites. Population-shift in response to ligand binding is, by definition, allostery. If the
ligand-free MSM is a compressed representation of the perturbed model’s ensemble, then the reweighted
MSM is a compressed representation of the receptor’s liganded ensemble. Thus, observables of interest
can be estimated with the reweighted state probabilities to understand allosteric mechanism. Because the
expression for reweighted state probabilities includes ligand concentration, the impact on these averages
can also be used to compute an EC50.

To test PopShift, we compare its performance to several other candidates on a simple-yet-subtle
benchmark for protein-ligand binding, T4 Lysozyme L99A. From a set of apo simulations we build an
MSM. We then sample conformations from each MSM bin and dock to them, using the customary organic
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Figure 1: Examples of conformational heterogeneity in T4 lysozyme and a schematic of how PopShift
accounts for this heterogeneity. These renders show the multiple conformations even the L99A pocket
bound to toluene is capable of accessing under crystallographic study. The top section shows the room
temperature structure (PDB 7L39) and shows a cryogenic structure from the same study (PDB 7L3A).
All residues with alternative locations in the F-helix, and also toluene, are shown in sticks. Extensive
alternative locations are present in both, even though this protein is reckoned to be rigid and to bind
simple, largely rigid, fragments. Note the two alternative locations for the ligand are nearly identical at
both temperatures. Nearly every residue in the critical F-helix shows heterogeneity, centered on valine
111, which extends down toward the toluene. The lower panel shows a schematic of the PopShift method,
showing MSM populations from a ligand free ensemble being biased by varying degrees of ligand affinity
to those states, to approximate the ligand-bound ensemble. The sea-blue pac-man represents the protein,
with three states in equilibrium and green circle sizes indicating abundance, and the shape cut out of
the pac-man representing varying degrees of pocket accessibility to the ligand, which is schematically
represented by a star.
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fragments from Morton et al. [22]. We use the docking score as a heuristic for the free energy of binding
to a particular conformation. We recognize that docking has severe limitations, especially for ligands
with rotatable bonds. However, docking provides a simple and highly relevant starting point given its
widespread use in drug discovery, and the fragments we consider here are not subject to the known issues
with rotatable bonds. In the future, it will be interesting to try alternatives to docking in the PopShift
framework. In PopShift, the free energies of binding are then incorporated into an affinity estimate and
reweighted state probabilities using PopShift. We compare these strategies to best-score docking, docking
to holo crystal structures with the ligand removed, and to absolute binding free energy calculations
performed in the customary style with docked and hand-adjusted starting poses. We also explore how the
conformational preferences of the protein are altered by the addition of ligand .

II RESULTS AND DISCUSSION

II.A POPSHIFT PERFORMS WELL COMPARED TO ALTERNATIVE IN SILICO ESTIMATORS OF BINDING FREE

ENERGIES

We reasoned that modern simulations are sufficiently predictive that both structures from these simulations
and their populations can inform a successful hit finding strategy. In particular, MSMs provide a powerful
and quantitatively predictive map of a protein’s conformational ensemble—and therefore approximate its
partition function. Thus, we hypothesized that using the populations from an MSM in a binding polynomial
approach–with the MSM as an approximate partition function–would allow correct incorporation of
docking scores from across this sample.

To test this hypothesis, we collected three replica simulation datasets of L99A, made MSMs from them,
and estimated binding affinities using PopShift and other popular alternatives. Each replica consisted of 10
simulations, 5x4 µs and 5x8 µs, started from PDB 187L with the ligand (p-xylene) removed. One MSM was
made for each replica dataset using TICA on pocket residue backbone and sidechain torsions, and VAMP-2
to validate the number of clusters for k-means as has been done in Meller et al. [23]. We docked ligands
from the classic Morton et al. [22] set against structures from each MSM state using the SMINA docking
algorithm.24 Macroscopic binding affinities were estimated using the PopShift framework, see methods
(Section IV). For comparison to extant approaches, we used the conventional ensemble docking approach
of taking the best score across a set of samples, and of docking to a crystal structure with ligand removed.
We also performed absolute binding free energy simulations using a vanishing ligand transformation from
initial hand-selected ligand poses.

We find that PopShift performs well compared to alternative docking approaches and even showed
some advantages compared to alchemical free energy calculations (Fig. 2). Docking each ligand to a single
holo structure, (the n-butylbenzene structure, PDB 186L) then taking the minimized score as an affinity
estimate gives a poor correlation to experimentally measured binding affinities and poor accuracy, as
measured by the root mean squared error (RMSE) from experimental results. PopShift also outperforms
simply taking the best score, a traditional ensemble docking approach, most notably for ranking. The
best-score approach systematically predicts affinities that are too favorable. Although using docking to a
ligand-removed crystal structure’s scores as affinity estimates exhibited slightly better correlation with
experiment on this dataset than the best-score approach, these scores emanating from a lone structure
exhibited a similar pattern of overly favorable affinity estimates. Absolute binding free energy estimates
produced the strongest correlation and ranking results, but struggled with accuracy. This is likely related
to initial poses and receptor conformations failing to relax fully in the course of the windowed simulations.
This interpretation is complicated by our use of the docking energy function to make affinity estimates,
which is very different from the forcefield we used to obtain the MSM we dock to. Because docking to
many samples from an MSM allows us to estimate affinity to many receptor conformations, it sidesteps the
issue of having to chose a ‘most relevant’ one to start from. This is especially important if there may be
multiple thermodynamically relevant poses for the ligand.25

Based on reports of poorer performance of best score aggregation on longer simulations, we were
curious to know how sensitive our method is to dataset size. We reasoned that larger datasets will typically
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Figure 2: PopShift compares well to alternative predictors, such as docking to a single crystal structure,
traditional ‘best score’ ensemble docking, and alchemical free energy calculations. The x values are the
experimental binding free energies for 17 ligands as measured by ITC in Morton et al. [22]. The y values
are the binding free energy estimated by each in silico method. Correlation is the Pearson’s correlation
coefficient, rho is the Spearman’s ranking coefficient, and RMSE is the root-mean-squared error in kcal/mol.
The error bars on the top two panels are the SEM across the three largest

include some incredibly rare conformation that, when docked to, will give a higher score than anything in
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Figure 3: PopShift performs well as one varies the amount of simulation data, whereas traditional ‘best
score’ ensemble docking gives worse performance and has greater statistical variation as data is added.
The dataset used for MSM construction were truncated by taking the indicated fraction from the beginning
of each trajectory. This can be viewed as asking the question, ‘what would happen if simulations had been
stopped early?’ The error bars arise from the standard uncertainty in the mean across the three replica
datasets.

a smaller dataset. Without correctly accounting for such a conformation’s rarity, this will trend toward
worse results with increasing sampling. Phrased differently, the best score approach is an outlier detector
that is only in the correct ballpark when—by happenstance—no outlier conformations have been sampled
yet. In contrast, more data from longer initial simulations should cause PopShift’s estimate to converge as
the simulations do. The aforementioned outlier conformations, when correctly weighted by their rarity,
will simply contribute to the overall picture of the ensemble instead of dominating the prediction.

To test this notion, we truncated our dataset as a series of fractions—that is, we took the first X% of
each trajectory, where X corresponds to the fraction shown—and reran our analysis. Each result based on
truncated data was generated by reworking that dataset as though it were the full length dataset, including
featurization and clustering. We then inspected Pearson and Spearman correlations as a function of dataset
size (Fig. 3). As before, we selected 20 frames per state to generate these truncated datasets. We also held
cluster count fixed at 75, so that the total number of structures to dock to was not changing—only their
diversity as the underlying feature trajectories became more mature and the quality of the MSMs providing
the equilibrium population estimates.
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We found that PopShift is less sensitive to the extent of input data than best-score ensemble docking.
Because the number of structures docked to is constant across this sweep, it highlights how additional
structural heterogeneity is not correctly indexed by simply looking for the most favorable score. As
we suspected, best score gets worse with more data because it detects outliers. In other words, if an
ensemble is scored by its most favorable possible interaction with ligand, the strain or unfavorability of
that conformation on the protein is neglected. If one could create an ideal binding site for a ligand by
moving residues out of the way such that it has ideal contacts, it would get very favorable docking scores
when that conformaiton was docked to, but in fact the affinity for this site would be quite low because
of how badly strained the protein would be by such rearrangements. In contrast, PopShift benefits from
having more data, both in terms of the mean correlation with experiment and the statistical certainty in the
results These results also emphasize that–at least for macroscopic binding constant estimation–our results
for PopShift are not particularly sensitive to the length of input simulations. This is consistent with prior
results suggesting that thermodynamic properties of MSMs converge quickly.26 Taken together, this implies
that adding conformational heterogeneity to a docking campaign is best done by including a correctly
weighted sample of receptor conformations, if the objective is ranked estimated affinity prediction.

II.B POPSHIFT RETRODICTS LIGAND POSES, AND THEIR RELATIVE ABUNDANCE

Given the low RMSE between PopShift’s predicted binding free energies and experimental measurements,
we hypothesized that the approach also accurately predicts the pose the ligand adopts. specifically, we
reasoned that any ligand likely adopts a wide variety of different poses in different protein conformations
from the ligand-free MSM. If PopShift works as intended, protein-ligand structures where the ligand re-
sembles ligand-bound crystal structures should have significant increases in their equilibrium probabilities
compared to the same protein structure in the ligand-free ensemble. In this case, the distribution of RMSDs
from the reweighted ensemble should be more favorable than the distribution from the original ensemble
(i.e. using the state populations from the ligand-free MSM instead of updating the populations based on
the strength of the interaction between protein and ligand)

To test our hypothesis, we compared the distribution of RMSDs to the ligand-bound crystal structure
before and after reweighting the states based on the interaction with ligand (Fig. 4). For each sample from
each MSM bin, i, we weighted its apo probability as being πi/n, where πi is the equilibrium probability for
that bin, and n is the number of samples drawn from each bin. We used Eq. 38 to estimate each sample’s
probability in the presence of saturating ligand based on the docking score for that particular sample. We
aligned based on pocket residue heavy atoms (residues within 5 angstroms of p-xylene in PDB 186L).
RMSDs were then computed across all heavy atoms in the ligands. We plot both histograms for each
replica in Fig. 4 to convey how reproducible the results are with different sets of simulations.

Our results for benzene and toluene show that PopShift does indeed favor low RMSD states compared
to the broad heterogeneity in pose RMSDs from the original ensemble (Fig. 4, panels for ligand-free
populations.) Many states from the ligand-free ensemble are not compatible with the experimentally
observed binding pose, resulting in RMSDs between the best scoring pose and the ligand-bound crystal
structure over 4 Å. When pose RMSDs were reweighted using pop-shifted equilibrium probabilities at
saturating ligand concentrations, the distribution collapses and poses become holo-like. Interestingly, for
some ligands such as toluene (Fig. 4 panel B), alternative conformations appear to be present. Given the
way crystal structures solved at cryogenic temperatures are known to favor low energy structures and
under-estimate structural heterogeneity, it is interesting to consider the possibility that the heterogeneity in
poses that PopShift predicts for some ligands is real.

To test the generality of our results for the two ligands from Fig. 4, we devised a means to judge
how closely our predictions agree with experiments across multiple compounds. Because experimental
techniques have a hard time describing conformational heterogeneity, it is possible that poses dissimilar
to experiment have relevance for the thermodynamic ensemble of the complex. Thus we chose to use
three categories: one for configurations similar to the crystal pose, one for conformations that were
dissimilar but likely still in the pocket, and one for conformations with clashes or completely alternative
ligand placements. We reasoned this would be reasonably measured by aligning the receptor pockets, but
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A

B

Figure 4: The population shift calculated by PopShift correctly favors ligand poses with a low RMSD to the
crystal structure. The data histogrammed is the RMSD of the predicted pose to the holo crystal structure,
where the structures are superimposed according to an alignment of their pocket atoms but not any ligand
atoms. The RMSD histogrammed here is across all heavy atoms after this alignment. For each main panel,
the three sub-panel columns represent individual replica datasets. The top row provide the ligand-free
equilibrium probabilities and the lower row shows how the population is redistributed in the presence of
ligand. Main panel A provides the data for benzene, while main panel B provides the data for toluene.
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Figure 5: Summary of pose accuracy across all ligands studied. Each grouped bar represents the fraction
of ligand poses that fall into the categories ‘crystal-like’, for within 2 angstroms of holo crystal structure,
‘alternative’, for between two and four angstroms RMSD from the holo crystal, and ‘miss’, for poses above
four. As before the top panel represents the poses with an ‘apo’ ensemble weighting. The lower panel
provides pop-shifted reweights for the same dataset.
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transforming the ligands by that alignment.
We binned our histograms into three categories—fraction of samples that are similar to the crystal

structure’s pose (RMSD < 2Å), others that are in some alternative pose but probably still in the binding site
(2 ⩽ RMSD < 4Å), and ones that are likely in a very different pose or outside the binding site altogether
(RMSD ⩾ 4Å) in Fig. 5. We aligned the α-carbons of the pocket residues we used to build our MSMs,
then transformed our predicted ligand poses by that alignment transform. Thus, high-RMSD scores
likely emerge from poses that have significant displacements in center of mass—that is, poses that are not
properly in the binding pocket. We named the three categories of poses ‘crystal-like’, ‘alternative’, and
‘miss’, as abbreviations of this interpretation.

The pattern we demonstrated for benzene and toluene in Fig. 4 is consistent across all the ligands
we tested (Fig. 5). Poses we categorize as ‘miss’ are quite common with apo weights, but become rare
after reweighting with PopShift. With ligand saturated weights, we often observe alternative poses. It is
hard to know if these conformations exist in solution, but they are probable in the ligand biased ensemble,
suggesting that they contribute nontrivially to our estimates of affinity.

II.C POPSHIFT PREDICTS HOW LIGANDS CHANGE THE ABUNDANCE OF PROTEIN CONFORMATIONS

Because macroscopic affinities estimated with correctly weighted per-state affinities seem accurate, we
reasoned that reweighted state probabilities might also be usefully accurate. We knew that Valine 111’s
dihedral angle is able to occupy several rotameric states in apo simulations, but that the distribution is
different upon ligand binding.25,27 Thus we hypothesized that the broad distribution from our ligand-free
MSM should collapse to the binding-compatible one upon reweighting with ligand-saturated populations.

We tested this hypothesis by histogramming valine 111 angles from the receptor structures we sampled,
weighted by both apo and ligand saturated state probabilities (Fig. 6). As in Fig. 4, we plot both histograms
for each replica to convey the reproducibility of our results

We find that the ligand-free protein broadly populate several different structures, but the ligand shifts
the population to favor the trans state, with some population of gauche +. This angle is noted as having
many different distributions in RT crystal structures for liganded T4 lysozyme L99A protein.25 Trans is
the angle modeled into cryo-structures from previous efforts (PDB ID 181L, 4W52).22,28 Our plots suggest
that, like room-temperature X-ray structures, the ligand-saturated ensemble is heterogeneous, but does
prefer certain angles, the primary of these being shared with the cryo X-ray structures. Thus the receptor
population has shifted through conformational selection to a binding-compatible ensemble.

II.D POPSHIFT CAN ESTIMATE KD AND OTHER ENSEMBLE FEATURES AS A FUNCTION OF LIGAND

CONCENTRATION

Because the histograms from Fig. 4 represent unliganded and saturated conformational preferences, respec-
tively, we hypothesized that inspecting conformational preference as a function of ligand concentration
might help with analyzing binding preferences and allosteric effects. We wanted to know at what ligand
concentrations certain histogram populations become more prominent since structural features not directly
corresponding to ligand binding are often relevant for drug development—particularly in the case of
allosteric modulators. For example, we previously identified both activators and inhibitors that bind a
cryptic pocket in the protein TEM β-lactamase Looking at what structures are stabilized/destabilized by a
ligand could provide a facile means to predict their effects on the structural preferences of distant sites and,
ultimately, on function If a structural feature were used as a heuristic for some mechanistic action, that
feature could be used to compute an EC50.

To display this transition, we computed ligand-rmsd histograms at various ligand concentrations and
stacked them by descending ligand concentration, as a dilution series. To do this, we re-computed the
histograms from Fig. 4 using Eq. 38 with a range of concentrations plugged in for x. Each histogram-bin’s
probability was displayed using color, so that each row in the heatmap corresponds to a particular RMSD
histogram at a particular ligand concentration. Bins, and therefore the X axis, match those from Fig. 4. We
covered concentrations ranging from nM—essentially no ligand for these relatively weak binders—to 0.1
M—completely saturating for all the ligands we tried. Our predicted ligand dissociation constants are
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Figure 6: Three alternative conformations of the Val111 Chi1 angle in the ligand-free MSM collapse to mostly
trans population in the presence of ligand, in agreement with the dominant pose seen crystallographically.
The top row of plots are histograms of the Chi1 torsion across the frames sampled from the MSM states,
weighted using the ligand-free MSM equilibrium probabilities. The second row displays the same data,
but weighted by the benzene-saturated equilibrium probabilities. Each column represents the results from
one fully independent replica.
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A

B

Figure 7: The distribution of RMSDs to a ligand-bound reference structure as the concentration of the
ligand is varied. The Y axis is ligand concentration, and the X axis is the pocket-aligned Ligand RMSD to
holo crystal structure, histogrammed as before (Fig. 4). Each row in each heatmap is from the same raw
data being histogrammed with different weights, computed by plugging the Y-value matching that row
into Eq. 38. The orange line on each replica plot shows the KD as calculated for that replica using 33, and is
shown for reference. The top row in each heatmap is holo-like, because it is at high ligand concentration,
and the bottom row is apo-like because it is at low ligand concentration. Being able to titrate observables
measurable from conformations in this way could provide exciting opportunities to understand ligand
efficacy in systems with allosteric behavior.
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marked by an orange line.
We found that the populations of conformers outside the binding site were abundant until within an

order of magnitude or so of the molecule’s KD, where a shift happened to structures that more closely
resemble the ligand-bound structure. The poses closer to the KD on the low concentration side contain
a mixture of bound-like and ligand-free-like structures. They are similar to the ligand-free-weighted
distribution we see in Fig. 4.

III CONCLUSION

In this work we have presented PopShift, a framework for estimating binding free energies in a manner
that correctly weights the conformational heterogeneity present in the ligand binding sites of proteins.
PopShift’s estimated binding free energies from docking scores perform well compared to other common
methods for the simple problem of lysozyme L99A binding to small organic compounds. Our results
demonstrate that adding receptor fluctuations into docking is indeed a significant improvement over
making the simplifying assumption that a single protein structure encodes all the relevant information.
Further, our approach provides an approximation of the receptor-ligand complex ensemble, which has
utility in mechanistic studies, such as those focused on tuning the abundance of receptor conformations
known to correlate with function.

The future directions for this approach are many. PopShift of docking scores for affinity estimation is
still limited by the performance of the docking scoring function. Thus it is likely that applying PopShift to
more challenging problems, such as for ligands with many rotatable bonds or charge, will require more
sophisticated estimates of per-state KDs. Using per-state estimates from Generalized-Born or Poisson
Boltzmann rescoring, or absolute or relative binding free energy simulations, is therefore an exciting and
immediate future direction for this work.29 More broadly, we see opportunities to apply this framework
to other perturbations to an MSM sampled from one thermodynamic state, without having to redo the
sampling in those new states—such as gracefully integrating multiple protonation states for either ligand
or receptor, and indexing the relative free energy changes of mutations. Expansive and expensive sampling,
done once for some reference model, can thus be reweighted to solve a host of important problems facing
modern Biophysics.
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IV METHODS

IV.A POPSHIFT FORMALISM

We noted that we could treat an MSM as a system’s partition function, since the equilibria between each
state and the equilibrium probability, or population, of each state is available. Thus, we supposed that the
binding polynomial formalism of Wyman and Gill [18] would give us traction for describing how binding
affects this representation of the system’s ensemble. The discrete treatment of state space seemed natural
in the context of an MSM-representation of an ensemble. For the sake of completeness, an equivalent
derivation based on the Zwanzig perturbation formula is included in Appendix A.

Assume we have an MSM representing an ensemble discretized into n states where the abundance of
the ith state is πi, its equilibrium population. Suppose further that we can obtain an estimate of the affinity
of a ligand or an array of ligands to each state, kij, indexed by the i states and up to t ligands bound, the
free concentration of which is given by xj. Then we can write the partition function, Z, in terms of all such
equilibria available to the system as in Wyman and Gill [18]:

Z =

n∑
i=0

t∑
j=0

kijx
j (1)

Starting from here has several nice features; it is clear how we might extend this formalism for multiple
ligand binding sites, or for multiple ligand species by adding a third index to Eq. 1. We can rearrange this
definition to obtain an expression for the fractional population of the various allosteric states. We’ll express
this in terms of the sub-binding polynomial, Pi.

Pi =

t∑
j=0

[
MiXj

]
[Mi0]

(2)

Here,
[
MiXj

]
is the macromolecule-ligand complex in state i with j ligands bound, and [Mi0] is the

concentration of that state in the absence of ligand. We’re considering equilibria relative to the abundance
of the allosteric conformation sans ligand. We’ll abbreviate the equilibrium constant between each ligand
free state and the reference state as: Li0 = Mi0

M00
. Thus Pi becomes:

Pi =

∑t
i=0 kijx

j

Li0
(3)

And then:

Z =

n∑
i=0

Li0Pi (4)

If we would like to consider the reference condition to be all unligated species, we can define a normalized
binding polynomial, P, using this expression for Z:

P =

∑
i Li0Pi∑
i Li0

(5)

Since the fraction of the ith form, αi0, can be written in terms of un-ligated equilibrium constants:

αi0 =
Li0∑
i Li0

(6)

=⇒ P =
∑
i

αi0Pi (7)

Noting that these αi0 are exactly the equilibrium probabilities from our unligated MSM, let αi0 → πi.
Finally, we can write an expression for the population of the ith state under the influence of ligand, π∗

i , as:

π∗
i =

αi0Pi
P

=
πiPi∑
i πiPi

(8)
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IV.B CALCULATING LIGAND BINDING FREE ENERGIES FOR ONE MONOVALENT SITE

Starting from the definition of a one ligand binding equilibrium constant, we can obtain an expression
for the free energy change associated with that binding constant in terms of the binding polynomial
corresponding to this. Writing the macro equilibrium constant, K, of all macromolecule-ligand complexes
with one ligand bound as [MX] with [M] and x as the free receptor concentration and ligand activity,
respectively:

K =
[MX]

[M] x
(9)

Note that this is an association constant; its reciprocal would be the dissociation constant. Thus the degree
of binding, X, is:

X =
[MX]

[M] + [MX]
(10)

X =
Kx

1+ Kx
(11)

=⇒ Kx =
X

1− X
(12)

From here we can get to the binding free energy, which is by definition the ligand concentration at which
the fully ligated and unligated species are equal. In the binding polynomial literature this is known as the
‘median activity’, xm.

K = x−1
m Xm =

1

2
(13)

We can express the fraction bound as the derivative of the binding polynomial. For our simple one site
one affinity model, the binding polynomial becomes:

P = 1+ Kx (14)

The binding curve, X, can be recast as the derivative of the log of P with respect to the log of x:

X =
d logP

d log x
=

x

P

dP

dx
(15)

=
x

1+ Kx
· d

dx
[1+ Kx] (16)

=
Kx

1+ Kx
(17)

This expression is general; for any binding polynomial describing a system the binding curve can be
obtained by writing the derivative of the binding polynomial with respect to the log of the ligand activity.
If there are multiple ligands, then the fractions bound can be described in this way using partial derivatives
with respect to the log of the various ligand activities.

From here we can also consider a free energy of binding, with an eye toward a more general expression
(where multiple ligands might bind). Since we have derivatives of the binding polynomial, we should also
be able to write integrals of these to get to the expressions we started with.

∫ logx

−∞ Xd log x =

∫ logP

0

d logP

(18)

= logP = Au

(19)
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Where Au is the area under the binding curve.
=⇒ P = eAu

(20)

Also note that, as mentioned before, P−1 = α0, is the fraction of unligated macromolecule.
=⇒ α0 = e−Au

(21)
Likewise if we integrate from maximum ligand activity to a particular log ligand activity, we can write
the area above the curve. This will be the fraction of fully ligated macromolecule (the species with all t
receptor binding sites occupied).

Aa =

∫∞
logx

(
t− X

)
d log x

(22)

αWefindthatPopShiftismoreaccuratethancommonstrategies, suchasdockingtoasinglestructureandtraditionalensembledocking−−producingresultsthatcomparewellwithalchemicalbindingfreeenergycalculations−−butmayhaveamorefavorablecomputationalcostprofileinsomeapplications.t = e−Aa

(23)
The overall binding constant is determined by this value, since it is the ratio of the unligated species to the
fully ligated species.

Kt =
αt

α0xt

(24)
Picking the median activity here means the above expression reduces to:

Kt =
1

(xm)t

(25)
For one site, t = 1.

αt = exp
(
−

∫ (
1− X

)
d log x

)
(26)

The standard free energy change for this system is the work required to add an infinitesimal amount of
ligand from a reservoir at standard state to the macromolecule. This can be expressed in terms of chemical
potentials as a variation of the free energy:

δGx =
(
µx − µ−◦

x

)
δnx = (RT log x) δnx (27)

Where Gx is the free energy of ligand binding, δnx is an infinitesimal amount of X, µx is the chemical
potential of X, and µ−◦

x is the standard state chemical potential of X. We can consider how much work it
would take to saturate a mole of our receptor by integrating this formula across our degree of binding
formula, and asserting that δnx → δX.

∆Gx = RT

∫X
0

log xδX (28)

Since this work is the work of going from M + tX → MXt, we can see the substitution for the median
activity that gets us to the customary relationship.

∆Gx = −RT logKt (29)
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IV.B.1 ONE BINDING SITE, MULTIPLE CONFORMATIONS

Now we’re positioned to ask what happens if we have multiple conformations that each have a particular
affinity for a ligand, assuming that the affinity is arising from one binding site. The formula for the
multiple-conformers binding polynomial is:

P =
∑
i

αi0Pi = 1+ x ·
∑
i

αi0ki (30)

Note that we’ve already started from a model where we’ve assumed many states with one binding site for
one ligand, with each state having its own binding constant. Then the Adair constant for the ligated state,
K1, is the macro-equilibrium constant for the reaction.

K1 =
∑
i

αi0ki; X =

∑
i αi0kix

1+
∑

i αi0kix
(31)

=⇒ ∆Gx =− RT log

(∑
i

αi0ki

)
(32)

Using the conformational selection assertion to set the state fractions to the equilibrium probabilities for each

MSM bin from our model, αi0 → πi, and each of the ki → exp
(
−

∆Gi
bind

RT

)
. These can be had by docking,

alchemy or other means that produce binding constants or free energies.

∆Gx = −RT log

(∑
i

πi exp

(
−
∆Gi

bind
RT

))
(33)

IV.C POPULATION SHIFT PER MSM BIN

Based on the expression for the reweighted state probabilities above, Eq. 8, we would like to write
an explicit formula for our single site, multiple conformation case. To do so we write the sub-binding
polynomial as before, with kij the equilibrium between the ith state with j ligands bound and the reference
state Mi0:

Pi =
ki0 + ki1x

Li0
=

[Mi0] + [MiX]

[Mi0]
(34)

= 1+
[MiX]

[Mi0]
(35)

= 1+ kix (36)
From here we substitute back into Eq. 8, the expression for π∗

i :

π∗
i =

πi (1+ kix)∑
i πi (1+ kix)

(37)

Let ki = exp
[
−β∆Gi

bind

]
, the micro-equilibrium constant estimated for that state.

π∗
i (x) =

πi(1+ exp
[
−β∆Gi

bind

]
x)∑

i πi(1+ exp
[
−β∆Gi

bind

]
x)

(38)

Note that Eq. 38, the PopShift equation for a single site binding model, has the correct limiting behavior.
At high x, the populations of the states are dominated by the favorability of binding to each state because
the right hand numerator term and the denominator both grow with x, but the left-hand term does not.
Conversely, at very low x the state probabilities are very nearly the apo ones, as the right hand term in
both the numerator and denominator becomes small relative to the left-hand term.
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IV.D LYSOZYME MSM SIMULATIONS AND CONSTRUCTION

IV.D.1 SIMULATIONS

Simulations were run with Gromacs.30 Three sets of ten simulations were run starting from protein
coordinates taken from PDB ID 187L using the Amber03 force field.31 Five of the trajectories in each set
totaled 4µs of sampling, while the other five totaled 8µs. The protein was solvated with TIP3P explicit
water in a dodecahedral box that extended one nm beyond the protein in any dimension and eight chloride
ions were added to neutralize the charge.32,33 This system was energy minimized with the steepest descent
algorithm until the maximum force fell below 10 kJ mol 1 min 1 using a step size of 0.01 nm and a cut-off
distance of 1.2 nm for the neighbor list, Coulomb interactions and van der Waals interactions.

The system was then equilibrated at 298K in a 1 ns NVT simulation followed by 1ns NPT simulation
with a position restraint on all protein heavy atoms (spring constant 1,000 kJ mol-1 nm-2). A long-range
dispersion correction was employed for both energy and pressure. All bonds were constrained with the
LINCS algorithm.34 Cut-offs of 1.2, 0.9 and 0.9 nm were used for the neighbor list, Coulomb interactions,
and Van der Waals interactions, respectively. The Verlet cut-off scheme was used for the neighbour list
and particle mesh Ewald was employed for the electrostatics (with a grid spacing of 0.12 nm, PME order
4, and tolerance of 1e−6.35 The v-rescale thermostat (with a time constant of 0.1 ps) was used to hold the
temperature at 298 K and the Berendsen barostat was used to bring the system to 1 bar pressure.36,37 For the
production runs, the position restraint was removed and the Parrinello-Rahman barostat was employed.38

Snapshots were stored every 10 ps. Structures were visualized with PyMOL, and trajectories with both
PyMOL and VMD.39,40

IV.D.2 MSM CONSTRUCTION

MSMs were constructed using Deeptime independently for each set of 10 simulations.41 Clustering data
was managed using the RaggedArray class from enspara.42 Backbone and all χ dihedrals for any
residues with heavy atoms within 5Å of p-xylene in PDB 187L were selected as input features. This feature
space was reduced using TICA,43 with lag times of 1, 2, and 5 ns and with a kinetic variance cutoff of 0.9
using commute mapping. We used k-means to cluster this reduced feature set, chosing our number of
states using the cross-validation approach taken by Meller et al. [23]. Briefly, the reduced features were
clustered by splitting features into 10 train-test pairs, where k-means with a range of k was used to cluster
only the training set. Test set trajectories were then assigned to clusters using euclidean distance to the k
centroids resulting from the ‘training’ clustering. MSMs were fit to the train and test pairs using the MLE
method.44 The first 10 eigenmodes of both models were then VAMP-2 scored45 using the train model, to
estimate how over-fit the model was to cluster count.pande2015, 46 The number of clusters chosen for final
model fitting was the point at which the VAMP-2 score of the test data starts to decline, which was k = 75

in this case. The complete set of input features was reclustered using k-means with 75 clusters and then
an MLE model was fit with a lag time of 20 ns, after scrutinizing the implied timescales of the data with
various lag times.

IV.E POPSHIFT WORKFLOW

The workflow used here to do the PopShift post-processing of our ensemble docking run is as follows :

1. Obtain a satisfactory ligand-free MSM.a

2. Sample a number of receptor conformations from each bin of the MSM using the assignment trajecto-
ries from clustering (Frame-picking).

3. Align these conformations so that they will fit neatly in a docking box.

4. Dock to each sample, saving the ligand pose and docking score.

aNote that for thermodynamic observables all that is really needed for step 1 above is a discretized state space or clustering
of input features, and an associated collection of equilibrium probabilities for each state. MSM construction, especially with a
collection of shorter trajectories as we have, is a sensible path to obtaining this association, but others are possible.
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5. Compile docking scores into free energies of binding using Eq. 33 and the equilibrium probabilities
from the ligand-free MSM.

6. Compute reweighted state populations from the docking scores using Eq. 38.

IV.E.1 POPSHIFT IMPLEMENTATION

To pick frames, the assignment trajectories used for model selection were sorted into lists of frames
corresponding to each cluster center, and then several of these (20 for the data in Figs. 2 and 3) were selected
in uniformly random fashion. These frames were extracted from the coordinate trajectories and iteratively
aligned47 by the α-carbons of their pocket residues (defined in the same fashion as for MSM construction
in Sec. IV.D.2), using LOOS.48,49 Ligands and receptors were prepared using prepare ligand.py and
prepare receptor.py from AutoDock tools.50 We parallelized the preparation process by using GNU
parallel.51 Docking was performed using a box with 12-angstrom sides centered on the centroid of
the average structure of the aligned frames using SMINA.24 Each docking run targeting each extracted
conformation was performed as an independent single CPU task using Jug.52 We used the SMINA and
Jug versions hosted on conda forge. For SMINA the binary we used returned the version statement
(from calling smina --version) Smina Nov 9 2017. Based on AutoDock Vina 1.1.2. For
Jug the version statement returned by the python module was 2.2.2. No modifications were made to the
docking energy model for this study. Docking scores were extracted and collated into ligand-indexed JSON
associative arrays using scripts provided in the PopShift package. PopShift is available as open-source
software and can be found on the Bowman Lab Github: https://github.com/bowman-lab/PopShift

IV.F DISAPPEARING LIGAND ABSOLUTE BINDING FREE ENERGY SIMULATIONS

IV.F.1 STARTING POSE SELECTION

The binding modes of the ligand for free energy calculations were selected using 5 methods. For ligands
with a known crystal structure bound to T4-Lysozyme, we selected the MSM pose with an RMSD closest to
that of the crystal structure. All poses had an RMSD < 2Å to the crystal pose and thus would be considered
the same binding mode.54 The exception to this was 1,2-dichlorobenzene which did not have an MSM pose
that closely matched the known crystal structure. In the case of 1,2-dichlorobenzene, we used the exact
pose from the crystal structure.

For ligands without a crystal structure, we took a known crystal structure most similar to the ligand
and posed our ligand accordingly in several poses. Each pose for each ligand was simulated for 2 ns and an
RMSD analysis of the ligand throughout the trajectory as compared to the starting pose was run. The pose
with the smallest change in RMSD and the smallest variance in RMSD was chosen as the most stable pose,
and was the pose used for the remainder of calculations. We overlaid 2-ethyltoluene with the crystal pose
of o-xylene, and then flipped 2-ethyltoluene so the ethyl group and methyl group would align first with
the 1-methyl and 2-methyl of o-xylene as pose 1, and the 2-methyl and 1-methyl as pose 2. We overlaid
3-ethyltoluene with the crystal pose of o-xylene. We aligned the ethyl group of 3-ethyltoluene with each
methyl group of o-xylene resulting in 4 different poses. We also aligned the methyl group of 3-ethyltoluene
with each methyl group of o-xylene resulting in 4 more different poses. We overlaid 4-ethyltoluene with
the crystal pose of p-xylene, and then flipped 4-ethyltoluene so the ethyl group and methyl group would
align first with the 1-methyl and 4-methyl of o-xylene as pose 1, and the 4-methyl and 1-methyl as pose 2.
We overlaid thianaphthene with crystal pose of indene as pose 1, and flipped the thianaphthene across its
length so the sulfur would be on the opposite side as pose 2.

Lastly, for m-xylene, we began with a process similar to that of 3-ethyltoluene. We overlaid m-xylene
with the crystal pose of o-xylene. We aligned the methyl groups of m-xylene with each methyl group of
o-xylene resulting in 4 different poses. Again, an RMSD was used to choose the most stable pose to use for
the remainder of calculations. However, upon free running free energy calculations, we observed m-xylene
switch to a different stable pose after 1.5 ns, impacting the free energy calculation. For m-xylene, the stable
pose found at 1.5 ns into the free energy calculation was chosen.
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Figure 8: This cartoon depicts the thermodynamic cycle and transformation used for the absolute binding
free energy calculations from Fig. 2. We are taking ∆Gbind = ∆Gsolv − ∆Gsite − ∆Grestraints. In its weakly
and non-interacting state, the ligand is free to leave the binding site. We use orientational Boresch-style
restraints to reduce the phase space that must be sampled.53

IV.F.2 LIGAND AND PROTEIN PARAMETERIZATION

The ligands were parameterized with Open Force Field version 2.0.0 and charged with AM1-BCC
charges.mobley2022 The protein (PDB 7l38) was prepared using OpenEye Spruce to add hydrogen atoms at
pH 7.0. The protonated protein was then parameterized using AMBER ff14SB and the TIP3P water model
was used for the waters. GROMACS was used to solvate and add a salt concentration of 150 mM to the
ligand and protein-ligand systems. Each ligand system was energy minimized and NVT equilibrated, then
a 2 ns NPT production run was performed. Each protein-ligand system was energy minimized and NVT
equilibrated, then a 2 ns NPT production run was performed. The trajectory of the production run was
used to select the atoms and dihedrals for the Boresch restraints to restrain the ligand to the binding site
during simulation.53

IV.F.3 RUNNING ABSOLUTE BINDING FREE ENERGY CALCULATIONS IN GROMACS

Simulations were run using GROMACS 2021.2. For binding site simulations, we used 20 lambda windows.
In this protocol, we first restrained the ligand to the binding site, turned off the coulomb interactions, then
turned off the vdW interactions. For unbound ligand simulations, we performed absolute hydration free
energies. In this protocol, we first turned off the coulomb interactions, then turned off the vdW interactions.

Prior to running production simulations, every lambda window was energy minimized for 5000 steps
using steepest descent and equilibrated at constant volume for 10 ps at 298.15K. Production simulations
were run for 15 ns per lambda window with an NPT ensemble. During production, replica exchange was
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attempted every 200 steps. See Fig. 9 for a graphical representation of this schedule.

Figure 9: This λ schedule depicts the schedule for restraining and scaling down ligand interactions
(coulomb and vdW) for the protein-ligand protocol discussed in the body text.

IV.F.4 ANALYSIS OF ABSOLUTE BINDING SIMULATION RESULTS

We obtained the free energy difference using the alchemlyb/pymbar package MBAR estimator. The
first nanosecond of the 15 ns of production simulations were discarded as equilibration. Each ligand
was inspected for symmetry and the trajectory of the protein-ligand system in its unrestrained state was
inspected to determine whether all symmetries were equally sampled.55 The free energy difference of
ligands with at least one axis of symmetry without adequate sampling of symmetries were corrected using
the equation:

∆Gsymmetry condition =
1

kBT
logσL (39)

Where kB is the Boltzmann constant, T is the temperature, and σL is the ligand symmetry.
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SOFTWARE

Python command line tools written to perform the PopShift calculations discussed here are distributed as
free software at: https://github.com/bowman-lab/PopShift

DATA

Data files and scripts used to analyze results and produce figures, as well as trajectory data, will be available
upon request. The data will also be hosted (possibly via links or other download means, depending on
which data it is) at https://github.com/bowman-lab/popshift-ms-data
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A DERIVATION OF MSM-DOCKING USING THE ZWANZIG RELATIONSHIP

The binding of a ligand to a protein is described by the reaction

P + L ⇌ PL (40)

The binding free energy is related to KD, the dissociation constant, by:

∆G = kBT lnKD (41)

or:
∆G = −kBT lnKeq (42)

The binding free energy is computed from the ratios of partition functions describing the elements of
the complex.

∆G = −kBT ln
ZPLZ0

ZPZL
(43)

Here the various sub-partion functions are defined with Z, with the subscript indicating what they
encompass. PL for the protein-ligand partition function, 0 for the solvent/milieu, and P and L for the
protein and ligand separately. By splitting up the natural logarithm we can focus on hydration free energy
and protein ligand binding of the expression separately:

∆G = −kBT(ln
ZPL

ZP
+ ln

Z0

ZL
) (44)

Where:
ZPL

ZP
=

∫
Γ

e−β∆U(x⃗)dx⃗ (45)

One of the limitations of binding free energy calculations is that the partition function integral goes
over the full phase space Γ , the full conformational space accessible to the protein and to the ligand. In part
to address this limitation, we can take the integral across the state space of either system by treating the
transition from bound to unbound (state A to state B) as a perturbation.19 The perturbation formula is thus
an approximation that becomes exact in the limit of infinite sampling.

∆G = −kBT ln
〈
e−β∆UA,B

〉
A

(46)

Where ∆UA,B is the difference in energy between states A and B.
To combine exponential averaging with MSMs, we fully partition the state space, extract the equi-

librium probabilities and calculate the differences in potentials between ligand free and ligand bound
conformations.

〈
e−β∆U

〉
=

∫
Γ µ (⃗x) e−β∆U(x⃗)dx⃗∫

Γ µ (⃗x)dx⃗
(47)

Where µ is the stationary distribution the transfer operator our msm approximates transports density
toward, and x⃗ is a point in configuration space.56 Because of this discretization of configuration space,
the integral from Eq. 46 can be split across the states of the system; if we discretize this integral across
sub-volumes in configuration space this becomes

≈
∑
χi∈Γ

πi

∫
χi

e−β∆U(x⃗)dx⃗ (48)

Here πi is the equilibrium probability of the ith state, and χi is the subset of Γ corresponding to that state.
Taking these sub integrals per state could be done using alchemical free energy calculations restricted
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not to sample within each bin in phase space–that is, within each χi. Here we used binding probabilities
estimated via docking to each state instead.

Suppose that we can obtain an estimated equilibrium constant for a given conformation using docking.∫
χi

e−β∆U(x⃗)dx⃗ ≈ Ki (49)

Where Ki is an equilibrium constant estimated from docking for the ith state. Then we get the relatively
straightfowrward:

(50)〈
e−β∆U

〉
=

∑
i

πiKi (51)

Plugging this expression back into Eq. 46 gives us:
(52)

∆G = −kBT ln
∑
i

πiKi (53)

A.A USING STATE POPULATIONS TO ESTIMATE EC50

A stronger or weaker overall binding of ligand may not be predictive of changes to macromolecular
function. For example, it is possible for a ligand to bind to a known allosteric site quite tightly, but to have
the mode of its binding fail to stabilize conformations that change its function.57 Put another way, it is likely,
even) that all modulator-bound conformations don’t have the same potency; some such conformations
likely matter more than others, and the affinity of the modulator to that conformation may not be the sole
predictor of this activity. To avoid confusion with chemical activities, we will refer to this as potence.

Suppose that we define some measure of a state’s propensity to progress through some binding or
reaction cycle called potence, P. This measure could be based on some criterion from the literature,
experimental data, or some ansatz that, once formulated, could be checked to see if it recapitulates
experimental data; for example states with feature Y are part of the (de)activated macrostate. If potence
is a function of conformation, P(Mi0), then it can be calibrated relative to the unperturbed ensemble
and the saturating one for the receptor’s unligated activity, and the equilibrium constants can be used to
estimate an EC50 based on the modulated probabilities. In other words, even a rough heuristic that is only
proportional to function may be sufficient to estimate an EC50. Starting with the unligated potence:

⟨P⟩ =
∑
i

πiP(Mi0) (54)

Using Eq. 38, we have a path to calculating the EC50.

π∗
i (x) =

πi(1+ exp
[
−β∆G−◦

bind

]
x)∑

i πi(1+ exp
[
−β∆G−◦

bind

]
x)

(55)

⟨P⟩∗ (x) =
∑
i

π∗
i (x)P (Mi0) (56)

The EC50, should be the ratio of abundance of the potence score states equal to 1/2 its max value. Since we
can simulate this by putting in a saturating concentration of ligand, we can write:

⟨P⟩max = ⟨P⟩∗ (xsat) (57)
Then we can create a fractional potence score and set it equal to 1/2:

⟨P⟩max − ⟨P⟩∗ (x50)
⟨P⟩max − ⟨P⟩

=
1

2
(58)

=⇒ ⟨P⟩∗ (x50) =
⟨P⟩max

2
+ ⟨P⟩ (59)

This expression can be solved numerically for x.
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