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Abstract 13 

The transformer-based models, such as GPT-31 and DALL-E2, have achieved unprecedented 14 

breakthroughs in the field of natural language processing and computer vision. The inherent 15 

similarities between natural language and biological sequences have prompted a new wave of 16 

inferring the grammatical rules underneath the biological sequences. In genomic study, it is 17 

worth noting that DNA sequences alone cannot explain all the gene activities due to epigenetic 18 

mechanism. To investigate this problem, we propose EpiGePT, a new transformer-based 19 

language pretrained model in epigenomics, for predicting genome-wide epigenomic signals by 20 

considering the mechanistic modeling of transcriptional regulation. Specifically, EpiGePT 21 

takes the context-specific activities of transcription factors (TFs) into consideration, which 22 

could offer deeper biological insights comparing to models trained on DNA sequence only. In 23 

a series of experiments, EpiGePT demonstrates state-of-the-art performance in a diverse 24 

epigenomic signals prediction tasks as well as new prediction tasks by fine-tuning. Furthermore, 25 

EpiGePT is capable of learning the cell-type-specific long-range interactions through the self-26 

attention mechanism and interpreting the genetic variants that associated with human diseases. 27 

We expect that the advances of EpiGePT can shed light on understanding the complex 28 

regulatory mechanisms in gene regulation. We provide free online prediction service of 29 

EpiGePT through https://health.tsinghua.edu.cn/epigept/. 30 
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Introduction 31 

One of the fundamental problems in genomic study is how to decode and interpret the human 32 

genome sequences in a complex manner. Progress toward this goal is largely hindered by the 33 

vast majority of non-coding regions3. For example, it remains unclear how the genomic variants 34 

in the noncoding regions lead to malfunctions of regulatory elements by disrupting the 35 

underlying regulatory syntax of DNA4. Inspired from the field of natural language processing, 36 

there exists a natural analogy between human language and DNA sequence where texts are 37 

made of words and DNA sequence can be characterized by nucleotides or k-mers. The inherent 38 

similarities between natural language and biological sequences provide new perspectives 39 

towards better understanding the complex DNA language.  40 

Recently, generative pre-trained transformer (GPT) models have achieved unprecedented 41 

success in various domains, including computer vision and natural language processing (NLP)1, 42 

5. Such pre-trained models can be readily tailored or adapted to various downstream tasks. To 43 

date, the application of generative pre-trained models in genomic study remains largely 44 

unexplored. It is noticeable that a number of machine learning-based approaches have been 45 

proposed for predicting various genomic and epigenomic signals, such as chromatin 46 

accessibility6, 7, histone modification8 or chromatin interactions9, 10. However, these methods 47 

are rather scattered, with specific models designed for specific prediction tasks. It is in an urgent 48 

need to develop a foundation model to facilitate multiple genomic and epigenomic prediction 49 

tasks and unveil the universal gene regulation rules. 50 

To design a genomic foundation model, it is worth noting that the existing large language 51 
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models (LLMs) purely rely on the language context consisting of words and sentences while 52 

the DNA sequences cannot explain all the heritable and stable changes in gene activity due to 53 

epigenetic mechanisms. In other words, the genomic foundation model based on pure DNA 54 

sequence may largely ignore the context-specific information, thus lacking mechanistic 55 

interpretation of context-specific gene regulation. For example, using transformer-based 56 

language model to decode genome sequence has been attempted by a recent work Enformer11. 57 

However, Enformer is not capable of predicting the function of sequences in new cellular 58 

contexts, which largely limits its generalization power. 59 

To overcome the above limitation, we proposed EpiGePT, a new transformer-based deep 60 

learning framework, to predict genome-wide epigenomic signals by taking the mechanistic 61 

modeling of transcriptional regulation into consideration. With EpiGePT, we are able to 62 

investigate how to utilize the power of transformer-based language model to help researchers 63 

uncover how trans-regulatory factors (e.g., TFs) regulate target genes by interacting with cis-64 

regulatory elements and further lead to changes in different chromatin states. After pretraining 65 

on a diverse panel of cell line and tissue level data from the Encode database12, EpiGePT is able 66 

to directly predict the genome-wide chromatin states in any new cellular context given the 67 

expression profile of a few hundreds of TFs or facilitate new prediction tasks (e.g., 3D genome 68 

interaction) with finetuning. 69 

To the best of our knowledge, EpiGePT is the first pretrained Transformer model for 70 

epigenomics with mechanistic modeling of transcriptional regulation. EpiGePT differs from 71 

existing methods in the following three aspects. First, unlike the methods that take pure DNA 72 

sequence as input, EpiGePT additionally takes the context-specific information (e.g., TF 73 
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activities) as input, thus enabling genome-wide prediction power in any new cellular context. 74 

Second, instead of using task-specific model to predict a single genomic and epigenomic signal, 75 

EpiGePT is designed for simultaneously predicting multiple epigenomic signals of the same 76 

genomic region through multi-task learning, thus improving learning efficiency and prediction 77 

accuracy compared to the task-specific models. Third, many methods typically take short DNA 78 

sequence (e.g., a few hundred or a thousand base pair) as input, which may not be adequate to 79 

capture the complex syntax of DNA due to truncation.  The long input DNA sequence (e.g., 80 

128kb) for EpiGePT greatly enhances the ability for the model to capture the long-range 81 

interaction in the genome, which are crucial for understanding the gene regulation mechanism. 82 

In a series of experiments, we illustrate that our method is superior to existing methods in a 83 

various tasks of chromatin states prediction, as well as the variant effect prediction. We also 84 

show that the self-attention mechanism greatly helps unveil the complex code in the 85 

conformation of long-range chromatin interactions, such as promoter-enhancer interactions and 86 

promoter-silencer interactions. EpiGePT is an example of how transformer-based language 87 

model and large-scale pretrain can be used in genomics research to provide biological insights. 88 

With the help of EpiGePT model, it is expected that researchers can dissect the comprehensive 89 

genomic regulatory code given the cellular context information and accelerate research findings 90 

in genomic study.  91 
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Results 92 

Overview of EpiGePT model 93 

We developed a novel Transformer13-based language model named EpiGePT to predict multiple 94 

chromatin states across different cell types. EpiGePT is a language model for cross-cell-type 95 

prediction of chromatin states by multi-task learning based on genome-wide pre-training on 96 

epigenomic data (Fig. 1 and Fig. S6). EpiGePT is composed of four modules, including a 97 

sequence module, a TF module, a transformer module, and a prediction module. The sequence 98 

module is responsible for processing the long DNA sequence of interest (e.g., 128 kb) by 99 

employing a series of convolutional and pooling blocks (e.g., 5) to extract a comprehensive set 100 

of sequence features. By reducing the input length by 25=128 times through pooling operations, 101 

this module effectively compresses the input information while retaining essential features. The 102 

TF module is specifically designed to extract cell-type-specific features by taking the 103 

expression of transcription factors in the given context, as well as their corresponding motif 104 

score into account. This module helps capture the unique characteristics of each cell type by 105 

considering the binding status of TFs involved in gene regulation. In the transformer module, 106 

each token corresponds to a genomic bin in the original DNA sequence and has hybrid features 107 

derived from both sequence and TFs. The module leverages self-attention mechanisms to learn 108 

the comprehensive relationships among the input bins, enabling the model to make predictions 109 

of multiple chromatin states under the given context cellular. By taking advantage of this 110 

approach, EpiGePT provides a powerful tool for predicting multiple chromatin states and 111 

enables researchers to gain insights into the underlying regulatory mechanisms of the genome. 112 
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EpiGePT enables genome-wide prediction of chromatin states 113 

To assess the predictive performance for epigenomic signals of EpiGePT, specifically in 114 

predicting chromatin accessibility, a comprehensive evaluation was conducted. We first applied 115 

EpiGePT to predict the chromatin accessibility based on the widely available public DNase-116 

seq14 data across diverse cell types or tissues. In brief, DNase-seq data across 129 cell types 117 

were collected from the ENCODE12 project. After data preprocessing and normalization (see 118 

Methods), 1,175,374 genomic regions were extracted where each pair of cell type and genomic 119 

regions constitutes a training instance. We meticulously devised comprehensive experimental 120 

settings by partitioning the training and test sets based on either genomic regions or cell types. 121 

In detail, we employed the following three data partitioning settings for a comprehensive 122 

evaluation (Fig. S1, Text S1). For “cross-cell-type” prediction, we partitioned the data into 123 

training and testing sets based on cell types. For “cross-region” prediction, we partitioned the 124 

data into training and testing sets based on the genomic regions. For “cross-both” prediction, 125 

we conducted rigorous data split to ensure that both the cell types and genomic regions in the 126 

test stage are unseen during the training process. We employed three evaluation metrics, namely 127 

Pearson correlation coefficient, Spearman correlation coefficient and prediction square error, 128 

to assess the similarity between the predicted and true values of DNase signals (See Methods). 129 

It is shown that EpiGePT consistently outperforms other competing methods, including 130 

Enformer11, BIRD15, and ChromDragoNN16 by a relatively large margin under the above 131 

experimental settings (Fig. 2A and Fig. S2). EpiGePT achieves 5.0%, 8.9%, and 5.2 % higher 132 

performance than Enformer, the best baseline method, in terms of the mean Pearson correlation 133 

coefficient under three data-partition settings, respectively (Fig. 2B). Besides the chromatin 134 
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accessibility regression task, we also designed binary chromatin accessibility status prediction 135 

task by assessing whether a peak exists within the corresponding genomic bin (>50% overlap). 136 

We made slight adjustments to the regression model by modifying the activation function and 137 

loss function to accommodate the binary classification task (See methods). The results show 138 

that EpiGePT achieves an average auPRC (area under the precision-recall curve) of 0.767 139 

compared to 0.727 of Enformer11, 0.623 of DeepCAGE17 and 0.476 of ChromDragoNN16 (Fig. 140 

2C). 141 

Next, we extended the chromatin state prediction task from a single target to multiple targets 142 

by predicting multiple chromatin states, including chromatin accessibility, CTCF18, ChIP-seq, 143 

and six types of different histone modifications19 (See Methods). When considering eights 144 

different chromatin states, only 28 cell types have the corresponding available data 145 

simultaneously. After preprocessing, 13,300 genomic regions each with a length of 128 kbp 146 

were extracted, which cover 56.7% of the whole genome. However, compared to the data in 147 

the DNase-only prediction experiment, the correlation coefficient was reduced due to the 148 

prevalence of a substantial number of zero signals in the genomic regions being predicted. 149 

Using a similar data split strategy as the single target for cross-cell-type prediction, EpiGePT 150 

demonstrated a mean Pearson correlation coefficient between 0.259 to 0.566 of different 151 

chromatin states in the test cell types (Fig. 2D). Specifically, EpiGePT achieves remarkably 152 

high performance in predicting chromatin state signals for certain cell types, such as the colon 153 

tissue, with a Pearson correlation coefficient of 0.888. Furthermore, as it shown in Fig. S3C, it 154 

significantly outperformed Enformer in terms of performance across these tested cell types and 155 

different signals (one-side p-value < 2.79e-10 under binomial hypothesis test). To make the 156 
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chromatin states prediction task more illustrative, several tracks of predicted chromatin states 157 

and the corresponding ground truth chromatin states were displayed. For instance, at the 158 

position of from 61,056,000 to 61,184,000 on chromosome 20, we used the UCSC genome 159 

browser20 to show the predicted values and true values of CTCF (Pearson correlation coefficient 160 

of 0.518) and DNase signals (Pearson correlation coefficient of 0.869), as well as the regulatory 161 

relationships within this region. (Fig. S2A). In addition, we also compared EpiGePT with 162 

ChromDragoNN16 on binary and quaternary classification tasks based on ChromHMM21 163 

annotations (Fig. S3). EpiGePT achieved an average auROC (area under the receiver operating 164 

characteristic curve) of 0.855 in binary classification, significantly higher than that of 165 

ChromDragoNN16 (0.774). In quaternary classification, EpiGePT achieved a macro-auROC of 166 

0.879, also significantly higher than ChromDragoNN16 (0.856, one-side p-value < 0.001). 167 

These results demonstrate the effectiveness and accuracy of EpiGePT in predicting multiple 168 

chromatin states, leveraging the four modules. The effectiveness and prediction power achieved, 169 

in conjunction with the self-attention mechanism, lays the foundation for deciphering 170 

regulatory relationships. 171 

To further verify the roles of the main modules in the model, we conducted the ablation 172 

experiments on the model architecture. For TF module ablation, the above experimental results 173 

compared to EpiGePT without TF module (EpiGePT-seq) and EpiGePT have demonstrated that 174 

EpiGePT outperforms EpiGePT-seq in cross-cell-type prediction of DNase signals, with an 175 

average Pearson correlation coefficient of 0.714 and a median of 0.74 for EpiGePT-seq, while 176 

EpiGePT achieves 0.756 (average) and 0.787 (median). In addition, the inclusion of the TF 177 

module enables EpiGePT to predict chromatin states at the locus level for different cell types. 178 
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However, like Enformer, EpiGePT-seq predicts the same values for different cell types at the 179 

same locus, resulting in a zero correlation for cross-cell-type prediction. We examined the 180 

impact of the TF module on multi-task prediction by employing three methods, namely 181 

replacing TF scores with zero, adding random noise to TF, and removing motif binding scores. 182 

The results indicated that when the expression of TFs was set to zero, the prediction of H3K27ac 183 

yielded a Pearson correlation coefficient of 0.190. However, incorporating the TF module 184 

significantly improved the coefficient to 0.543, demonstrating a beneficial impact of the TF 185 

module. 186 

For sequence module ablation, we randomly subsampled 10,000 genomic bins and 20 cell 187 

types to train a TF-only model. The results indicated that removing the sequence 188 

module resulted in an average decrease of 0.084 in the Pearson correlation coefficients 189 

of the eight signals on a cell-type wise basis, and with a particularly significant decrease 190 

of 0.13 in predicting H3K4me3 signals (Fig. S4A). 191 

For multi-task module, we predicted the eight chromatin states involved in training 192 

using eight individual models for single-task prediction. The results were evaluated on 193 

a cross-cell type prediction manner. In the case of predicting the signal of H3K4me1, 194 

the average Pearson correlation decreased from 0.408 to 0.329. When predicting the 195 

H3K4me1 signal, the average Pearson correlation coefficient decreased from 0.408 to 196 

0.329. Similarly, the overall prediction performance for the eight signals declined by 197 

0.074 (Fig. 4B). This decrease may be attributed to the intricate nature of gene 198 

regulation. The distinct chromatin states can complement and synergize with each other 199 

through multi-task learning, allowing the model to gain deeper biological insights 200 
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compared to a single-target prediction model. 201 

Furthermore, we performed additional experiments to investigate the effect of the 202 

number of cell lines on the prediction performance. Specifically, we focused on DNase 203 

predictions and randomly downsampled the training cell types from 103 to 75, 50, 25 204 

for each of the five folds in the cross-validation experiment. The results demonstrated 205 

a strong positive correlation between the number of cell lines and the prediction 206 

performance. Under five-fold cross-validation, the median Pearson correlation 207 

coefficient on the test set across 129 cell types decreased from 0.793 to 0.790, 0.761, 208 

and 0.732, respectively. These findings suggest that our current model has potential 209 

room for improvement and additional training with more cell lines will lead to even 210 

better predictive performance, thereby offering more comprehensive insights into the 211 

regulatory mechanisms for researchers (Fig. S4C). In summary, EpiGePT demonstrated 212 

superior performance in predicting both single and multiple epigenomic signals over 213 

existing methods, providing a robust foundation for decoding the complex landscape 214 

of gene regulation. 215 

EpiGePT facilitates long-range chromatin interaction identification 216 

We examined the capacity of EpiGePT for predicting long-range chromatin interactions, which 217 

play a critical role in preserving chromatin architecture and elucidating 3D contacts between 218 

distal regulatory elements and target genes. Traditional methods typically take short DNA 219 

sequence (e.g., 1kbp) as input, thus cannot take the long-range chromatin interactions into 220 

consideration. During the training of EpiGePT model, the self-attention mechanism in the 221 
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transformer module plays an important role in capturing the potential interactions between 222 

different DNA bins. We utilized the cell-type specific self-attention scores to predict chromatin 223 

interactions, including enhancer-promoter and silencer-promoter interactions (see Methods). 224 

We initially investigated whether EpiGePT can differentiate experimentally validated enhancer-225 

promoter interactions from other interactions. Two datasets containing 664 and 5,091 candidate 226 

enhancer-promoter interactions or element-TSS interactions obtained by CRISPRi22 227 

experiments were used and further filtered and stratified by the distance. In the Gasperini et 228 

al23. dataset, EpiGePT consistently outperform EpiGePT-seq and Enformer by achieving the 229 

highest auPRC in all groups. For instance, EpiGePT achieved auPRC of 0.949, 0.726, and 0.810 230 

for identifying enhancer-promoter pairs in the 0-3 kbp, 3-20 kbp, and 20-64 kbp ranges, 231 

respectively (Fig. 3A and Fig. S8). In the Fulco et al.24 dataset, EpiGePT obtains better 232 

performance than EpiGePT-seq in most groups, which illustrates the positive benefit of the cell-233 

type-specificity brought in the TF module. EpiGePT consistently outperforms Enformer across 234 

different groups by a relatively large margin. As shown in Fig. 3A, EpiGePT achieves an auPRC 235 

of 0.618, compared to 0.531 of Enformer, and 0.568 of EpiGePT-seq in 0-12kbp group.  236 

Next, we explored whether EpiGePT is also capable of predicting the promoter-silencer 237 

interactions. Since there is very limited experiment-validated silencer-promoter interactions, 238 

we downloaded putative silencers from the SilencerDB25 and used the promoter of annotated 239 

nearest gene as the potential target. For negative silencer-promoter pairs, we selected the same 240 

promoter and equidistant genomic regions in the opposite direction to ensure the consistency 241 

of distance distributions between positive and negative sample pairs at different distance levels. 242 

As a result, EpiGePT achieves a better performance in discerning positive silencer-promoter 243 
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pairs from negative pairs than Enformer by a relatively large margin. For instance, EpiGePT 244 

displays an auROC of 0.575 in long-range interactions (32-64kbp) with positive-to-negative 245 

ratio 1:1 setting, compared to 0.547 of EpiGePT-seq, and 0.483 of Enformer (Fig. 3B). 246 

According to these results, the self-attention mechanism significantly enhances the ability to 247 

identify potential chromatin interactions and increases the interpretability of the model. 248 

The HiChIP26 sequencing technology provides unprecedented opportunities to uncover 3D 249 

genomic interactions. We aim to investigate the predictive performance of EpiGePT on 3D 250 

genome interaction based on HiChIP data. Here, we employ the same strategy as described 251 

above to calculate attention scores for the regulatory element-promoter pairs and collected 252 

HiChIP loops on K562 and GM12878 cell lines from the HiChIPdb27.  The results demonstrate 253 

that incorporating TF expression data into EpiGePT leads to enhanced predictive performance 254 

for HiChIP loops compared to the pure sequence models Enformer and EpiGePT-seq, across 255 

diverse distance ranges and in two distinct cell lines. Specifically, within the 20-40 kbp distance 256 

range on K562 cell line, EpiGePT achieves an auROC of 0.599 for the 1:1 positive-to-negative 257 

ratio, surpassing Enformer's performance of 0.545 (Fig. 3E). These findings suggest that, even 258 

without any fine-tuning, EpiGePT's attention scores encompass more accurate and 259 

comprehensive biological information, underscoring its potential for capturing intricate 260 

genomic interactions. 261 

To better understand the self-attention mechanism of EpiGePT and bridge the gap between the 262 

model and its interpretability, we visualized the attention matrices after normalization (Fig. 3C). 263 

The visualization shows prominent scores between certain genomic bins, indicating the 264 

potential presence of interactions. We centered on the transcription start site (TSS) of the CHD4 265 
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gene and calculated the self-attention scores between the genomic bins within its upstream and 266 

downstream 128kbp. The attention scores exhibited peaks near the regulatory elements in the 267 

vicinity of the TSS, which further validates the feasibility and accuracy of our prediction of 268 

enhancer-promoter interactions (Fig. 3D). 269 

EpiGePT improves variant effect prediction  270 

One of the most essential tasks for EpiGePT is to dissect the effect of genetic variants that occur 271 

in different genomic regions. As most of the variants identified by the GWAS studies lie in the 272 

non-coding regions of the genome, which makes it difficult to interpret the variant effect, most 273 

sequence-based computational models directly take the alleles sequence as input and compare 274 

the difference in the predicted regulatory activity. The advantage of EpiGePT model comes 275 

from the TF module where variant effect can be estimated under any given cellular context. 276 

This is extremely helpful when predicting the effect of the disease- or phenotype-associated 277 

SNPs. To test the ability of EpiGePT in variant effect prediction, we first collected an eQTLs 278 

dataset28 that contains 20,913 causal and non-causal variant-gene pairs in total across 49 279 

different tissues from the supplementary data of Wang et al28. EpiGePT and EpiGePT-seq are 280 

then applied to estimate the log-odds scores (LOS) given both the reference and alterative DNA 281 

sequence and the corresponding relevant TF profile (see Methods, Fig. 4A). Finally, a random 282 

forest classifier is trained based on the LOS scores across different chromatin states. The 283 

experimental results show that in the lung tissue, EpiGePT demonstrates and auPRC of 0.922, 284 

compared to 0.873 of Enformer in distinguishing casual SNPs. To verify the effectiveness of 285 

TF module, we replace the TF profile of lung with stomach, which is much less relevant to the 286 

lung tissue. The auPRC decreases from 0.922 to 0.892 (Fig. 4B). Similarly, EpiGePT-seq can 287 
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achieve an average auPRC of 0.910, compared to 0.898 of Enformer using 5-fold cross-288 

validation for predicting causal variants on 48 extracted tissues (Fig. S3D). In the adrenal gland 289 

tissue, EpiGePT-seq demonstrates an average auPRC of 0.883, compared to only 0.842 of 290 

Enformer. The above experiments show the predictive power of EpiGePT in estimating the 291 

variant effect. 292 

To further evaluate the performance of EpiGePT in predicting disease-associated variants, we 293 

extracted 52, 876 pathogenic SNPs from the ClinVar29 database and 418, 863 benign SNPs from 294 

the ClinVar database, also with 84, 095 benign SNPs from the ExAC database30 as positive and 295 

negative sets, respectively. We defined a 64kbp region surrounding each pathogenic SNP as the 296 

risk region. We screened all benign and likely benign SNPs that fall within the risk region from 297 

the negative sets for classification. As the relevant tissue or cell type information is not available, 298 

we concatenated the LOS of the eight epigenomic signals and self-attention scores across 28 299 

cell types into a single 252-dimensional vector and then train a classifier for predicting whether 300 

the given SNP is pathogenic (see Methods). To assess the whether the 252-dimensional features 301 

are beneficial in predicting pathogenic SNPs, we concatenated it with 52 annotations from 302 

CADD31, resulting in a comprehensive feature vector. Subsequently, we compared the 303 

performance of this combined feature vector with that of the individual features derived 304 

exclusively from CADD. We then utilized these two sets of features to train multi-layer 305 

perceptron (MLP) classifiers separately. The results demonstrate that incorporating EpiGePT's 306 

variant effect features from multiple cell types significantly enhances the performance of the 307 

classifier in predicting pathogenic SNPs. Specifically, when the positive-to-negative sample 308 

ratio was set to 1:1, the average auROC increased from 0.772 to 0.806, and the average accuracy 309 
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increased from 0.690 to 0.723 (Fig. 4C). This observation indicates that features extracted by 310 

EpiGePT provide a valuable complement to CADD annotation, enabling a more comprehensive 311 

depiction of variant characteristics, and thereby facilitating the discovery of disease-associated 312 

variants. 313 

EpiGePT prioritizes potential SNPs associated with comorbidities of COVID-19 314 

We investigated whether the ability of EpiGePT to predict variant effects could help in the 315 

discovery of key SNPs related to COVID-19. COVID-19 is an infectious disease caused by the 316 

SARS-CoV-2 virus, which emerged in late 2019 and quickly spread around the world, causing 317 

a global pandemic32. In order to validate the ability of EpiGePT in identifying key SNPs, we 318 

collected GWAS data from the COVID-19 host genetics33, including 9,484 variants. These 319 

variants were derived from 4,933 patients with confirmed severe respiratory symptoms and 320 

1,398,672 control individuals without COVID-19 symptoms. To validate the ability of the 321 

model to identify COVID-19-related SNPs, we firstly defined a risk region around the selected 322 

COVID-19-related SNPs and computed the rank of the variant score of pathogenic SNPs within 323 

the surrounding benign SNPs from the ClinVar database. The expected rank for random 324 

guessing (uniform distribution) is 0.5. Interestingly, we found that the average rank of COVID-325 

19-related SNPs was significantly lower than 0.5 across several tissues or cell types (Fig. 4D). 326 

For instance, when lung expression data was employed and a 6-kbp risk region was examined, 327 

the median rank was 0.250, and when expression data of esophagus squamous epithelium was 328 

used the median rank was 0.333, significantly lower than 0.5 (one-side p-value of 0.013 under 329 

one-sided Binomial Test). However, when we employed the expression data from smooth 330 

muscle cells, which are a more widespread cell type with lower relevance to COVID-19, the 331 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.15.549134doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

median rank exhibited a notable decrease to 0.381. Notably, when focusing on the 40-kbp risk 332 

region, the median rank further declined to 0.850, higher than 0.5. These findings suggest that 333 

EpiGePT model is able to prioritize the COVID-19-related SNPs thus shedding lights on 334 

finding the potential disease-associated variants with our pretrained large language model. 335 

Next, based on the aforementioned findings, we aimed to use EpiGePT to identify genes that 336 

are highly related to COVID-19. Since the genetic pathology of COVID-19 is not yet clear and 337 

the earliest lesion is in the lungs, we ranked all 9,484 possible SNPs using lung expression data. 338 

We then identified the SNPs with the highest ranks and performed gene ontology enrichment 339 

analysis on nearest genes of the 100 top ranked SNPs (Fig. 4E). The enrichment results revealed 340 

potential biological processes that are relevant to COVID-19, such as the regulation of 341 

glucokinase activity which is associated with the homeostasis of human blood glucose34. 342 

Notably, diabetes mellitus, a condition closely associated with hyperglycemia, is a typical 343 

comorbidity of COVID-1935. Besides, among the top 10 potential genes that scored the highest, 344 

we identified that the TBC1D4 gene, which regulates glucose homeostasis, is potentially 345 

associated with COVID-19 comorbidities. Our findings are consistent with previous research 346 

by Pellegrina et al.36 and highlights the potential of our EpiGePT approach in discovering new 347 

genetic markers that may be implicated in the pathogenesis of COVID-19. Overall, our 348 

EpiGePT model provides new perspectives for understanding how the genetic variants could 349 

contribute to the COVID-19 susceptibility and severity.  350 

Fine-tuning on EpiGePT enables accurate prediction of regulatory interactions 351 

Fine-tuning is an strategy that transfers the knowledge of a pretrained model to new tasks,  352 
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which is particularly prevalent in language models such as GPT37 and BERT38. Here, we 353 

finetuned a pretrained EpiGePT model on a new task for predicting the 3D genome interaction. 354 

Given the HiChIP H3K27ac data from K562 and GM12878 cell lines, the features of two 355 

anchors were extracted from a pretrained EpiGePT model and then fed to a finetune network 356 

to predict whether it is a HiChIP loop. We compared EpiGePT with pretrain and finetuning 357 

strategy to two baselines, DeepTACT39 and a k-mer frequency40 based method (see Methods). 358 

The results illustrate that EpiGePT exhibits a superior classification performance across diverse 359 

distance ranges compared to baselines. For example, in the GM12878 cell line within the 20-360 

40kbp distance range, EpiGePT demonstrates a significantly improved predictive performance 361 

with an auROC of 0.949, surpassing 0.866 of DeepTACT 39 and 0.771 of Kmer (Fig. 4F and 362 

Fig. S7). This significant improvement achieved through fine-tuning EpiGePT on a limited 363 

dataset aligns well with the concept of few-shot learners1, highlighting the power of the 364 

pretrained EpiGePT model. 365 

EpiGePT encompasses the regulatory relationships between TFs and target genes. 366 

One of the key differentiating factors of EpiGePT compared to other sequence models lies in 367 

its integration of TF binding status and TF expression. This unique feature empowers EpiGePT 368 

to capture potential regulatory relationships embedded within the genomic sequence. In this 369 

study, we specifically aimed to validate whether EpiGePT learns the regulatory relationships 370 

between TFs and target genes (TGs). We defined gradient importance scores (GIS) based on 371 

the absolute gradient values of predicted epigenomic signals w.r.t. TF profile to rank TFs give 372 

a TG (see Methods). Particularly, we collected 15 TFs that play critical regulatory roles in 373 

embryonic stem cells (ESC)41, 42 and validated their interaction relationships using computed 374 
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GIS. As an example, for a target gene STAT3 that plays essential role for ESC pluripotency43, 375 

we computed GIS for each core TF across 1000 genomic bins and find other key TFs in ESC 376 

ranked 1st (REST) and 2nd (POU5F1) at specific bins (Fig. 5A-B). Interestingly, the GO terms 377 

enriched by the top 10% prioritized TF coding genes also included biological processes of 378 

embryonic cell differentiation and development when we focus on the genomic bin that 379 

POU5F1 ranked 2nd (Fig. 5C). We selected a TF as the target gene and calculated the integrated 380 

GIS (IGIS) score for another key TF across eight epigenomic signals. Multiple TF-gene pairs 381 

identified by IGIS that showed significant associations with POU5F1, such as ESRRB-382 

POU5F144 (rank 2nd), and ETV5-POU5F145 (rank 5th). Furthermore, we use TF-TG 383 

relationships from either ChIP-seq data or external databases as ground truth to validate 384 

whether IGIS is effective in prioritizing the TFs given a TG.  First, we defined potential TF-385 

target gene pairs based on TF ChIP-seq data specific to certain cell types among all human 386 

genes (see Methods). The results demonstrated a significant difference in rank between TF-387 

target gene pairs and TF-non-target gene pairs based on the IGIS score (Fig. 5D), with the 388 

former exhibiting considerably higher ranks (one-side p-value < 0.001). Second, we collected 389 

TF-target regulatory network data from two publicly available databases. We obtained a total 390 

of 1,066 TF-gene pairs from the GRNdb46 database based on liver-specific GTEx data, and 391 

2,705 TF-gene pairs from the TRRUST47 database after filtering. Then we calculated the rank 392 

of each TF based on GIS of the TF expression and a genomic bin-level mask for each pair. 393 

Interestingly, when using liver expression data, we found that the average rank of TFs from 394 

TRRUST was 7.9%, significantly lower than the rank based on expression values (one-side p-395 

value < 1e-5). Similarly, based on the GRNdb data, the majority of TF-gene pairs obtained had 396 
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TF ranks within the range of 20%, and the mean of this distribution was significantly lower 397 

than the rank based on expression values with one-side p-value < 1e-5 (Fig. 5E). For instance, 398 

TMEM55B plays a significant role in regulating lysosome movement, and is regulated by sterol 399 

response element binding factor 2 (SREBF2)48, while GIS enable the identification of SREBF2 400 

as the top-ranked TF associated with TMEM55B, further validating the role of GIS in 401 

prioritizing functional TFs. The comprehensive validation from both ChIP-seq datasets and 402 

external databases further support the effectiveness of GIS in identifying context-specific TF-403 

TG relationships. 404 

Online prediction tool for EpiGePT 405 

In order to facilitate the utilization of EpiGePT for the prediction of multiple chromatin 406 

states of any cellular context and any genomic regions, especially for research 407 

personnel who lack coding expertise, we have developed a user-friendly online web 408 

server, named EpiGePT-online (https://health.tsinghua.edu.cn/epigept/) (Text S2). The 409 

online web server was developed using PHP, JavaScript and HTML, which provides an 410 

interactive web interface for online prediction of 8 chromatin states of specific genomic regions 411 

(Fig. 6). Users can obtain the predicted signals of multiple genomic regions by submitting a 412 

region file and a TF expression file of 711 selected TFs (Supplementary Table S3), or obtain 413 

predicted signals of specific regions directly by selecting genomic locus. As to the two types of 414 

input files, we provide example files to demonstrate their formats, and accept expression files 415 

stored in either numpy or csv formats, to increase the universality of the web server (Fig. S5). 416 

The web server outputs the results in a web summary html, which saves significant amount of 417 

time for installation and implementation. Furthermore, we provide a detailed tutorial to enable 418 
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users to quickly learn how to use our website. We anticipate that this web server will assist 419 

researchers in predicting chromatin states of specific cell types and further deepening 420 

their understanding of gene regulatory mechanisms.  421 

Discussion 422 

In this paper, we introduced EpiGePT, a transformer-based large language model, for predicting 423 

the chromatin states given any cellular context. Compared with the existing machine learning 424 

based computational methods, EpiGePT takes transcription factor profile and DNA sequence 425 

information as inputs by multitask learning and self-attention mechanism within a unified 426 

model. With these two types of input information and four modules of network architecture, 427 

EpiGePT overcomes the limitation of the existing models and demonstrates state-of-art 428 

performance in prediction of multiple chromatin signals in diverse experimental settings. With 429 

the superior predictive performance of EpiGePT, we are able to investigate one of the 430 

fundamental questions in functional genomics: how transcription factors and cis-regulatory 431 

elements regulate gene activity. In this work, we investigated this question from two aspects: 432 

1) identifying the interactions of cis-regulatory elements and their target genes with the help of 433 

self-attention mechanism in EpiGePT; 2) estimating the variant effect based on the LOS scores 434 

computed by the outputs of EpiGePT to assist in discovering human disease-associated SNPs. 435 

First, the self-attention scores between tokens can provides us with an intuitive and quantitative 436 

measure of the interaction level between different genomic regions, which offers new 437 

opportunity to discover the target gene of cis-regulatory elements and find the interpretability 438 

of EpiGePT. Second, the LOS scores of the multiple chromatin signals from different tissue or 439 

cell lines are complementing each other, which provides us with a more comprehensive 440 
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characterization of the variant and enables accurate prediction of the variant impact. Such 441 

variant effect prediction by EpiGePT establishes a foundation for understanding the underlying 442 

relationship between genetic variations and disease mechanisms. 443 

There exist several extensions and refinements that can be applied to further improve the 444 

EpiGePT model. Firstly, the incorporation of chromatin regulators (CRs) as trans-acting factors 445 

into the TF module could enhance the modeling of regulated transcription processes, thereby 446 

increasing the accuracy of the predictions. Secondly, the inclusion of high-order interactions 447 

between TFs in the framework could provide a more comprehensive representation of the 448 

regulatory relationships, and potentially enhance the predictive performance. Third, the 449 

application of EpiGePT to single-cell genomics could enable the profiling of chromatin signals 450 

at single-cell resolution, facilitating a holistic understanding of regulatory heterogeneity in 451 

different cell subpopulations for researchers.  452 

Based on EpiGePT, users are able to predict multiple chromatin profiles in different cell lines 453 

or tissues, which could provide a foundation for biological discovery, decoding transcriptional 454 

regulation mechanisms, and investigating disease mechanisms. We anticipate that EpiGePT can 455 

provide valuable insights to researchers in understanding regulatory mechanisms.  456 
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Methods 457 

Data processing 458 

Chromatin accessibility data and Expression data We used three different datasets in the 459 

experiments. For chromatin accessible data, we downloaded DNase bam files and narrow peaks 460 

across 129 human biosamples from ENCODE12 project (Supplementary table S1 and S2). We 461 

divided the human hg19 genome into 200bp non-overlapping locus (use bin instead), and we 462 

assigned the label for each locus in each cell type. For the regression design, we pooled the bam 463 

files of multiple replicates for a cell type (Supplementary table S1 and S2), and obtain the raw 464 

read count 𝑛!" for locus 𝑙 in cell type 𝑘. We normalized the raw read count in order to eliminate 465 

the effect of sequencing depths, in the form of 𝑛$!" = 𝑁𝑛!"/𝑁" , where 𝑁"  denotes the total 466 

number of pooled reads for cell type k and 𝑁 = min
"
𝑁" denotes the minimal number of pooled 467 

reads across all cell types. The normalized read counts are further log transformed with pseudo 468 

count 1, which represent the continuous level of chromatin accessibility. For binary 469 

classification design, we assigned a binary label 𝑦!" to 1 if the number of raw read counts of 470 

the locus 𝑙 in the cell type 𝑘 greater than 30, which represent the locus is an accessible region 471 

in this cell type, resulting in the identification of regions as accessible in 13% on average and 472 

8% at median in the screened genomic regions across 129 cell types. The proportion of open 473 

regions varies among different cell types, and the average openness level mentioned above is 474 

generally consistent with that maintained in ChromDragoNN16. 475 

RNA-seq data of the 711 human transcription factors were downloaded and extracted from the 476 

ENCODE project (Supplementary table S5 and S6). We perform log transformation with 477 
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pseudo count 1 and quantile normalization based on TPM values. The normalized TPM values 478 

were averaged across replicates and mean expression profile of each cell type was finally used 479 

to calculated of the transcription feature. 480 

Multiple chromatin signals data DNase-seq, RNA-seq and ChIP-seq data were also 481 

downloaded from ENCODE project (Supplementary table S3, S4 and S6). We applied the same 482 

process to these data as above, and finally we obtained the 8 chromatin signals of 13,300,000 483 

bins of 128bp in 28 cell types. The continuous level of chromatin signals we extracted were 484 

'DNase', 'CTCF', 'H3K27ac', 'H3K4me3', 'H3K36me3', 'H3K27me3', 'H3K9me3' and 485 

'H3K4me1', which includes crucial epigenetic modifications and markers for gene regulation 486 

and transcription. 487 

Chromatin states data We downloaded the 15-state ChromHMM21 annotations across 127 488 

epigenomes from the ROADMAP project. The state of chromatin is annotated for each 200bp 489 

bin in a specific cell type. RNA-seq data across 56 cell types of TFs was download and extracted 490 

from the ROADMAP49 project (Supplementary table S7 and S8). Subsequently, we mapped 491 

these 711 transcription factors to the downloaded RNA-seq data, resulting in the identification 492 

of RNA-seq data for 642 transcription factors. In the subsequent experiments, we utilized the 493 

expression data of these 642 transcription factors. We finally calculated the normalized TPM 494 

values of the 642 TFs on 56 cell types we extracted for the using in the classification model. 495 

For coarse grain chromatin state prediction, we took the state 'Quies' as low signal regions and 496 

other states as signal regions. For fine grain chromatin state prediction, we extracted the state 497 

'TssA', 'TssAFInk', 'TssBiv' and 'BivFInk' as TSS regions, state 'EnhG', 'Enh' and 'EnhBiv' as 498 

enhancer regions, 'Quies' as low signal regions and other state as other regions. To balance the 499 
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number of different chromatin states, we downsampled the low signal regions and obtained 500 

921,074 locus each cell line finally. 501 

Model architecture 502 

Sequence module and Transformer module 503 

As shown in Figure 1 and Fig. S6A, the sequence module receives a one-hot matrix (A = 504 

[0,0,0,1], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) of size (128000,4) as input, representing a 505 

sequence of 128 kilobase pairs (kbps) and contains five 1-dimentional convolutional blocks to 506 

extract DNA sequence features. Each block includes a convolutional layer and a maxpooling 507 

layer (Fig. S6B). The first convolutional layer considers the input channels as 4 and performs 508 

convolution along the sequence direction. The input sequence features are one-hot embeddings 509 

of size 𝐿 × 4, where 𝐿 denotes the length of the input long range DNA sequence. After 5 510 

maxpooling layers, the output size of sequence feature is 𝐿/𝑁 × 𝐶, where 𝐶 denotes the hyper-511 

parameter for sequence embedding and N denotes the length of locus to predict. We set C to 512 

256 in the pre-training stage of chromatin accessibility prediction experiments. Rectified linear 513 

units (ReLU) are used after each convolution operation for keeping positive activations and 514 

setting negative activation values to zeros. Sequence features were then concatenated with 515 

transcriptomics features, and we finally obtained a vector of size 𝐿/𝑁 × (𝐶 + 𝑛#$), where 𝑛#$ 516 

denotes the dimension of the transcription factors features after padding. In our model, after 517 

adding padding to the 711 TFs, the 𝑛#$ 	is set to 712. Therefore, the input token number for the 518 

transformer module is 1000, and each token embedding has a dimensionality of 968. 519 

We utilize the transformer module to integrate information from both the sequence and 520 
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transcription factors (TFs), enabling the capturing of long-range interactions between genomic 521 

bins. We applied 𝑁% layers of Transformer encoder with 𝑛&'() different attention heads to the 522 

token embedding sequence. The input X of the transformer encoder is a genomic bin sequence 523 

with dimensions (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑑𝑖𝑚). Specifically, this dimension is (1000, 524 

968) in EpiGePT, indicating that input genomic bin sequence has a length of 1000, and each 525 

genomic bin has an embedded representation that combines the sequence information with cell-526 

type-specific features with dimension of 968. Each Transformer encoder includes a multi-head 527 

self-attention mechanism and a feed-forward neural network. For self-attention in each head, 528 

the calculation is based on the matrix operation. 529 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾#

𝑑"
)𝑉 530 

 For multi-head attention, Transformer encoder learns parameter matrices 𝑊*
+ ∈531 

ℝ)!"#$%×)& ,𝑊*
- ∈ ℝ)!"#$%×)'  and 𝑊*

. ∈ ℝ)!"#$%×)(  for the 𝑖%&  head and concatenate the 532 

multiple heads to do the projection.  533 

𝑄* = 𝑋 ×𝑊*
+ , 𝐾* = 𝑋 ×𝑊*

- , 𝑄* = 𝑋 ×𝑊*
. 534 

Where 𝑑/0)'!  denotes the dimension of token in the input sequence X, which is 968 in 535 

EpiGePT and 𝑑+ =	𝑑- = 𝑑. = 512. The matrices Q, K, and V are obtained by the application 536 

of mapping functions represented by 𝑊*
+ ,𝑊*

- and 𝑊*
., followed by concatenating of 𝑄* to 𝑄, 537 

𝐾* to 𝐾, and 𝑉 to 𝑉. These mapping functions serve to transform the concatenated embeddings 538 

into the resulting matrices. We set 𝑁% to 16 for the chromatin accessible prediction experiments, 539 

𝑁%  to 12 for the chromatin state classification and multiple chromatin signals prediction 540 

experiments, and set 𝑛&'() to 8 for all experiments. 541 
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The regression model, the output layer uses a linear transformation and use mean square error 542 

(MSE) as the loss function. For classification model, the output layer uses a linear 543 

transformation combined with a sigmoid function, and use the cross-entropy loss for 544 

classification experiments. 545 

TF module 546 

For binding status, we scanned the input bins for potential binding sites for a set of 711 human 547 

transcription factors from HOCOMOCO database50 with the tool Homer51 (Table S5). We then 548 

selected the maximum score of reported binding status for each transcription factor to obtain a 549 

vector of 711 dimensions as the motif feature for each DNA bin. For gene expression, we 550 

focused on log-transformed TPM values of the 711 transcription factors and obtained a vector 551 

of 711 dimensions after quantile normalization as the expression feature. With these data, we 552 

combined the two vectors of motif and expression features by taking the element-wise product, 553 

and we concatenated the result to the output of sequence module. 554 

Model evaluation 555 

To evaluate our model, we applied five-fold cross-validation in the different experiments on 556 

cell-type level. For chromatin accessible experiments, the 129 cell lines are partitioned into a 557 

training set and a testing set randomly.  558 

Cell-type-wise metrics are defined to evaluate our method in different experiments, which were 559 

calculate with the data within a test cell type across all genomic locus. For binary classification 560 

design, we used cell-type-wise auPRC and auROC to evaluate our EpiGePT. Let 𝑌1×- and 𝑌R1×- 561 

be the true and predicted matrix, where L denotes the number of locus and K denotes the number 562 
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of test cell types. We calculated the auPRC and auROC for each (𝑦2* , 𝑦3* , ⋯ , 𝑦1*)  and 563 

(𝑦T2* , 𝑦T3* , ⋯ , 𝑦T1*). For multiple classification, we use macro average of the auPRC and auROC 564 

to evaluate the classification performance, which compute the metric independently for each 565 

class and then take the average hence treating all classes equally. For regression design, we 566 

used two metrics for model evaluation, which are cell-type-wise Pearson correlation coefficient 567 

and prediction squared error. Prediction square error (PSR) is calculated as 𝑃𝑆𝑅 = 1 −568 

∑ ∑ (𝑦!" − 𝑦T!")3/(𝑦!" − 𝑦Y∗")3!" , where 𝑦Y∗" = ∑ 𝑦!"/𝐿!  denotes the mean of the true level of 569 

the response in the cell type k. 570 

To compare the performance of our method with other baseline methods, we conducted 571 

hypothesis testing on the metrics based on cell types. Since the metrics on a given cell type 572 

across different methods are paired data and the statistical distribution is unknown, we 573 

employed both Binomial and Wilcoxon tests, with the alternative hypothesis being that 574 

EpiGePT outperforms the other methods. If we reject the null hypothesis, it provides 575 

compelling evidence to support the claim that EpiGePT performs better than the other methods. 576 

To evaluate the computational efficiency, we recorded the running time of a single epoch of 577 

EpiGePT and baseline methods (Supplementary Text S3). Compared to traditional CNN models 578 

such as DeepCAGE17 and ChromDragoNN16, as well as larger sequence models like Enformer, 579 

EpiGePT demonstrates a balance between high computational efficiency and performance. 580 

Model fine-tunning 581 

For the fine-tuning process, we kept the parameters of the pre-trained model fixed without 582 

making any updates. For the specific fine-tuning task of chromatin interaction prediction based 583 
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on HiChIP data, the multi-task module was replaced with a two-layer MLP network, containing 584 

256 hidden nodes for each layer. During the training process, only the weights in the MLP 585 

network were updated. Notably, when utilizing HiChIP data at a resolution of 5k, both the 586 

enhancer and promoter anchors spanned 5kbp. Then we input a region extending 128kbp from 587 

the center of the anchor of the neighboring gene into the EpiGePT. Consequently, a 968-588 

dimensional feature vector for each genomic bin was derived from the output of the last 589 

transformer encoder layer. These feature vectors from all bins within the two anchors were 590 

concatenated, resulting in a high-dimensional vector of size 76,472.  591 

Baseline methods 592 

Four baselines were introduced for epigenetic signals prediction. BIRD15 is a multiple linear 593 

regression model that only takes gene expression data as input and makes predictions on a fixed 594 

locus. ChromDragoNN16 is a deep neural network that takes gene expression of 1630 TFs and 595 

DNA sequence as input. Specifically, ChromDragoNN16 uses a ResNet52 to extract sequence 596 

features and use linear transformation to combine the TF gene expression feature and sequence 597 

feature to make the final prediction. DeepCAGE17 Integrating regulatory DNA sequence is a 598 

deep densely connected convolutional network for predicting chromatin accessibility. The 599 

dense-connected neural network architecture used by DeepCAGE17 may struggle to capture the 600 

complex interactions between genomic regions. Enformer11 is a deep neural network that 601 

integrates convolutional neural network and transformer, and only takes DNA sequence as input. 602 

Enformer takes DNA sequence of length 196kbp as input to predict 5,313 genomic tracks of 603 

human and 1,643 tracks of mouse genome simultaneously. However, one of the limitations of 604 

Enformer is that it can only model and predict cell types in the training data and cannot be 605 
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applied to new cell types. In order to ensure the fairness of the benchmark experiment, we 606 

retrained the Enformer model with the same input and output data as EpiGePT when reproduce 607 

the Enformer model (Text S4).  608 

Two baseline methods were introduced for predicting HiChIP interaction. DeepTACT39 is a 609 

deep learning method for predicting 3D chromatin contacts using both DNA sequence and 610 

chromatin accessibility. We adopted the structure of DeepTACT39 and kept the anchor length at 611 

5k. The input to the model consists of two anchor sequences represented as one-hot matrices 612 

and the two openness scores of the two anchors on the corresponding cell type extracted from 613 

OpenAnnotate53. Regarding the Kmer features40, K is chosen as 5 to extract sequence features. 614 

For each anchor, a vector of dimension 45 = 1024  was obtained. Further training was 615 

performed using an MLP with a hidden layer dimension of 256. 616 

Enhancer, Silencer and HiChIP loop prioritization 617 

We collected cis-regulatory elements-gene pairs in K562 cells from other studies and public 618 

database to demonstrate the interpretability of self-attention mechanisms in the EpiGePT. 619 

Enhancers and silencers are typical cis-regulatory elements known play important roles in 620 

transcriptional control during normal development and disease. For enhancers, we downloaded 621 

enhancer-gene pairs from two studies: Gasperini et al.23 and Fulco et al.24, both of which were 622 

tested using a CRISPRi22 assay perturbation. Two datasets contain 664 and 5,091 enhancer-623 

promoter interactions or element-TSS interactions. For silencers, we obtained and random 624 

sampled 831 validated silencers-gene pairs with distance within 64kbp in K562 cells curated 625 

from high-throughput experiments from SilencerDB. As there are no experimentally validated 626 
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interaction relationships between these silencers and genes, we generated silencer-gene pairs 627 

by associating the nearest neighbor genes for classification purposes. Similarly, negative 628 

samples were generated by constructing DNase-seq, ATAC-seq and nearest genes using the 629 

same approach. Ultimately, we obtained a dataset comprising 1,662 silencer-gene pairs, 630 

encompassing both positive and negative instances. 631 

To obtain scores for regulatory element-gene pairs, we first used the region extending 128kbp 632 

from the center of the enhancer as input and extracted the token where the interacting genes 633 

reside, so that we could filter out regulatory element-gene pairs that were located further than 634 

64kbp apart. Subsequently, we stratified the remaining pairs based on their distance. Since the 635 

positive and negative sample ratios varied across datasets, we adopted different stratification 636 

strategies for different distance ranges (Fig. 3). Next, we averaged the attention matrices of the 637 

Transformer encoder across all layers and heads. The summed attention scores from other 638 

tokens to the key token containing the gene TSS were used as the attention score of this element-639 

gene pair. This score represents the attention value that the enhancer-centered region receives 640 

for the transcription start site (TSS) of the gene. We also calculated the attention score from the 641 

bin containing the center of the regulatory element to the bin containing the TSS, which only 642 

slightly affects the experimental results of regulatory element prioritization. 643 

We collected 5k resolution data from the HiChIPdb (http://health.tsinghua.edu.cn/hichipdb/) 644 

database, specifically from K562 and GM12878 cell lines. We filtered the data to include only 645 

loops where at least one anchor falls within a gene region. We stratified the loops based on 646 

distance into three categories: 0-20kbp, 20-40kbp, and 40-64kbp. For each distance category, 647 

we selected 2000 positive pairs with most significant q-value. To ensure consistency in the 648 
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distance distribution, we selected negative pairs by fixing a gene and choosing anchors at 649 

equidistant locations in the opposite direction. 650 

Gradient importance scores 651 

EpiGePT possesses the capability to assign priority rankings to transcription factors by utilizing 652 

gradient importance scores (GIS), taking into account specific cell types and chromatin regions. 653 

The GIS were employed to identify potential functional relationships between specific 654 

transcription factors (TFs) and target genes. Specifically, for a given TF-target gene pair, the 655 

transcription start sites (TSS) of genes were used as central loci, and the regions spanning 128 656 

kbp upstream and downstream of the TSS were selected as input. Next, we filtered out bins 657 

with motif binding scores indicating potential binding for the given TF. For these selected bins, 658 

we calculated the GIS for the predictions of eight epigenomic signals across the 711 core TFs. 659 

𝐺𝐼𝑆*6" =
1
|𝜁|
_|

𝜕𝑦T!6"
𝜕𝑡𝑓*6

|
!∈8

 660 

Where, i denotes the ith TF in the set of core TFs, j denotes the jth cell type, k denotes the kth 661 

predicted epigenomic signal, and 𝜁 denotes the set of genomic bins that have binding for the 662 

given TF. In the calculation of the gradient, 𝑦T!6"  denotes the predicted value of the kth 663 

epigenomic signal by the model using the expression in the jth cell type at the lth bin. On the 664 

other hand, 𝑡𝑓*6 denotes the product of the expression of ith TF in the jth cell type and the 665 

corresponding TF binding score. 666 

If we consider the GIS for the prediction of all 8 epigenomic signals simultaneously, we can 667 

prioritize the TFs by calculating their ranks based on each signal separately. Then, we can 668 
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calculate an integrated gradient importance score (IGIS) for each TF by aggregating the ranks 669 

from all 8 signals. 670 

𝐼𝐺𝐼𝑆*6 =
1
8
_𝑟𝑎𝑛𝑘(𝐺𝐼𝑆*6")
"

 671 

Both the GIS and the IGIS are capable of capturing the significance of a transcription factor 672 

(TF) in regulating a specific gene within the context of a specific cell type. Consequently, these 673 

scores hold potential value in the discovery of TFs that play crucial roles in the regulation of 674 

specific genes, thereby contributing to our understanding of essential regulatory mechanisms. 675 

In the context of validating TF-TG pairs in the GRNdb and TRRUST databases, we opted to 676 

utilize liver expression data as a representative example due to the unavailability of cell type 677 

information for TRRUST. Furthermore, in this experimental setup, the 𝑡𝑓*6  denotes the 678 

expression of ith TF in the jth cell type and 𝜁 denotes the set of genomic bins that have binding 679 

for the TF of the given TF-target gene pair.  680 

Potential TF-target gene pairs from ChIP-seq data 681 

In this study, we utilized three distinct cell types to conduct a comprehensive screening of TF-682 

target gene pairs and non-target gene pairs across the human genome. Initially, we obtained the 683 

narrow peak files (ENCFF388AJH, ENCFF717IXP, and ENCFF885KLR) from ChIP-seq 684 

experiments across three cell types from the ENCODE project. Subsequently, we meticulously 685 

examined the number of peaks within a 128kbp region both upstream and downstream of the 686 

transcription start site (TSS) for each gene. Different thresholds were applied to the ChIP-seq 687 

data of various TFs. Genes lacking any peaks within the defined region were classified as non-688 
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target genes, while genes surpassing the threshold in terms of peak counts were designated as 689 

target genes. Specifically, for the aforementioned three cell types, threshold values of 10, 15, 690 

and 6 were respectively employed. Finally, the IGIS approach was employed to determine the 691 

corresponding ranks of TFs in the TF-target gene pairs. 692 

Pathogenic SNPs prioritization 693 

We collected single nucleotide polymorphisms (SNPs) data from the ClinVar and ExAC 694 

databases, which include both potentially pathogenic and benign SNPs. To evaluate the ability 695 

of EpiGePT to predict variant effects, we computed the log-odds scores (LOS) for multiple 696 

chromatin signals using EpiGePT on these SNPs. Subsequently, we utilized these scores to 697 

distinguish between pathogenic and benign SNPs. The LOS score for each chromatin signal 698 

was defined by computing a forward pass through the model using the reference and alternative 699 

alleles. 700 

Δ𝑂9*:;(! = log	(
𝑜𝑢𝑡𝑝𝑢𝑡(𝐼(!%)
𝑜𝑢𝑡𝑝𝑢𝑡i𝐼<'=j

) 701 

Each chromatin epigenomic profile in each cell line or tissue predicted by EpiGePT can be used 702 

to compute a specific variant score. We did not take the absolute value in this calculation, so 703 

the resulting LOS score indicates the direction of change in the model output after the 704 

appearance of the variant. In addition to the predicted chromatin signals output by the eight 705 

models, attention score changes based on self-attention are also noteworthy. We computed the 706 

log-odds scores for attention by summing the attention scores of the 10 bins upstream and 707 

downstream of the locus of the SNP, to evaluate the effect of the variant.  708 
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		 709 

Where i represents the index of the neighboring bins relative to the locus of the SNP. To avoid 710 

the variant effects of different bins from cancelling each other out during the summation process, 711 

we computed the absolute value of the change in attention scores for each bin and then summed 712 

the scores of the 10 adjacent bins centered at the SNP position. For the classification of 713 

pathogenic SNPs, we calculated these nine LOS for attention separately for each of the 28 714 

tissues or cell lines in training data. As a result, we obtained a feature vector of 252 dimensions 715 

for each SNP. Then a classifier with 252 features computed by EpiGePT and 52 annotations 716 

from CADD score as inputs are used to predict pathogenic SNPs against benign or likely benign 717 

SNPs. Here, we employed MLP as classifier to validate the effectiveness of the features we 718 

obtained. A five-fold cross-validation experiment is employed for validation, and we utilize two 719 

different positive-to-negative sample ratios, namely 1:1 and 1:2. For each sample ratio, we 720 

randomly sample 32,000 positive samples. The effectiveness of the variant score in identifying 721 

pathogenic SNPs is evaluated using the area under the auROC and the auPRC. Additionally, 722 

we also utilized the logistic regression (LR) as the classifier, consistent with the LR classifier 723 

used in CADD, and found a similar improvement when predicting pathogenic SNPs. 724 

We applied the same method to calculate the LOS scores of the 8 predicted chromatin signals 725 

for the COVID-19 GWAS data. The absolute values of the scores were summed as the overall 726 

score for each SNP. For each significant SNP associated with COVID-19 severity obtained 727 

from the GWAS data, we selected normal SNPs within a 64kb region around the SNP as 728 

background to calculate the rank of the LOS score for the COVID-19 associated SNP in this 729 
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region. Furthermore, we calculated the LOS scores for all 9, 484 COVID-19 associated SNPs 730 

and ranked them accordingly. The top 10 SNPs with the highest LOS scores were selected, 731 

which are considered to have potential genetic associations with COVID-19 severity and 732 

complications. 733 

GTEx classification 734 

We collected eQTL data from the supplementary materials of Wang et al28. In their study, the 735 

authors identified causal eQTLs through statistical fine-mapping, using a posterior inclusion 736 

probability (PIP) threshold of >0.9 for putative causal variants based on expression modifier 737 

score (EMS), and a PIP threshold of <0.9 for putative non-causal variants. To validate the ability 738 

of EpiGePT to distinguish potential causal variants, we perform a classification task on these 739 

variants. For each variation, 128kbp sequence regions near it were selected as the input of the 740 

model, and a score of variation was given by EpiGePT model. For each variant under each 741 

tissue, we can obtain an 8-dimensional vector of genomic features including DNase, CTCF and 742 

other ChIP-seq signals. Based on the LOS score, separate random forest classifiers consisting 743 

of 10 decision trees are trained for each tissue in order to distinguish between causal and non-744 

causal variants. The models are evaluated using 5-fold validation on each tissue, with area under 745 

the auPRC and auROC as metrics for assessing their ability to distinguish between causal and 746 

non-causal variants.  747 

 

Code availability 748 

All components of EpiGePT are freely available at https://github.com/ZjGaothu/EpiGePT. 749 
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Here, users can access the code for reproducing EpiGePT, as well as the data collection and 750 

preprocessing pipelines used for model training in benchmark experiments. 751 

Data availability 752 

Information and processed data of multiple chromatin signals of whole genome, motif binding 753 

status and expression data of TFs in the corresponding cell lines/tissues, which are used in 754 

EpiGePT are available at Supplementary Tables. The information about the cell lines/tissues 755 

used and the 711 filtered transcription factors is available in the supplementary table. The High 756 

throughput validated silencers of K562 cell line are download from SilencerDB 757 

(http://health.tsinghua.edu.cn/silencerdb) database. The HiChIP data of K562 cell line and 758 

GM12878 cell line are downloaded from HiChIPdb (http://health.tsinghua.edu.cn/hichipdb/) 759 

database. The DNase-seq peak and ATAC-seq peak data are obtained from the ENCODE 760 

project. Enhancer-gene pairs of CRISPRi24 experiments are obtained from the supplementary 761 

information of Gasperini et al. and Fulco et al. The regulatory network data for transcription 762 

factors and target genes were obtained from the TRRUST47 database 763 

(https://www.grnpedia.org/trrust/) and the GRNdb46 database (http://www.grndb.com). The 764 

annotated chromatin states for whole genome are downloaded from the ROADMAP 765 

epigenomics project (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). 766 

The RNA-seq read counts matrix for protein coding genes used for the prediction of the 767 

chromatin 15-states annotated by ChromHMM are downloaded from the ROADMAP project 768 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.N.pc.gz). 769 

The GWAS data of COVID-19 are download from the COVID-19 Host Genetics Initiative 770 

(https://www.covid19hg.org/).  771 
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Figures 780 

Figure 1 781 

  

  

Fig. 1 Overview of the EpiGePT model for multiple epigenomic signals prediction. The 782 

model consists of four modules, namely the Sequence module, the TF module, the Transformer 783 

module, and the Multi-task module. The sequence module comprises multiple layers of 784 

convolution applied to the one-hot encoded DNA sequence input. The input sequence length 785 

consists of 1000 genomic bins of 128bp for the prediction of multiple signals and 50 bins of 786 

200bp for the prediction of DNase signal alone. The TF module encompasses the binding status 787 

and expression of 711 transcription factors. The Transformer module consists of a series of 788 

consecutive transformer encoders, while the multi-task module is composed of a fully 789 

connected layer. 790 
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Figure 2  791 

 

Fig. 2 Performance of EpiGePT and baseline methods on the benchmark experiment. (A) 792 

EpiGePT and baseline methods were compared in terms of their regression performance for 793 

DNase signal regression across cell types, genomic regions, and combined cell type and 794 

genomic regions. (B) Comparison of EpiGePT and Enformer performance. Each point in the 795 

scatter plot represents the performance of Enformer on the data of a specific cell type (x-axis) 796 

compared to the performance of EpiGePT (y-axis). (C) EpiGePT and baseline methods' 797 

performance on binary prediction of DNase-seq signals. (D) EpiGePT demonstrates excellent 798 
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performance in predicting diverse epigenetic signals across various cell types, including 799 

DNase-seq, CTCF, and histone modifications. (E) EpiGePT predictions compared to 800 

experimental signals visualized for a representative example. Genome-wide multi-signal 801 

predictions (black) and DNase-specific predictions (orange). 802 
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Figure 3   

 

Fig. 3 Application of self-attention mechanism in EpiGePT for long-range chromatin 803 

interaction identification. (A) The performance (auPRC) of attention score of EpiGePT in 804 

distinguishing enhancer-gene pairs at different distance ranges on two different datasets. (B) 805 

The performance (auROC and auPRC) of attention score of EpiGePT in distinguishing silencer-806 

gene pairs at different distance ranges based on the data from SilencerDB25. (C) Heatmap of 807 

the self-attention matrix of each attention head centered at the TSS of the CHD4 gene, the (i, j) 808 

element in the matrix denotes the average attention score between the ith genomic bin and the 809 
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jth genomic bin across all layers. (D) Attention scores centered at the TSS of the CHD4 gene, 810 

and putative enhancer regions in its vicinity. (E) The performance (auROC and auPRC) of 811 

attention score of EpiGePT in distinguishing HiChIP loops of H3K27ac at different distance 812 

ranges on K562 cell line and GM12878 cell line.  813 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.15.549134doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

Figure 4 814 

  

Fig. 4 Variant effect prediction of EpiGePT. (A) The LOS score for each epigenomic signal 815 

is calculated by the log change fold of the predicted epigenomic signal for reference genome 816 

and WGS genome. (B) The performance of EpiGePT and Enformer in discriminating causal 817 

SNPs on the Lung tissue. (C) The three subplots from left to right respectively depict the 818 

classification results for disease-related SNPs and benign SNPs down-sampled sourced from 819 

the ClinVar database, with balanced positive and negative samples (1:1 and 1:2 ratio), as well 820 
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as normal SNPs sourced from the ExAC database with a MLP classifier. (D) The ranked 821 

position of COVID-19 related GWAS data among surrounding benign SNPs based on their 822 

LOS scores, as determined using different tissue or cell-type expression data. The results were 823 

stratified based on the distance range of the risk region. The resulting mean and median ranks 824 

were both below 0.5. (E) Enrichment result (Biological process, Cellular component and 825 

Molecular function) of the nearest genes of the COVID-19 associated SNPs with the max LOS 826 

scores. (F) The performance (auROC and auPRC) of the fine-tuned EpiGePT model and 827 

baseline methods (DeepTACT and Kmer) in distinguishing enhancer-gene pairs at various 828 

distance ranges (0-20 kbp, 20-40 kbp and 40-64 kbp) on K562 cell line. 829 
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 Figure 5 830 

 
Fig. 5 Gradient importance scores (GIS) uncover regulatory transcription factors. (A) 831 

Genomic regions around TSS of the STAT3 gene and expression data on ESC were fed into 832 

EpiGePT. The scatter plot represents the GIS scores of core TFs on each genomic bin. Each dot 833 

represents the GIS score of a core TF on a specific genomic bin. In specific bins, key TFs in 834 

ESC, such as NR5A2 and POU1F5 highlighted in the figure, exhibit high ranks in the GIS 835 

scores. (B) Heatmap of GIS for 10% important TFs surrounding STAT3 gene, specifically 836 

focusing on bins with POU1F5 ranked 3rd. Each row represents a predicted epigenomic signal, 837 
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and the TFs are sorted based on their GIS on DNase signals. Bar plot of the top 15 TFs with the 838 

highest GIS scores. (C) Based on the top 10% ranked TFs mentioned above, gene ontology 839 

enrichment analysis revealed significant enrichment in biological processes related to 840 

embryonic development and cellular differentiation. (D) Based on TF ChIP-seq data, all 23,635 841 

human genes were classified into target genes and non-target genes. The results revealed that 842 

TFs exhibited significantly higher ranks on potential target genes compared to non-target genes. 843 

(E) The distribution of the rank of TFs in the GIS and expression value among the 2,705 TF-844 

gene pairs from the TRRUST database and 1,066 TF-gene pairs derived from genotype-tissue 845 

expression (GTEx) data of the liver sourced from the GRNdb database. The analysis reveals 846 

that the median rank of TFs from the TRRUST database is significantly lower than 0.06 (one-847 

side p-value < 3.12 e-18) and the median rank of TFs obtained from the GRNdb database is 848 

significantly lower than 0.5 (one-side p-value < 2.50 e-140).  849 
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Figure 6 850 

 

Fig. 6 Overview of the online prediction web server of EpiGePT. We collected eight types 851 

of epigenetic genome modification signals and corresponding expression data of transcription 852 

factors in different cell types or tissues from the ENCODE project. Based on these data, we 853 

trained the EpiGePT model and deployed it as a built-in kernel on an Apache server. Users 854 

without much coding experience can also access the web server in two ways to obtain the eight 855 

types of epigenetic genome modification signals for specified cell types and genomic regions 856 

without programming or installation. 857 

 

858 
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