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Abstract 13 

The inherent similarities between natural language and biological sequences have given rise to 14 

great interest in adapting the transformer-based large language models (LLMs) underlying 15 

recent breakthroughs in natural language processing (references), for applications in genomics. 16 

However, current LLMs for genomics suffer from several limitations such as the inability to 17 

include chromatin interactions in the training data, and the inability to make prediction in new 18 

cellular contexts not represented in the training data. To mitigate these problems, we propose 19 

EpiGePT, a transformer-based pretrained language model for predicting context-specific 20 

epigenomic signals and chromatin contacts. By taking the context-specific activities of 21 

transcription factors (TFs) and 3D genome interactions into consideration, EpiGePT offers 22 

wider applicability and deeper biological insights than models trained on DNA sequence only. 23 

In a series of experiments, EpiGePT demonstrates superior performance in a diverse set of 24 

epigenomic signals prediction tasks when compared to existing methods. In particular, our 25 

model enables cross-cell-type prediction of long-range interactions and offers insight on the 26 

functional impact of genetic variants under different cellular contexts. These new capabilities 27 

will enhance the usefulness of LLM in the study of gene regulatory mechanisms. We provide 28 

free online prediction service of EpiGePT through http://health.tsinghua.edu.cn/epigept/. 29 
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Introduction 30 

A fundamental but largely unresolved problem in genomics is to decode the information 31 

residing in the non-coding part of the human genome1.  It remains incompletely understood 32 

how regulatory elements govern gene expression in different contexts1, and how noncoding 33 

variants may disrupt the underlying regulatory syntax of DNA2.  Fortunately, recent advances 34 

in epigenome sequencing3, 4 have resulted in the accumulation of data useful for the study of 35 

these questions, including chromatin accessibility, DNA methylation, histone modifications, 36 

and 3D chromatin interaction. Thus, there is great interest in performing systematic analysis of 37 

these data to enhance our ability to interpret the non-coding part of the genome5-11. 38 

The inherent similarities between natural language and biological sequences has also stimulated 39 

interest in developing large language models (LLM) for the interpretation of genome 40 

sequences12. As is well known, the development of large language model (LLM) has been the 41 

main driving force behind many recent breakthroughs in artificial intelligence such as ChatGPT. 42 

The architecture of the LLM is typically a multilayer transformer network, and the model is 43 

trained on a very large corpus of natural language data. Such pre-trained models can be readily 44 

tailored or adapted to various downstream tasks. Considering DNA sequences as the texts in 45 

the genomic language, similar transformer-based approaches have been used to model DNA 46 

sequences13, 14. For example, the Enformer model15 takes the  DNA sequence of a large genomic 47 

region as input and predict thousands of epigenomic features across cellular contexts covered 48 

by the training data. Although already useful in many applications, such models relying on only 49 

DNA sequences as input are not capable of predicting the function of sequences in new cellular 50 

contexts. Furthermore, despite the importance of 3D chromatin contacts in gene regulation, 3D 51 
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interaction data have not been included in the training of current genomic LLMs.  Therefore, 52 

there is an urgent need to further develop the core technologies of genomic LLMs to overcome 53 

these limitations.  54 

In this paper, we present EpiGePT, a transformer-based model for epigenomics prediction with 55 

the following new capabilities. First, the inability to make predictions in novel contexts has 56 

greatly limited the applicability of current methods, EpiGePT removes this limitation by 57 

making both the input and output context-dependent, where the context is represented by a TF-58 

profile vector specifying the expression of key TFs in that context. This choice is motivated by 59 

the fact that reference gene expression data are available for many cellular contexts that are 60 

important in development and diseases, but for which few epigenomic features have been 61 

measured. We note that the reference TF expression profile has been used to represent cellular 62 

context in earlier works on accessibility prediction6, 16, but this idea has not been explored for 63 

the development of genomic LLMs. Second, a new learning algorithm is developed to enable 64 

the inclusion of 3D chromatin contact data in the training data.  In this way, EpiGePT can 65 

predict 3D genome features such as enhancer-promoter interactions that are known to be 66 

important for gene regulation but are not modeled in current genomic LLMs. By using a masked 67 

training strategy, EpiGePT can be trained on a diverse set of contexts even if different sets of 68 

epigenomics signals are available in different contexts. There is a profound difference in 69 

training strategy between EpiGePT and current genomic LLMs. Each input genomic region 70 

provides an example for training in current LLMs such as the Enformer. In contrast, each 71 

combination of input region and cellular context provides an example for training in EpiGePT, 72 

thus providing a much larger number of examples available for model training. As for training 73 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2024. ; https://doi.org/10.1101/2023.07.15.549134doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

data sets, since most cellular contexts that have epigenomic data will also have expression data, 74 

we can use most available epigenomic data, such as those used by the Enformer, to train our 75 

model.  76 

In a series of experiments, we illustrate that our model is superior to existing methods in 77 

epigenomic signals prediction, long-range chromatin interaction prediction, as well as the 78 

variant effect prediction.  79 

  80 
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Results 81 

Overview of EpiGePT 82 

EpiGePT is a genomic language model for cross-cell-type prediction of chromatin states by 83 

multi-task learning based on genome-wide pre-training on epigenomic data (Fig. 1 and Fig. S2). 84 

The model is composed of four modules, including a sequence module, a TF module, a 85 

transformer module, and a prediction module. The sequence module is responsible for 86 

processing the long DNA sequence of interest (e.g., 128 kb) by employing a series of 87 

convolutional and pooling blocks (e.g., 5) to extract a comprehensive set of sequence features. 88 

The TF module is specifically designed to represent a cellular context by a TF-profile vector, 89 

which specifies the state of a few hundred TFs in that context. The features computed by the 90 

sequence and TF modules are then fed as input tokens to the transformer module, where each 91 

token corresponds to a genomic bin (e.g., a 128 bp window) in the original DNA sequence. The 92 

transformer module leverages self-attention mechanisms to learn the relationships among the 93 

input bins, enabling the model to make predictions of multiple chromatin states given the 94 

context information from the TF module. Importantly, by including a novel loss term that 95 

involves the self-attention weights, EpiGePT is capable of learning from data on context-96 

specific chromatin interactions. Since 3D interaction is known to be a key mechanism in gene 97 

regulation, the ability to learn from interaction data is an attractive feature of our approach. 98 

Finally, the fourth module in EpiGePT is a predictive module which predicts epigenomic 99 

signals and chromatin interactions based on the output of the transformer module. 100 

Genome-wide prediction of epigenomic signals  101 
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To assess the performance on predicting epigenomic signals, we first compared EpiGePT to 102 

task-specific models that are specifically designed for predicting a single epigenomic signal. 103 

Taking the chromatin accessibility for instance, the performance of EpiGePT was compared 104 

against existing task-specific models such as BIRD17, ChromDragoNN6, and DeepCAGE16. 105 

The widely available public DNase-seq18 data across 129 cellular contexts on 1,175,374 106 

genomic regions were collected and preprocessed from ENCODE database19 (see Methods). 107 

Performance is evaluated in three prediction settings: i) “cross-region” setting where the 108 

predictive model is tested on new genomic regions not seen in training, ii) “cross-cell type” 109 

setting where the model is tested on new cell types, and iii) “cross-both” setting where testing 110 

is done on new regions in new cell types (Fig. S1, Supplementary Text S1). In each setting, we 111 

employed three evaluation metrics, namely Pearson correlation coefficient (PCC), Spearman 112 

correlation coefficient (SCC) and prediction square error (PSE), to assess the similarity between 113 

the predicted and true values of the DNase signals (See Methods). The results, presented in Fig. 114 

2a and Fig. S3, showed that EpiGePT consistently outperformed baseline methods including 115 

BIRD17, and ChromDragoNN6 by a relatively large margin under the above settings. For 116 

example, EpiGePT achieved a cross-cell type prediction PCC of 0.787, demonstrated a 6.9% 117 

higher performance than the best baseline method, ChromDragoNN. In addition, we also 118 

evaluated the prediction of binary chromatin accessibility status i.e. predicting whether a peak 119 

exists within the corresponding genomic bin (>50% overlap). For binary prediction, EpiGePT 120 

again achieved a superior performance with an average auPRC (area under the precision-recall 121 

curve) of 0.767 compared to 0.623 of DeepCAGE16 and 0.476 of ChromDragoNN6 (Fig. 2c). 122 

Finally, we compared EpiGePT and ChromDragoNN6 in the binary classification of functional 123 
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regions versus nonfunctional regions, using the functional chromatin status derived from 124 

ChromHMM20 annotations as ground truth (Supplementary Text S6). EpiGePT achieved an 125 

average 8.1% higher auROC (area under the receiver operating characteristic curve) than 126 

ChromDragoNN6, and an average 2.3% higher macro-auROC than ChromDragoNN6 (p-value 127 

< 0.001 under one-sided Wilcoxon signed rank test) in a finer-grained classification for different 128 

types of regulatory elements (Fig. S4). These results demonstrate that EpiGePT provides better 129 

predictions than task-specific models. 130 

Next, we compared EpiGePT with a state-of-the-art genomic LLM, Enformer15, in two different 131 

ways. First, we trained an Enformer model from scratch with only the aforementioned DNase-132 

seq data (Supplementary Text S5). EpiGePT demonstrates a 3.3% to 5.2% higher performance 133 

than Enformer in terms of the median Pearson correlation coefficient under the three prediction 134 

settings (Fig. 2b). Second, we compared EpiGePT directly to the pretrained Enformer model 135 

provided by the original paper. To do this, we collected eight different epigenomic signals from 136 

104 different cellular contexts (Supplementary Table S4, S6 and S9). We first left out 13 of 137 

these contexts where HiChIP data are also available for downstream chromatin interactions 138 

validation. Then, EpiGePT model was trained across 72 training cellular contexts (without 139 

using HiChIP-based chromatin contacts data in the training) and subsequently compared 140 

against pre-trained Enformer on the remaining 19 test cellular contexts, on 15,870 training 141 

genomic regions with 128kbp length. Since most of the cellular contexts have missing 142 

epigenomic signals, we designed a masked training strategy to handle this issue (See Methods). 143 

Under the test cellular contexts, EpiGePT exhibited superior performance with higher PCC than 144 

Enformer in 60 out of 78 matched epigenomic signals across 19 test cellular contexts by 145 
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achieving an average PCC of 0.510, compared to 0.440 of Enformer (Fig. 2d and Fig. S6b). For 146 

DNase-seq specifically, the average PCC of EpiGePT reached 0.710 and the average SCC 147 

reached 0.664 across 7 cell types, compared to the average PCC of 0.455 and the average SCC 148 

of 0.488 of Enformer. In the above comparison, we are in fact comparing out-sample prediction 149 

by EpiGePT to in-sample prediction by Enformer. The favorable results achieved by EpiGePT 150 

in this experimental setting suggests that our model enables prediction in novel contexts without 151 

sacrificing performance. To illustrate the prediction performance further, several tracks of 152 

predicted chromatin states and the corresponding ground truth chromatin states were displayed 153 

in Fig.2e. 154 

EpiGePT enables the prediction of chromatin interactions  155 

We examined the capacity of EpiGePT for predicting long-range chromatin interactions, which 156 

is important for understanding chromatin architecture and relations between regulatory 157 

elements and target genes. We employed several experimental settings to examine the ability 158 

of EpiGePT in capturing long-range chromatin interactions. In setting (A), we directly utilized 159 

the self-attention weights extracted from the pretrained EpiGePT model (without including 160 

HiChIP data in the training) to predict enhancer-promoter (E-P) interactions and silencer-161 

promoter (S-P) interactions. In setting (B), we integrated HiChIP-derived 3D chromatin 162 

contacts into the training of the model and then use the model to predict E-P interactions in 163 

novel contexts not seen in the training. In setting (C), we designed a pretrain-finetune strategy 164 

for EpiGePT model to predict E-P interactions. The results under each setting are discussed 165 

below. 166 
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Setting (A): prediction by EpiGePT not trained with 3D contact data. In this setting, we use the 167 

cell-type specific self-attention scores to predict chromatin interactions, including E-P and S-P 168 

interactions (see Methods). Two sets of interactions containing 664 and 5,091 candidate 169 

element-gene interactions, obtained by CRISPRi21 experiments on K562 cell line, were 170 

collected and further filtered and divided into positive and negative samples, for use as ground 171 

truths to evaluate E-P prediction performance. In the Gasperini et al22. dataset, EpiGePT 172 

consistently outperformed Enformer by achieving the highest auPRC in most cases (Fig. 3a). 173 

For instance, EpiGePT achieved auPRC of 0.647 to 0.887 for identifying enhancer-gene 174 

transcription start site (TSS) pairs in different distance groups (Fig. 3a and Fig. S7). In the Fulco 175 

et al.23 dataset, EpiGePT also outperformed other competing methods. For example, EpiGePT 176 

achieves an auPRC of 0.504, compared to 0.307 of Enformer in the 30-45kbp group (Fig. 3a). 177 

Next, to assess performance on S-P interactions., we downloaded putative silencers from the 178 

SilencerDB24 and used the TSS of annotated nearest gene as the potential target. We selected 179 

the same number of negative pairs randomly while conserving the distance distribution. The 180 

results show that EpiGePT achieved a better performance in distinguishing positive S-P pairs 181 

from negative pairs than Enformer. For instance, EpiGePT achieves an auROC of 0.575 in long-182 

range S-P interactions (32-64kbp) compared to 0.483 of Enformer (Fig. 3b). Finally, to assess 183 

performance in predicting chromatin interactions, we collected HiChIP25 loops on K562 and 184 

GM12878 cell lines from the HiChIPdb26. EpiGePT achieves a superior performance by 185 

discerning HiChIP loops from randomly selected loops with the same distance distribution. For 186 

instance, EpiGePT achieves an auPRC of 0.520 for long range loops (40-64kbp) prediction in 187 

GM12878 cell line, surpassing that of Enformer (0.484) by a large margin (Fig. 3g). These 188 
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results clearly demonstrated the utility of EpiGePT attention scores in capturing functional 189 

chromatin interactions. 190 

To better understand the self-attention mechanism of EpiGePT, we showed the attention 191 

weights (averaged across heads) for the bin containing the TSS of the gene CHD4. The attention 192 

weights were computed based on the pretrained EpiGePT model with K562 cell line as the 193 

context of interest. We also display chromatin interactions detected under K562 as well as 194 

regulatory elements annotations from the GeneHancer27, It is seen that both the interaction data 195 

and the regulatory element annotations are consistent with the attention weights learned by 196 

EpiGePT (Fig. 3c and Fig. 3f). 197 

Setting (B): Prediction by EpiGePT-3D, which include Hi-C data in its training. The above 198 

results suggest that in a good transformer-based genomic language model, the attention weight 199 

given by one bin to another bin (within the input region) should be consistent with the strength 200 

of 3D interaction between them. Thus, when experimental data on 3D interaction are available, 201 

we can leverage this data to improve the learning of the parameters of our genomic language 202 

model, by penalizing parameter values that resulted in poor correlation between the attention 203 

weights and the interaction data (see Methods). To obtain such training data, we collected 204 

4,107,687 H3K27ac-based HiChIP loops across 13 cell lines or tissues from HiChIPdb26, which 205 

denote potential E-P interactions. Setting aside loops from K562 cell line as test data, other 206 

HiChIP loops are incorporated into the training. The resulting model is denoted as EpiGePT-207 

3D. We found that adding 3D interaction data in the training can lead to a noticeable 208 

improvement for cross-cell-type prediction (3.3% higher in PCC) (Fig. 3e). Moreover, 209 

EpiGePT-3D demonstrated improved predictive performance on E-P interactions identified by 210 
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HiChIP loops in new cellular contexts. For instance, the auPRC increased from 0.652 to 0.695 211 

for Gasperini et al.’s dataset, which is on a context not covered by the Hi-C data in the training, 212 

in 24-40kbp group when incorporating 3D genome data.   213 

Setting (C): Prediction by fine-tuning pretrained EpiGePT. Fine-tuning is an strategy that 214 

transfers the knowledge of a pretrained model to new tasks,  which is particularly prevalent in 215 

language models such as GPT28 and BERT29. Here, we explore the performance of fine-tuning 216 

given a pretrained EpiGePT model on downstream tasks, such as predicting 3D genome 217 

interaction. Specifically, we fixed the weights of a pretrained EpiGePT model and added an 218 

additional finetune network for predicting E-P interactions. We compared EpiGePT with 219 

finetuning strategy (EpiGePT-finetune) to two baselines, DeepTACT30 and a k-mer frequency 220 

based method29 with HiChIP H3K27ac loops from K562 and GM12878 cell lines (see Methods). 221 

The results illustrate that EpiGePT-finetune exhibited a superior classification performance 222 

across diverse distance ranges compared to baselines. For example, EpiGePT-finetune achieved 223 

an auROC of 0.949, surpassing 0.866 of DeepTACT 30 and 0.771 of Kmer by a large margin in 224 

the GM12878 cell line within the 20-40kbp distance range (Fig. 3h, Fig. S9 and Fig. S10). This 225 

significant improvement demonstrates the power of fine-tuning a base pretrained genomic 226 

language model on a downstream task with limited data. 227 

EpiGePT unveils the regulatory relationships between TFs and target genes 228 

In this section, we further explored the TF module to see whether EpiGePT is able to learn the 229 

regulatory relationships between TFs and target genes (TGs). We defined gradient importance 230 

scores (GIS) based on the absolute gradient values of predicted epigenomic signals with respect 231 
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to the expression of a TF in the input TF profile, to rank the TFs for their potential to regulate 232 

a given TG (see Methods). Particularly, we use the TF profile of embryonic stem cell (ESC) to 233 

specify the context in the EpiGePT model. We selected the important ESC regulator POU5F1 234 

as the target gene and calculated the GIS for identifying TF-TF interactions (see Methods). 235 

Multiple potential regulators for POU5F1 identified by EpiGePT in ESC context are consistent 236 

with literatures, such as ESRRB-POU5F131 (rank 2nd), and ETV5-POU5F132 (rank 5th). Next, 237 

we focus on  ESRRB which plays essential role for balancing pluripotency of ESCs33.  Treating 238 

ESRRB as the target gene, our GIS-based ranking identified several key TFs, such as POU5F1 239 

and REST, that have significantly higher ranks than other TFs (Fig. 4a). By using ChIP-seq data 240 

of POU5F1 for validation, we observed significantly higher GIS in bins overlapping with the 241 

ChIP-seq data (Fig. S11, p-value < 0.00018 under one-sided Mann-Whitney U test). Next, we 242 

visualized the TF ranks obtained from eight epigenomic profiles across 1000 bins surrounding 243 

the TSS of ESRRB. By averaging ranks across these signals and bins among all the 711 TFs, 244 

the important ESC regulator POU5F1 ranks 3 out of 711 (Fig. 4b). We further collected the top 245 

5% of TFs for each bin and conducted gene ontology (GO) enrichment analysis based on these 246 

TF coding genes. Interestingly, the GO terms enriched also included biological processes of 247 

embryonic cell differentiation and development. However, using the top 5% of TFs with high 248 

expression in ESCs resulted in lower significance for biological processes associated with 249 

embryonic cell development (Fig. 4c and Fig. S12), which again demonstrates the effectiveness 250 

of the GIS-based ranking. Furthermore, we use TF-TG relationships from either ChIP-seq data 251 

or external databases as ground truth to validate the TF-TG relationships inferred by EpiGePT.  252 

We defined potential TF-target gene pairs based on TF ChIP-seq data specific to certain cell 253 
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types among all human genes (see Methods). The results demonstrated a significant higher rank 254 

of TF-target gene pairs, compared to TF-non-target gene pairs based on the integrated GIS-255 

based ranking (Fig. 4d, p-value < 0.001 under one-sided Mann-Whitney U test). Second, we 256 

collected TF-TG regulatory network data from two publicly available databases. We obtained 257 

a total of 1,066 TF-TG pairs from the GRNdb34 database based on liver-specific GTEx data, 258 

and 2,705 TF-TG pairs from the TRRUST35 database after filtering. Then we calculated the 259 

rank of each TF based on either integrated GIS or the TF expression value by using the liver 260 

expression as the TF reference profile. Interestingly, we found that the median ranking 261 

percentile of TFs from TRRUST was 3.1%, significantly higher than the percentile of 20.4% 262 

based on expression values (Fig. 4e, p-value < 1e-5 under one-sided Wilcoxon signed rank test). 263 

with a similar result was obtained using another database GRNdb, where EpiGePT is seen to 264 

achieve a median ranking percentile of 6.3%, compared to 36.0% by gene expression value. 265 

For instance, TMEM55B, which plays a significant role in lysosome movement, and is regulated 266 

by sterol response element binding factor 2 (SREBF2)36. Consistently, GIS ranking identified 267 

SREBF2 as the top-ranked TF associated with TMEM55B. Overall, the validation results from 268 

both ChIP-seq datasets and external databases support the effectiveness of GIS in identifying 269 

context-specific TF-TG relationships. 270 

EpiGePT improves variant effect prediction  271 

Context-specific prediction of the functional impact of genetic variants is important for genetic 272 

studies.  To test the utility of EpiGePT in this task, we first collected an eQTLs dataset37 that 273 

contains 20,913 causal and non-causal variant-gene pairs across 49 different tissues from the 274 

supplementary data of Wang et al37. EpiGePT, EpiGePT-seq (i.e. EpiGePT without the TF 275 
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module) and Enformer were then applied to estimate the context-specific log-ratio scores (LOS) 276 

between the alternative DNA sequence and the reference DNA sequence, (see Methods, Fig. 277 

5a). Finally, a random forest classifier is trained based on these LOS’s to distinguish causal 278 

variant-gene pairs from non-causal pairs. The experimental results show that better prediction 279 

performance can be achieved when the LOS is based on EpiGePT than when the LOS is based 280 

on Enformer. For example, in the lung tissue, EpiGePT achieved an auPRC of 0.922, compared 281 

to 0.873 of Enformer, for the classification of casual SNPs vs non-causal SNPs. To verify the 282 

effectiveness of TF module, we replace the TF reference profile of lung with a less relevant cell 283 

type, stomach, and the auPRC decreases from 0.922 to 0.892 (Fig. 5b). Similar results were 284 

seen for other tissue contexts—across 48 tissues, EpiGePT-seq achieved an average auPRC of 285 

0.910, compared to 0.898 of Enformer (Fig. S4d). The above experiments demonstrated the 286 

usefulness of EpiGePT in assessing variant effects. 287 

To further evaluate the performance of EpiGePT in predicting disease-associated variants, we 288 

extracted 52, 876 pathogenic SNPs from the ClinVar38 database and 418, 863 benign SNPs from 289 

the ClinVar database, also with 84, 095 benign SNPs from the ExAC database39 as positive and 290 

negative sets, respectively. We defined a 128kbp region surrounding each pathogenic SNP as 291 

the risk region. We extracted all benign or likely benign SNPs that fall within the risk region as 292 

the positive samples. As the relevant tissue or cell type information is not available, we 293 

concatenated the LOS of the eight epigenomic signals and also the self-attention scores, across 294 

multiple cellular contexts, and then evaluated whether the constructed features are beneficial in 295 

distinguishing pathogenic SNPs from benign ones in a classification analysis. To achieve this, 296 

we  augmented the popular CADD-derived features (CADD40 scores) by concatenating them 297 
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to the EpiGePT-derived features discussed in the above, to obtain a comprehensive feature 298 

vector (see Methods). Subsequently, we compared the performance of the multi-layer 299 

perceptron (MLP) classifier based on the comprehensive feature vector to that based on CADD-300 

derived features alone. The results demonstrated that incorporating EpiGePT-derived features 301 

significantly enhance the performance in predicting pathogenic SNPs. Specifically, when the 302 

positive-to-negative sample ratio was set to be 1:1, the average auROC increased from 0.772 303 

to 0.806, and the average accuracy increased from 0.690 to 0.723 (Fig. 5c). This observation 304 

indicates that features extracted by EpiGePT provide a valuable complement to CADD scores, 305 

enabling a more comprehensive interpretation of disease-associated variants. 306 

EpiGePT prioritizes potential SNPs associated with comorbidities of COVID-19 307 

We investigated whether using EpiGePT to predict variant effects could help in the discovery 308 

of key SNPs related to COVID-19. COVID-19 is an infectious disease caused by the SARS-309 

CoV-2 virus, which emerged in late 2019 and quickly spread around the world, causing a global 310 

pandemic41. In order to validate the ability of EpiGePT in identifying key SNPs, we collected 311 

GWAS data from a COVID-19 genetic study42, including 9,484 variants derived from 4,933 312 

patients with confirmed severe respiratory symptoms and 1,398,672 control individuals without 313 

COVID-19 symptoms. To validate the ability of the model to identify COVID-19-associated 314 

SNPs, we firstly defined a risk region around the selected COVID-19-associated SNPs and 315 

computed the rank of the variant score of pathogenic SNPs within the surrounding benign SNPs 316 

from the ClinVar database. Note that the expected percentile rank for random guessing (uniform 317 

distribution) is 0.5 (see Methods). Previous studies43, 44 suggested that COVID-19 infection 318 

could potentially impair the function of the heart or the lungs, leading to congestive heart failure 319 
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or decreased lung function. Interestingly, we found that the average rank of COVID-19-320 

associated SNPs was 0.250 when lung expression data was employed for the TF reference 321 

profile and a 6-kbp risk region was examined (Fig. 5d, p-value < 0.05 under one-sided Binomial 322 

exact test). However, when we employed the expression data from less relevant contexts, such 323 

as K562 cells or Testis cells, the median rank is close to random guessing (i.e. 0.5), indicating 324 

its ineffectiveness in discerning SNPs pertinent to COVID-19. These results suggest that 325 

EpiGePT model is able to prioritize the COVID-19-associated SNPs thus shedding lights on 326 

finding the potential disease-associated variants and the relevant tissue contexts with our 327 

pretrained large language model. 328 

Next, we examine whether the genes close to max-LOS SNPs are likely be associated with 329 

biological processes and functions relevant to COVID-19, when compared with genes close to 330 

low scores SNPs or not closed to associated SNPs. Since the genetic pathology of COVID-19 331 

is not yet clear and the earliest lesion is in the lungs, we ranked all 9,484 possible SNPs using 332 

lung expression data as the TF reference profile. We then identified the SNPs with the highest 333 

ranks and performed GO enrichment analysis on nearest genes of the top-30 scored SNPs (Fig. 334 

5e). The enrichment results revealed potential biological processes that are relevant to COVID-335 

19, such as the regulation of glucokinase activity which is associated with the homeostasis of 336 

human blood glucose45. Notably, diabetes mellitus, a condition closely associated with 337 

hyperglycemia, is a typical comorbidity of COVID-1946. However, GO enrichment analysis 338 

based on the nearest genes of the lowest-scored 30 SNPs resulted in enrichment outcomes that 339 

were less relevant to COVID-19 or its complications (Supplementary Fig. S14). Among the 340 

potential genes around the top-10 scored SNPs, we identified that the TBC1D4 gene, which 341 
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regulates glucose homeostasis, is potentially associated with COVID-19 comorbidities. Our 342 

findings are consistent with previous research by Pellegrina et al.47 and highlights the potential 343 

of our EpiGePT approach in discovering new genetic markers that may be implicated in the 344 

pathogenesis of COVID-19. Overall, our EpiGePT model provides new perspectives for 345 

understanding how the genetic variants could contribute to the COVID-19 susceptibility and 346 

severity.  347 

Model ablation analysis 348 

To verify the roles of the main modules in the model, we conducted ablation experiments on 349 

the model architecture (Fig. S5). For TF module ablation, the results compared to EpiGePT 350 

without TF module (EpiGePT-seq) and the inclusion of the TF module led to improvement in 351 

cross-cell-type prediction of DNase signals, with a median PCC of 0.787 of EpiGePT, 352 

compared to 0.74 for EpiGePT-seq. We additionally examined the impact of the TF module by 353 

employing three methods, namely replacing TF scores with zero, replacing TF scores with 354 

random noise, and removing motif binding scores. The results again confirmed the positive 355 

impact of the TF module (Fig. S5a). For sequence module ablation, we trained a TF-only model 356 

without the sequence module. The results indicated that removing the sequence module resulted 357 

in an average decrease of 0.084 in the PCCs of the epigenomic signals on a cell-type wise basis 358 

(Fig. S5a). For multi-task module ablation, we trained eight separate predictive models for each 359 

of the eight epigenomic signals. In the case of the H3K4me1 signal prediction, the performance 360 

of the single-task prediction model exhibited an average PCC decrease from 0.408 to 0.329 361 

compared to the multi-task prediction model. Similarly, the overall prediction performance for 362 

the eight signals declined by 0.074 (Fig. S5b). This decrease may be attributed to the intricate 363 
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nature of gene regulation that multiple epigenomic signals can synergize with each other, 364 

allowing their joint modeling to gain deeper biological insights. 365 

Online prediction tool for EpiGePT 366 

In order to facilitate the utilization of EpiGePT for the prediction of multiple chromatin states 367 

of any cellular context and genomic regions, we have developed a user-friendly web server, 368 

named EpiGePT-online (http://health.tsinghua.edu.cn/epigept/) (Supplementary Text S2). The 369 

web server was developed using PHP, JavaScript and HTML, which provides an interactive 370 

web interface for efficiently online prediction of epigenomic profiles (Fig. 6). The web server 371 

includes a built-in kernel that encompasses the framework for data preprocessing, TF motif 372 

binding scores calculating, and prediction of epigenomic signals for both hg19 and hg38 human 373 

reference genome. Users can obtain the predicted signals for multiple genomic regions by 374 

submitting a region file and a TF expression file in Numpy or CSV formats (Supplementary 375 

Table S5), or predicted signals for a specific region by submitting a TF expression file (Fig. 376 

S13). We provided TF expression profile across more than 100 cellular contexts from ENCODE 377 

on the download page. Users can download the results in csv format for further applications 378 

such as genetics analysis. Furthermore, we provide a case application of the EpiGePT-online to 379 

enable users to quickly learn how to use our website (Supplementary Text S3). We anticipate 380 

that this web server will assist researchers in deepening their understanding of gene regulatory 381 

mechanisms. 382 

Discussion 383 

In this paper, we introduced a pretrained transformer-based language model for epigenomics. 384 
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Compared with the existing task-specific models and sequence-based language model, 385 

EpiGePT has the added capability to make predictions on novel contexts. Furthermore, 386 

EpiGePT is able to incorporate a new type of data (3D genome interaction data) during model 387 

training, which enables the identifying functional regulatory interactions such as enhancer-388 

promoter interactions. EpiGePT demonstrates state-of-art performance in diverse experimental 389 

settings compared to existing methods. Based on the predicted epigenomic features and 3D 390 

interactions from EpiGePT, we performed two investigations on how information is encoded 391 

in the human genome sequence: First we identify the interactions of cis-regulatory elements 392 

and their target genes with the help of self-attention mechanism in EpiGePT. Through direct 393 

utilization of self-attention scores, model fine-tuning, and leveraging 3D genome interactions, 394 

we validated the capacity of EpiGePT to capture regulatory interactions. Second, to assist the 395 

identification and interpretation of human disease-associated SNPs, we estimate the effect of a 396 

variant on the epigenomic features around the variant, based on the LOS computed by the 397 

outputs of EpiGePT. Such variant effect prediction by EpiGePT establishes a foundation for 398 

understanding the underlying relationship between genetic variations and disease mechanisms. 399 

There exist several extensions and refinements that can be applied to further improve the 400 

EpiGePT model. Firstly, the incorporation of chromatin regulators (CRs) as trans-acting factors 401 

into the TF module could enhance the modeling of regulated transcription processes, thereby 402 

increasing the accuracy of the predictions. Second, the integration of DNA methylation 403 

information48 while modeling DNA sequences allows for a more comprehensive and accurate 404 

decoding of the epigenomic language, providing a more comprehensive model of gene 405 

regulation states compared to the analysis solely based on DNA sequences. Third, the rapid 406 
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advancements in sequencing technologies have enabled the accumulation of vast amounts of 407 

multi-omics data, encompassing different scales from biomolecules to single cells, tissues, and 408 

organs49. The integration of multiscale and multi-omics information is a trend and a major 409 

challenge in deciphering gene regulatory landscapes. Integrating single-cell level data into 410 

EpiGePT is an important direction for future improvement. For example, utilizing clustered 411 

single-cell multi-omics data as pseudo-bulk data can further expand the training context of 412 

EpiGePT. The application of EpiGePT to single-cell epigenomics could enable the profiling of 413 

chromatin signals at single-cell resolution, facilitating a holistic understanding of regulatory 414 

heterogeneity in different cell subpopulations. 415 

Based on EpiGePT, users are able to predict multiple chromatin profiles in different cell lines 416 

or tissues, which could provide a foundation for biological discovery, decoding transcriptional 417 

regulation mechanisms, and investigating disease mechanisms. We anticipate EpiGePT will 418 

furnish researchers with valuable insights into understanding regulatory mechanisms.  419 
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Methods 420 

Data processing 421 

Chromatin accessibility data and Expression data We used three different datasets in the 422 

experiments. For chromatin accessible data, we downloaded DNase bam files and narrow peaks 423 

across 129 human biosamples from ENCODE19 project (Supplementary table S1 and S2). We 424 

divided the human hg19 genome into 200bp non-overlapping bins, and we assigned the label 425 

for each bin in each cell type. For the regression design, we pooled the bam files of multiple 426 

replicates for a cell type (Supplementary table S1 and S2), and obtain the raw read count 𝑛!" 427 

for bin 𝑙 in cell type 𝑘. We normalized the raw read count in order to eliminate the effect of 428 

sequencing depths, in the form of 𝑛$!" = 𝑁𝑛!"/𝑁" , where 𝑁"  denotes the total number of 429 

pooled reads for cell type k and 𝑁 = min
"
𝑁"  denotes the minimal number of pooled reads 430 

across all cell types. The normalized read counts are further log transformed with pseudo count 431 

1, which represent the continuous level of chromatin accessibility. For binary classification 432 

design, we assigned a binary label 𝑦!" to 1 if the number of raw read counts of the bin 𝑙 in the 433 

cell type 𝑘 greater than 30, which represent the bin is an accessible region in this cell type, 434 

resulting in the identification of regions as accessible in 13% on average and 8% at median in 435 

the screened genomic regions across 129 cell types. The proportion of open regions varies 436 

among different cell types, and the average openness level mentioned above is generally 437 

consistent with that maintained in ChromDragoNN6. 438 

RNA-seq data of the 711 human transcription factors were downloaded and extracted from the 439 

ENCODE project (Supplementary table S5 and S6). We perform log transformation with 440 
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pseudo count 1 and quantile normalization based on TPM values. The normalized TPM values 441 

were averaged across replicates and mean expression profile after normalization of each cell 442 

type was finally used to calculated of the transcription feature. 443 

Multiple chromatin signals data For the human reference genome hg19 (GRCh37), DNase-444 

seq, RNA-seq and ChIP-seq data were also downloaded from ENCODE project 445 

(Supplementary table S3, S4 and S6). We applied the same process to these data as above, and 446 

finally we obtained the 8 epigenomic signals of 13,300,000 bins of 128bp in 28 cell types. The 447 

continuous level of chromatin signals we extracted were 'DNase', 'CTCF', 'H3K27ac', 448 

'H3K4me3', 'H3K36me3', 'H3K27me3', 'H3K9me3' and 'H3K4me1', which includes crucial 449 

epigenetic modifications and markers for gene regulation and transcription.  450 

For the collected the data of human reference genome hg38 (GRCh38), we adopted a data 451 

collection strategy that includes missing data. Specifically, within a particular tissue or cell type, 452 

we ensured the presence of at least one ChIP-seq signal. Then, epigenomic profiles of 8 signals 453 

for 15,870,000 bins of 128bp across 104 cell types were obtained. 454 

Model architecture 455 

Sequence module As shown in Fig. 1 and Fig. S2a, the sequence module receives a one-hot 456 

matrix (A = [0,0,0,1], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) of size (128000,4) as input, 457 

representing a sequence of 128 kilobase pairs (kbps) and contains five 1-dimentional 458 

convolutional blocks to extract DNA sequence features. Each block includes a convolutional 459 

layer and a maxpooling layer (Fig. S2b). The first convolutional layer considers the input 460 

channels as 4 and performs convolution along the sequence direction. The input sequence 461 
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features are one-hot embeddings of size 𝐿 × 4, where 𝐿 denotes the length of the input long 462 

range DNA sequence. After 5 maxpooling layers, the output size of sequence feature is 463 

𝐿/𝑁 × 𝐶, where 𝐶 denotes the hyper-parameter for sequence embedding and N denotes the 464 

length of locus to predict. We set C to 256 in the pre-training stage of chromatin accessibility 465 

prediction experiments. Rectified linear units (ReLU) are used after each convolution operation 466 

for keeping positive activations and setting negative activation values to zeros. By reducing the 467 

input length by 128 times through pooling operations, this module effectively compresses the 468 

input information while retaining essential features. Sequence features were then concatenated 469 

with TF expression features, and we finally obtained a vector of size 𝐿/𝑁 × (𝐶 + 𝑛#$), where 470 

𝑛#$ denotes the dimension of the transcription factors features after padding. In our model, 471 

after adding padding to the 711 TFs, the 𝑛#$ 	is set to 712. Therefore, the input token number 472 

for the transformer module is 1000, and each token embedding has a dimensionality of 968. 473 

Transformer module We utilize the transformer module to integrate information from both 474 

the sequence and transcription factors (TFs), enabling the capturing of long-range interactions 475 

between genomic bins. We applied 𝑁%  layers of Transformer encoder with 𝑛&  different 476 

attention heads to the token embedding sequence. The input word embedding (X) of the 477 

transformer encoder is a genomic bin sequence with dimensions 478 

(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑑𝑖𝑚). Specifically, this dimension is (1000, 968) in EpiGePT, 479 

indicating that input genomic bin sequence has a length of 1000, and each genomic bin has an 480 

embedded representation that combines the sequence information with cell-type-specific 481 

features with dimension of 968. For position embedding, we employed absolute position 482 

embedding to represent the positional information of the 1000 genomic bins in the input 128kbp 483 
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DNA sequence, with dimensions of (1000, 968). Each Transformer encoder includes a multi-484 

head self-attention mechanism and a feed-forward neural network. For self-attention in each 485 

head, the calculation is based on the matrix operation. 486 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾#

J𝑑"
)𝑉 487 

 For multi-head attention, Transformer encoder learns parameter matrices 𝑊'
( ∈488 

ℝ)!"#$%×)& ,𝑊'
+ ∈ ℝ)!"#$%×)&  and 𝑊'

, ∈ ℝ)!"#$%×)'  for the 𝑖%&  head and concatenate the 489 

multiple heads to do the projection, then learns parameter matrices 𝑊- ∈ ℝ.())×)!"#$%  to 490 

obtain the output of multi-head attention layer.  491 

𝑄' = 𝑋𝑊'
( , 𝐾' = 𝑋𝑊'

+ , 𝑉' = 𝑋𝑊'
, 492 

      𝐴' = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((*+*
+

/),
) 493 

ℎ𝑒𝑎𝑑' = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄' , 𝐾' , 𝑉') = 𝐴'𝑉' 494 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡Qℎ𝑒𝑎𝑑0, ⋯ , ℎ𝑒𝑎𝑑.(S𝑊
- 495 

where 𝑑12)3!  denotes the dimension of token embedding 𝑋 , which is 968 in EpiGePT 𝑋 496 

denotes the embeddings from the sequence module for the first attention layer or the output of 497 

previous attention layer. 𝑛& denotes the number of head in Transformer encoder, which is 8 in 498 

EpiGePT, and 𝑑+ = 𝑑, = 𝑑12)3!/𝑛& = 121. The matrix 𝐴' is called the self-attention matrix 499 

for head 𝑖. The outputs of 𝑛& heads are then concatenated, and a mapping function represented 500 

by 𝑊- is applied to obtain the output of the multi-head attention. After passing through an add 501 

& norm layer, the multi-head attention output is used as input to the feed-forward layer, where 502 

more comprehensive features of the input sequence are extracted. The above describes the 503 
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computational workflow of a single Transformer encoder layer. We set 𝑁%  to 16 for the 504 

chromatin accessible prediction experiments, 𝑁% to 12 for the chromatin state classification and 505 

multiple chromatin signals prediction experiments. 506 

Prediction Module  For regression model, the output layer uses a linear transformation and 507 

use mean square error (MSE) as the loss function. For classification model, the output layer 508 

uses a linear transformation combined with a sigmoid function, and use the cross-entropy loss 509 

for classification experiments. 510 

TF module For binding status, we scanned the input bins for potential binding sites for a set 511 

of 711 human transcription factors from HOCOMOCO database50 with the tool Homer51 (Table 512 

S5). We then selected the maximum score of reported binding status for each transcription 513 

factor to obtain a vector of 711 dimensions as the motif feature for each DNA bin. For gene 514 

expression, we focused on log-transformed TPM values of the 711 transcription factors and 515 

obtained a vector of 711 dimensions after quantile normalization as the expression feature. With 516 

these data, we combined the two vectors of motif and expression features by taking the element-517 

wise product, and we concatenated the result to the output of sequence module. 518 

Model evaluation 519 

To evaluate our model, we applied five-fold cross-validation in the different experiments on 520 

cell-type level. For chromatin accessible experiments, the 129 cell lines are partitioned into a 521 

training set and a testing set randomly.  522 

Cell-type-wise metrics are defined to evaluate our method in different experiments, which were 523 

calculate with the data within a test cell type across all genomic locus. For binary classification 524 
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design, we used cell-type-wise auPRC and auROC to evaluate our EpiGePT. Let 𝑌4×+ and 𝑌W4×+ 525 

be the true and predicted matrix, where L denotes the number of locus and K denotes the number 526 

of test cell types. We calculated the auPRC and auROC for each (𝑦0' , 𝑦5' , ⋯ , 𝑦4')  and 527 

(𝑦X0' , 𝑦X5' , ⋯ , 𝑦X4'). For multiple classification, we use macro average of the auPRC and auROC 528 

to evaluate the classification performance, which compute the metric independently for each 529 

class and then take the average hence treating all classes equally. For regression design, we 530 

used two metrics for model evaluation, which are cell-type-wise Pearson correlation coefficient 531 

and prediction squared error. Prediction square error (PSR) is calculated as 𝑃𝑆𝑅 = 1 −532 

∑ ∑ (𝑦!" − 𝑦X!")5/(𝑦!" − 𝑦]∗")5!" , where 𝑦]∗" = ∑ 𝑦!"/𝐿!  denotes the mean of the true level of 533 

the response in the cell type k. 534 

To compare the performance of our method with other baseline methods, we conducted 535 

hypothesis testing on the metrics based on cell types. Since the metrics on a given cell type 536 

across different methods are paired data and the statistical distribution is unknown, we 537 

employed both Binomial and Wilcoxon tests, with the alternative hypothesis being that 538 

EpiGePT outperforms the other methods. If we reject the null hypothesis, it provides 539 

compelling evidence to support the claim that EpiGePT performs better than the other methods. 540 

To evaluate the computational efficiency, we recorded the running time of a single epoch of 541 

EpiGePT and baseline methods (Supplementary Text S4). Compared to traditional CNN models 542 

such as DeepCAGE16 and ChromDragoNN6, as well as larger sequence models like Enformer, 543 

EpiGePT demonstrates a balance between high computational efficiency and performance. 544 

Model training strategy 545 
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As our proposed model is designed for cross-cell-type prediction of epigenomic signals by 546 

multi-task learning. Some of the target epigenomic signals are missing in the existing ENCODE 547 

database. For instance, there are 104 cellular contexts with both gene expression and at least 548 

one of the epigenomic data. However, this number will decrease from 104 to 28 if we consider 549 

eight epigenomic signals simultaneously. The proposed model takes each cellular context and 550 

genomic region pair as a training instance, which ensures the availability of a very large number 551 

of training instances. To utilize the data from the cellular contexts where some signals are not 552 

available (missing data), we will use a new training strategy to handle the missing data where 553 

the loss function is designed as  554 

𝐿 =
1
𝐽%

1
|𝐵𝑖|

% ||𝑦!,#,$ − 𝑦)!,#,$||%%
&

$'(

)

#'(
∙ 𝐼(𝑘 ∈ 𝐵!) 555 

where 𝑦',9," and 𝑦X',9," denote the 𝑘%& true and predicted signal from the 𝑗%& genomic bin in the 556 

𝑖%&  context, and 𝐼(∙) is an indicator function and 𝐵'  denotes the index set that contains all 557 

available signals in the  𝑖%& context. We update the parameters in the model through stochastic 558 

gradient descent based on minibatches. We utilized the Adam optimizer with a batch size of 10 559 

and a learning rate set to 5 × 10:;.	This training strategy provide us with a significantly larger 560 

training sample size and allows us to utilize much more available data from the public databases, 561 

and we enable EpiGePT to learn broader patterns of epigenetic states across diverse cell types. 562 

Incorporation of 3D chromatin interaction data 563 

With the emergence of methodologies like Hi-C and HiChIP for genome-wide chromatin 564 

interaction measurement, a substantial volume of 3D chromatin interaction data has been 565 

produced across various cellular contexts. Clearly, this data can provide highly valuable 566 
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information for identifying functional elements in the genome and for understanding gene 567 

regulation, but this information has not been captured by current genomic LLMs such as the 568 

Enformer15 or earlier CNN-based genomic models6, 7, 16, 52.  569 

We propose here to exploit the self-attention weights of the transformer model to design a 570 

learning strategy that would allow EpiGePT to capture interaction information from Hi-C or 571 

HiChIP data. Specifically, we propose to use the ground truth 3D genome interaction to guide 572 

the self-attention matrices in the transformer module during the training process. First, we 573 

obtained loop information at 5k resolution from the HiChIPdb database26. Given potential noise 574 

within HiChip data, we selectively filtered potential H3K27ac-based HiChip loops using a 575 

stringent q-value threshold of 0.001. This curation aimed to utilization of highly confident loops, 576 

safeguarding the model's ability to capture regulatory information without interference from 577 

noise. In this way, we acquired corresponding HiChip loop data for 13 out of 104 cell types. 578 

Next, we mapped these loops onto the genomic bins used for pre-training. Specifically, we 579 

employed the normalized count as a metric to gauge the likelihood score for each loop. During 580 

the mapping process, we aggregated all loops based on this score to each specific genomic bin, 581 

and then we obtained the HiChIP interaction matrix 𝐻' . Based on the self-attention matrix 582 

𝐴<,=' ∈ 𝑅>×> and the HiChIP interaction matrix 𝐻'  from the 𝑖%& cell type/tissue where 𝑝, 𝑞 are 583 

indexes for transformer layer and multi-heads, we apply a row-wise normalization to 𝐻' (row 584 

sum to 1) to obtain 𝐻e'  and average the self-attention matrices across the heads in the last 585 

transformer layers to obtain 𝐴f'.. Since elevated attention weights are expected between regions 586 

that interacts in 3D, we will compute a new loss term CSL, which is defined as cosine similarity 587 

loss between the rows of 𝐻e' and 𝐴f'. Through the guidance of 3D genome interaction data, our 588 
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approach can learn a more comprehensive model for gene regulation. For example, it will 589 

enable prediction of cell-type specific enhancer-promoter interaction, which is a task beyond 590 

current models such as the Enformer. Note that the CSL term does not alter the architecture of 591 

the model. It simply put some soft constraints on the attention weights according to the 592 

experimental data on chromatin interactions, so that the optimized model will give predictions 593 

that are more consistent with the context-specific interaction data.  During training, the weight 594 

𝛼 for 3d genome loss was chosen as 2. 595 

Fine-tunning for predicting E-P interaction 596 

For the fine-tuning process, we kept the parameters of the pre-trained model fixed without 597 

making any updates. For the specific fine-tuning task of chromatin interaction prediction based 598 

on HiChIP data, the multi-task prediction module was replaced with a two-layer MLP network, 599 

containing 256 hidden nodes for each layer. During the training process, only the weights in the 600 

MLP network in the prediction module were updated. Notably, when utilizing HiChIP data at a 601 

resolution of 5k, both the enhancer and promoter anchors spanned 5kbp. Then we use a region 602 

extending 128kbp from the center of the anchor of the neighboring gene, as input region for 603 

EpiGePT. Consequently, a 968-dimensional feature vector for each genomic bin was derived 604 

from the output of the last transformer encoder layer. These feature vectors from all bins within 605 

the two anchors were concatenated, resulting in a high-dimensional vector of size 76,472.  To 606 

ensure the fairness of validating EpiGePT-finetune in capturing E-P interaction relationships, 607 

we fine-tuned the model separately on the HiChIP data of each cell line during the fine-tuning 608 

process. The test cell lines K562 and GM12878were excluded from the pretrained EpiGePT 609 

training cell types. 610 
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Baseline methods 611 

Four baselines were introduced for epigenetic signals prediction. BIRD17 is a multiple linear 612 

regression model that only takes gene expression data as input and makes predictions on a fixed 613 

locus. ChromDragoNN6 is a deep neural network that takes gene expression of 1630 TFs and 614 

DNA sequence as input. Specifically, ChromDragoNN6 uses a ResNet53 to extract sequence 615 

features and use linear transformation to combine the TF gene expression feature and sequence 616 

feature to make the final prediction. DeepCAGE16 is a deep densely connected convolutional 617 

network for predicting chromatin accessibility. Enformer15 is a deep neural network that 618 

integrates convolutional neural network and transformer, and only takes DNA sequence as input. 619 

Enformer takes DNA sequence of length 196kbp as input to predict 5,313 genomic tracks of 620 

human and 1,643 tracks of mouse genome simultaneously. Enformer can only model and 621 

predict cell types in the training data and cannot be applied to new cell types. In order to ensure 622 

fairness in some of the benchmark experiment, we retrained the Enformer model with the same 623 

input and output data as EpiGePT with Pytorch-lightning and made modifications on the 624 

number of encoder layers when reproduce the Enformer model (Supplementary Text S5). 625 

Besides, comparison with the pretrained Enformer model was also provided in Fig.2d where 626 

we strictly used the ENCODE experiment ID to obtain the matched experiments for comparison. 627 

Two baseline methods were introduced for predicting HiChIP interaction. DeepTACT30 is a 628 

deep learning method for predicting 3D chromatin contacts using both DNA sequence and 629 

chromatin accessibility. We adopted the structure of DeepTACT30 and kept the anchor length at 630 

5k. The input to the model consists of two anchor sequences represented as one-hot matrices 631 

and the two openness scores of the two anchors on the corresponding cell type extracted from 632 
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OpenAnnotate54. Regarding the Kmer features55, K is chosen as 5 to extract sequence features. 633 

For each anchor, a vector of dimension 4; = 1024  was obtained. Further training was 634 

performed using an MLP with a hidden layer dimension of 256. 635 

Prediction of 3D genome interaction 636 

We collected cis-regulatory elements-gene pairs in K562 cells from other studies and public 637 

database to demonstrate the interpretability of self-attention mechanisms in the EpiGePT. 638 

Enhancers and silencers are typical cis-regulatory elements known play important roles in 639 

transcriptional control during normal development and disease. For enhancers, we downloaded 640 

enhancer-gene pairs from two studies: Gasperini et al.22 and Fulco et al.23, both of which were 641 

tested using a CRISPRi21 assay perturbation. Two datasets contain 664 and 5,091 element-gene 642 

interactions. For silencers, we obtained and random sampled 831 validated silencers-gene pairs 643 

with distance within 64kbp in K562 cells curated from high-throughput experiments from 644 

SilencerDB24. As there are no experimentally validated interaction relationships between these 645 

silencers and genes, we generated silencer-gene pairs by associating the nearest neighbor genes 646 

for classification purposes. Similarly, negative samples were generated by constructing DNase-647 

seq, ATAC-seq and nearest genes using the same approach. Ultimately, we obtained a dataset 648 

comprising 1,662 silencer-gene pairs, encompassing both positive and negative instances. 649 

To obtain scores for regulatory element-gene pairs, we first used the region extending 128kbp 650 

from the center of the enhancer as input and extracted the token where the interacting genes 651 

reside, so that we could filter out regulatory element-gene pairs that were located further than 652 

64kbp apart. Subsequently, we stratified the remaining pairs based on their distance. Since the 653 
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positive and negative sample ratios varied across datasets, we adopted different stratification 654 

strategies for different distance ranges (Fig. 3). Next, we averaged the attention matrices of the 655 

Transformer encoder across all layers and heads. The summed attention scores from other 656 

tokens to the key token containing the gene TSS were used as the attention score of this element-657 

gene pair. This score represents the attention value that the enhancer-centered region receives 658 

for the TSS of the gene. We also calculated the attention score from the bin containing the center 659 

of the regulatory element to the bin containing the TSS, which only slightly affects the 660 

experimental results of regulatory element prioritization. 661 

We collected 5k resolution data from the HiChIPdb (http://health.tsinghua.edu.cn/hichipdb/) 662 

database, specifically from K562 and GM12878 cell lines. We filtered the data to include only 663 

loops where at least one anchor falls within a gene region. We stratified the loops based on 664 

distance into three categories: 0-20kbp, 20-40kbp, and 40-64kbp. For each distance category, 665 

we selected 2000 positive pairs with most significant q-value. To ensure consistency in the 666 

distance distribution, we selected negative pairs by fixing a gene and choosing anchors at 667 

equidistant locations in the opposite direction. These are then used to as test data to evaluate 668 

the prediction methods. 669 

Gradient importance scores 670 

EpiGePT possesses the capability to assign priority rankings to transcription factors by utilizing 671 

gradient importance scores (GIS), taking into account specific cell types and chromatin regions. 672 

The GIS were employed to identify potential functional relationships between specific TFs and 673 

target genes. Specifically, for a given TF-target gene pair, the TSS of genes were used as central 674 
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loci, and the regions spanning 128 kbp upstream and downstream of the TSS were selected as 675 

input. Next, we selected bins with motif binding scores indicating potential binding for the 676 

given TF. For these selected bins, we calculated the GIS for the predictions of eight epigenomic 677 

signals, for each of 711 core TFs. 678 

𝐺𝐼𝑆'9" =
1
|𝜁|
k|

𝜕𝑦X!9"
𝜕𝑡𝑓'9

|
!∈@

 679 

Where, i denotes the ith TF in the set of core TFs, j denotes the jth cell type, k denotes the kth 680 

predicted epigenomic signal, and 𝜁 denotes the set of genomic bins that have binding for the 681 

given TF. In the calculation of the gradient, 𝑦X!9"  denotes the predicted value of the kth 682 

epigenomic signal by the model using the expression in the jth cell type at the lth bin. On the 683 

other hand, 𝑡𝑓'9 denotes the product of the expression of ith TF in the jth cell type and the 684 

corresponding TF binding score. 685 

If we consider the GIS for the prediction of all 8 epigenomic signals simultaneously, we can 686 

prioritize the TFs by calculating their ranks based on each signal separately. Then, we can 687 

calculate an integrated gradient importance score (IGIS) for each TF by averaging the ranks 688 

from all 8 signals. 689 

𝐼𝐺𝐼𝑆'9 =
1
8
k𝑟𝑎𝑛𝑘(𝐺𝐼𝑆'9")
"

 690 

Both the GIS and the IGIS are capable of capturing the significance of a transcription factor 691 

(TF) in regulating a specific gene within the context of a specific cell type. Consequently, these 692 

scores hold potential value in the discovery of TFs that play crucial roles in the regulation of 693 

specific genes, thereby contributing to our understanding of essential regulatory mechanisms. 694 
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In the context of validating TF-TG pairs in the GRNdb and TRRUST databases, we opted to 695 

utilize liver expression data as a representative example due to the unavailability of cell type 696 

information for TRRUST. Furthermore, in this experimental setup, the 𝑡𝑓'9  denotes the 697 

expression of ith TF in the jth cell type and 𝜁 denotes the set of genomic bins that have binding 698 

for the TF of the given TF-target gene pair.  699 

Potential TF-target gene pairs from ChIP-seq data 700 

In this study, we utilized three distinct cell types to conduct a comprehensive screening of TF-701 

target gene pairs and non-target gene pairs across the human genome. Initially, we obtained the 702 

narrow peak files (ENCFF388AJH, ENCFF717IXP, and ENCFF885KLR) from ChIP-seq 703 

experiments across three cell types from the ENCODE project. Subsequently, we examined the 704 

number of peaks within a 128kbp region both upstream and downstream of the TSS for each 705 

gene. Different thresholds were applied to the ChIP-seq data of various TFs. Genes lacking any 706 

peaks within the defined region were classified as non-target genes, while genes surpassing the 707 

threshold in terms of peak counts were designated as target genes. Specifically, for the 708 

aforementioned three cell types, threshold values of 10, 15, and 6 were respectively employed. 709 

Finally, the IGIS approach was employed to determine the corresponding ranks of TFs in the 710 

TF-target gene pairs. 711 

Pathogenic SNPs prioritization 712 

We collected single nucleotide polymorphisms (SNPs) data from the ClinVar and ExAC 713 

databases, which include both potentially pathogenic and benign SNPs. To evaluate the ability 714 

of EpiGePT to predict variant effects, we computed the log-ratio scores (LOS) for multiple 715 
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chromatin signals using EpiGePT on these SNPs. Subsequently, we utilized these scores to 716 

distinguish between pathogenic and benign SNPs. The LOS for each chromatin signal was 717 

defined by computing a forward pass through the model using the reference and alternative 718 

alleles. 719 

Δ𝑂A'B.C! = 𝑙𝑜𝑔	(
𝑜𝑢𝑡𝑝𝑢𝑡(𝐼C!%)
𝑜𝑢𝑡𝑝𝑢𝑡Q𝐼D3ES

) 720 

Where 𝐼D3E	denotes the input DNA sequence based on the reference genome, and 𝐼C!% denotes 721 

the input DNA sequence containing variants. Each chromatin epigenomic profile in each cell 722 

line or tissue predicted by EpiGePT can be used to compute a specific variant score. We did not 723 

take the absolute value in this calculation, so the resulting LOS indicates the direction of change 724 

in the model output after the appearance of the variant. In addition to the predicted chromatin 725 

signals output by the eight models, attention score changes based on self-attention are also 726 

noteworthy. We computed the log-ratio scores for attention by summing the attention scores of 727 

the 10 bins upstream and downstream of the locus of the SNP, to evaluate the effect of the 728 

variant.  729 

Δ𝑂C%%3.%'2. = k |𝑙𝑜𝑔	 q
𝑎𝑡𝑡𝑛(𝑏𝑖𝑛')F(C!%)
𝑎𝑡𝑡𝑛(𝑏𝑖𝑛')F(D3E)

r |	
;

'I:;

		 730 

Where i represents the index of the neighboring bins relative to the locus of the SNP. To avoid 731 

the variant effects of different bins from cancelling each other out during the summation process, 732 

we computed the absolute value of the change in attention scores for each bin and then summed 733 

the scores of the 10 adjacent bins centered at the SNP position. For the classification of 734 

pathogenic SNPs, we calculated these nine LOS for attention separately for each of the 28 735 

tissues or cell lines in training data. As a result, we obtained a feature vector of 252 dimensions 736 
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for each SNP. Then a classifier with 252 features computed by EpiGePT and 52 annotations 737 

from CADD score as inputs are used to predict pathogenic SNPs against benign or likely benign 738 

SNPs. Here, we employed MLP as classifier to validate the effectiveness of the features we 739 

obtained. A five-fold cross-validation experiment is employed for validation, and we utilize two 740 

different positive-to-negative sample ratios, namely 1:1 and 1:2. For each sample ratio, we 741 

randomly sample 32,000 positive samples. The effectiveness of the variant score in identifying 742 

pathogenic SNPs is evaluated using the area under the auROC and the auPRC. Additionally, 743 

we also utilized the logistic regression (LR) as the classifier, consistent with the LR classifier 744 

used in CADD, and found a similar improvement when predicting pathogenic SNPs. 745 

COVID-19-associated SNPS prioritization. We applied the same method to calculate the 746 

LOS of the 8 epigenomic signals for the COVID-19 GWAS data. The absolute values of the 747 

scores were summed as the overall score for each SNP. Then, we use the absolute sum as the 748 

effect score of the SNP and prioritize the COVID-19-associated SNPs based on this score. For 749 

each significant SNP associated with COVID-19 severity obtained from the GWAS data, we 750 

selected normal SNPs within a 128kb region around the SNP as background to calculate the 751 

rank of the LOS for the COVID-19 associated SNP in this region. Furthermore, we calculated 752 

the LOS for all 9,484 COVID-19 associated SNPs and ranked them accordingly. The top 10 753 

SNPs with the highest LOS were selected, which are considered to have potential genetic 754 

associations with COVID-19 severity and complications. 755 

GTEx classification 756 

We collected eQTL data from the supplementary materials of Wang et al37. In their study, the 757 
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authors identified causal eQTLs through statistical fine-mapping, using a posterior inclusion 758 

probability (PIP) threshold of >0.9 for putative causal variants based on expression modifier 759 

score (EMS), and a PIP threshold of <0.9 for putative non-causal variants. To validate the ability 760 

of EpiGePT to distinguish potential causal variants, we perform a classification task on these 761 

variants. For each variation, 128kbp sequence regions near it were selected as the input of the 762 

model, and a score of variation was given by EpiGePT model. For each variant under each 763 

tissue, we can obtain an 8-dimensional vector of genomic features including DNase, CTCF and 764 

other ChIP-seq signals. Based on the LOS, separate random forest classifiers consisting of 10 765 

decision trees are trained for each tissue in order to distinguish between causal and non-causal 766 

variants. The models are evaluated using 5-fold validation on each tissue, with area under the 767 

auPRC and auROC as metrics for assessing their ability to distinguish between causal and non-768 

causal variants.  769 

Code availability 770 

All components of EpiGePT are freely available at https://github.com/ZjGaothu/EpiGePT. 771 

Here, users can access the code for reproducing EpiGePT, as well as the data collection and 772 

preprocessing pipelines used for model training in benchmark experiments. 773 

Data availability 774 

Information and processed data of multiple chromatin signals of whole genome, motif binding 775 

status and expression data of TFs in the corresponding cell lines/tissues, which are used in 776 

EpiGePT are available at Supplementary Tables. The information about the cell lines/tissues 777 

used and the 711 filtered transcription factors is available in the supplementary table. The High 778 
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throughput validated silencers of K562 cell line are download from SilencerDB 779 

(http://health.tsinghua.edu.cn/silencerdb) database. The HiChIP data of K562 cell line and 780 

GM12878 cell line are downloaded from HiChIPdb (http://health.tsinghua.edu.cn/hichipdb/) 781 

database. The DNase-seq peak and ATAC-seq peak data are obtained from the ENCODE 782 

project. Enhancer-gene pairs of CRISPRi23 experiments are obtained from the supplementary 783 

information of Gasperini et al. and Fulco et al. The regulatory network data for transcription 784 

factors and target genes were obtained from the TRRUST35 database 785 

(https://www.grnpedia.org/trrust/) and the GRNdb34 database (http://www.grndb.com). The 786 

annotated chromatin states for whole genome are downloaded from the ROADMAP 787 

epigenomics project (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). 788 

The RNA-seq read counts matrix for protein coding genes used for the prediction of the 789 

chromatin 15-states annotated by ChromHMM are downloaded from the ROADMAP project 790 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.N.pc.gz). 791 

The GWAS data of COVID-19 are download from the COVID-19 Host Genetics Initiative 792 

(https://www.covid19hg.org/).  793 
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Figures 803 

Figure 1 804 

     

 

Fig. 1 Overview of the EpiGePT model for multiple epigenomic signals prediction. The 805 

EpiGePT model consists of four modules, namely the Sequence module, the TF module, the 806 

Transformer module, and the Multi-task prediction module. The sequence module comprises 807 

multiple layers of convolution applied to the one-hot encoded DNA sequence input. The input 808 

sequence length consists of 1000 genomic bins of 128bp for the prediction of multiple signals 809 

and 50 bins of 200bp for the prediction of DNase signal alone. The TF module encompasses 810 

the binding status and expression of 711 transcription factors. The Transformer module consists 811 

of a series of consecutive transformer encoders, while the multi-task module is composed of a 812 

fully connected layer. Additionally, the EpiGePT framework integrates an optional knowledge 813 

guidance module that enhances the interpretability of the model by incorporating three-814 

dimensional chromatin interaction data into the attention layer, thus improving its 815 

understanding of regulatory mechanisms. 816 
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Figure 2   

 

Fig. 2 Performance of EpiGePT and baseline methods on the benchmark experiment. a, 817 

EpiGePT and baseline methods were compared in terms of their regression performance for 818 

DNase signal regression across cell types, genomic regions, and combined cell type and 819 

genomic regions. b, Comparison of EpiGePT and Enformer performance. Each point in the 820 

scatter plot represents the performance of Enformer on the data of a specific cell type (x-axis) 821 

compared to the performance of EpiGePT (y-axis). The top three graphs represent the 822 

prediction of continuous DNase signals (pearson correlation coefficient), while the bottom three 823 

graphs represent the binary classification of chromatin accessibility regions. c, EpiGePT and 824 
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baseline methods' performance on binary prediction of DNase-seq signals. d, EpiGePT 825 

demonstrates more excellent performance in predicting diverse epigenetic signals across 826 

various cell types, compared with the pre-trained Enformer on 78 genomic tracks across 19 827 

unseen cell types. The orange points represent Spearman correlation coefficient, and the blue 828 

points represent pearson correlation coefficient. e, EpiGePT cross-cell-type predictions 829 

compared to experimental signals visualized for a representative example. The predictions 830 

specific to DNase are based on the hg19 reference genome, while predictions for multiple 831 

epigenomic profiles are conducted using the hg38 reference genome. 832 
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Figure 3    

  

 

Fig. 3 Application of self-attention mechanism in EpiGePT for long-range chromatin 833 

interaction identification. a, The performance (auPRC) of attention score of EpiGePT in 834 

distinguishing enhancer-gene pairs at different distance ranges on two different datasets. b, The 835 

performance (auPRC) of attention score of EpiGePT in distinguishing silencer-gene pairs at 836 

different distance ranges based on the data from SilencerDB24. c, Heatmap of the self-attention 837 

matrix of each attention head centered at the TSS of the CHD4 gene, the (i, j) element in the 838 
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matrix denotes the average attention score between the ith genomic bin and the jth genomic bin 839 

across all layers. d, The performance (auPR) of self-attention scores of EpiGePT and EpiGePT-840 

3D in identifying enhancer-promoter interactions across different distance ranges on the K562 841 

cell type. e, The predictive performance (blue points denote pearson correlation coefficients 842 

and orange points denote spearman correlation coefficients) of EpiGePT with knowledge 843 

guidance across 19 cell types and 15,870 long sequences (128kbp). f, Attention scores centered 844 

at the TSS of the CHD4 gene, and putative enhancer regions in its vicinity. g, The performance 845 

(auROC and auPR) of attention score of EpiGePT in distinguishing HiChIP loops of H3K27ac 846 

at different distance ranges on GM12878 cell line. h, The performance (auROC and auPRC) of 847 

the fine-tuned EpiGePT model and baseline methods (DeepTACT and Kmer) in distinguishing 848 

enhancer-gene pairs at various distance ranges (0-20 kbp, 20-40 kbp and 40-64 kbp) on K562 849 

cell line under a 5-fold cross validation setting. The size of the bubbles in the plot represents 850 

the magnitude of the metric values, while the width of the gray rectangles along the x-axis 851 

signifies the overall average values of the three metrics. 852 
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Figure 4 853 
    

 
Fig. 4 Gradient importance scores (GIS) uncover regulatory transcription factors. a, 854 

Genomic regions around TSS of the ESRRB gene and TF expression data on ESC were used in 855 

EpiGePT. The scatter plot represents the GIS scores of 711 TFs on each genomic bin. Each dot 856 

represents the GIS score of a core TF on a specific genomic bin. Two important ESC regulators 857 

REST and POU1F5 are highlighted. b, Bar plot of the top 5% ranked TFs, based on the average 858 

ranks from the GIS of eight epigenomic signals across bins (below). c, Based on the top 5% 859 

ranked TFs in 128kbp region centered at TSS of the ESRRB gene, gene ontology enrichment 860 
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analysis revealed significant enrichment in biological processes related to embryonic 861 

development and cellular differentiation. d, Based on TF ChIP-seq data, all 23,635 human 862 

genes were classified into target genes and non-target genes. The results revealed that TFs 863 

exhibited significantly higher ranks on potential target genes compared to non-target genes. e, 864 

The distribution of the rank of TFs in the GIS and expression value among the 2,705 TF-gene 865 

pairs from the TRRUST database and 1,066 TF-gene pairs derived from genotype-tissue 866 

expression (GTEx) data of the liver sourced from the GRNdb database.  867 

  868 
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Figure 5 869 

    

  

Fig. 5 Variant effect prediction of EpiGePT. a, The LOS for each epigenomic signal is 870 

calculated by the log change fold of the predicted epigenomic signal for reference genome and 871 

WGS genome. b, The performance of EpiGePT and Enformer in discriminating causal SNPs 872 

on the Lung tissue. c, The three subplots from left to right respectively depict the classification 873 

results for disease-related SNPs and benign SNPs down-sampled sourced from the ClinVar 874 

database, with balanced positive and negative samples (1:1 and 1:2 ratio), as well as normal 875 

SNPs sourced from the ExAC database with a MLP classifier. d, The ranked position of 876 

COVID-19 related GWAS data among surrounding benign SNPs based on their LOS, as 877 
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determined using different tissue or cell-type expression data. The results were stratified based 878 

on the distance range of the risk region. The resulting mean and median ranks were both below 879 

0.5. e, Enrichment result (Biological process, Cellular component and Molecular function) of 880 

the nearest genes of the COVID-19 associated SNPs with the max LOS. 881 
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Figure 6 882 
  

 

Fig. 6 Overview of the online prediction web server of EpiGePT. We collected eight types 883 

of epigenetic genome modification signals and corresponding expression data of transcription 884 

factors in different cell types or tissues from the ENCODE project. Based on these data, we 885 

trained the EpiGePT model and deployed it as a built-in kernel on an Apache server. Users 886 

without much coding experience can also access the web server in two ways to obtain the eight 887 
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types of epigenetic genome modification signals for specified cell types and genomic regions 888 

without programming or installation. 889 

 

890 
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