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ABSTRACT11

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using
high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed
significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion
levels. Notably, these perfusion differences were robust and detectable even within five minutes and
just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined
the influence of image quality metrics, various tissue microstructure and morphometry properties,
macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to
arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex
vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger
with hippocampal perfusion than morphometric measures like gray matter thickness. These findings
emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping
hippocampal perfusion. Our study expands the current understanding of hippocampal physiology
and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences
between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic
interventions. In conclusion, our study provides a valuable resource for extensively characterising
hippocampal perfusion.
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Introduction13

The brain’s multi-scale organisation enables processing of different sensory inputs through pathways14

optimised for storing, updating, and recollecting relevant information1. In particular, the structure and15

function of the hippocampus (or ‘hippocampal formation’) have been at the centre of attention in a plethora16

of studies focused on the brain and cognitive aging, especially those investigating memory (dys)function,17

where it was found to be involved in episodic memory (i.e., encoding and retrieval of information tied to a18

specific time and place), as well as in other types of declarative memory2.19

Although the hippocampus has been studied as a singular region for several years, emerging in vivo20

imaging (e.g., ultra-high field MRI) and analysis (e.g., topologically-correct unfolding) methods have21

enabled a better appreciation of its internal organisation3, 4. While a lot is known about the histological sub-22

divisions of the hippocampal formation5, several studies have provided in vivo evidence of hippocampal23

subfields namely, the subiculum (Sub), the Cornu Ammonis (CA) fields 1-4 and Dentate Gyrus (DG),24

their unique anatomical properties6, 7 and their distinct roles in memory processing8, 9 and sensitivity to25

age-related changes10–13. The fact that there are subfield-specific properties likely render differential26

effects across diseases14 and disease subtypes such as those observed in focal epilepsy15. Unfortunately,27

the neurobiological substrates underlying age- or disease-related changes across and between subfields28

remain poorly understood.29

Hippocampal anatomy varies considerably between individuals16 and its fine details are indistinguish-30

able using standard anatomical T1-weighted scans. In most cases, specialised coronal T2-weighted scans31

with a high in-plane resolution positioned oblique to the hippocampus’s long axis are used to delineate its32

convoluted anatomy17. Regardless, out-of-plane issues during manual, voxel-based labelling procedures33

renders it difficult to respect topological constraints such as the contiguity of hippocampal subfields4, 18.34

Looking closer into its structure, there are spatial differences in cytoarchitecture3 and vascular density19.35

Taking together, the patterns of vascularisation and perfusion across the hippocampal tissue suggests36

the selective vulnerability of hippocampal regions for vascular pathologies14, 20 and implicate its role in37

lifelong exposure to risk factors on hippocampal integrity21.38

Recent efforts using high-resolution time-of-flight magnetic resonance angiography (TOF-MRA)39
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data enabled differentiation of hippocampal vascularisation patterns and assessment of their impact on40

cognitive functioning in cerebral small vessel disease patients22, 23. Similarly, ferumoxytol-enhanced41

susceptibility-weighted imaging revealed differences across subfields in terms of microvascular density24.42

Nonetheless, it has remained unclear how these macro- and microvascularisation patterns translate to43

variability in the amount of blood (in ml/100g/min) perfused in the hippocampal tissue. Inherent to the44

challenges in characterisation of the hippocampal structure, measuring perfusion non-invasively (without45

contrast agents) in vivo for detailed quantification of human hippocampal perfusion has been thus far46

unexplored.47

Arterial spin labelling (ASL) is a non-invasive MRI method that allows quantitative measurements48

of cerebral perfusion25. ASL relies on arterial blood water as endogenous tracer but typically suffers49

from low signal-to-noise ratio (SNR) due to low grey matter microvascular density relative to the tissue50

volume26. At 3 Tesla (3T), averaging tens of images acquired in roughly 2-4 minutes can provide a51

low-resolution (4 mm isotropic) perfusion map using ASL. However, this is insufficient to delineate52

perfusion differences across the hippocampus which has a more fine-grained neuroanatomical composition.53

This fine-grained anatomical structure in addition to the inter-subject variability16 limits the ability to54

perform simple across-subjects averaging to improve SNR of the data.55

In this study, we tackle the aforementioned challenges in characterising hippocampal perfusion by56

capitalising upon advances in acquisition and analysis strategies. For our first goal, we optimised an ASL57

acquisition scheme at 7T and leverage the gain in SNR with field strength and lengthening T1 at UHF58

to obtain robust high-resolution (1.5 mm3) hippocampal perfusion data27, 28. The characterisation of the59

hippocampal anatomy is facilitated using sub-millimetre resolution T2-weighted data and construction of60

a surface-based representation using a novel approach, HippUnfold29. By modelling the hippocampus as61

a folded surface, this approach circumvents issues experienced with manual voxel-based methods and62

enables inter-subject alignment, as well as parcellation based on a subfield atlas that respect topological63

constraints4. Joint application of these methods enable a spatially-precise characterisation of tissue64

perfusion across its grey matter and subfields, in particular. For our second goal, we assess the impact65

of nearby arterial structures reconstructed using a high-resolution TOF-MRA on the perfusion maps.66

And finally, by leveraging the harmonized unfolded space, we will assess the cross-correlation between67
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hippocampal perfusion, morphometry, other MRI-based properties as well as cytoarchitectonic features68

extracted from a histological hippocampal sample provided by the BigBrain project30, 31. Altogether,69

the presented results provide novel, significant neuroscientific findings that will aid the community to70

interpret hippocampal (subfield) changes relevant in the context of neurological diseases and/or cognitive71

neuroscience, as well as an imaging framework that can be used to guide researchers in setting up protocols72

and analysis of such data to study hippocampal perfusion.73

Results74

Perfusion in the hippocampus75

Subject-specific quantitative perfusion data were mapped onto their hippocampal mid-thickness surfaces76

reconstructed using the HippUnfold output for its in-depth characterisation. Surface mapping and unfolding77

demonstrate that the hippocampal grey matter is characterised by a spatially varying perfusion pattern.78

The average perfusion map across all 8 runs, 10 subjects and both hemispheres (i.e., totalling to an average79

of 160 perfusion maps) depicted in Fig. 1A, showcased the following patterns: (a) lower perfusion in80

the anterior portion (hippocampal head) and along the hippocampal sulcus (white arrows), (b) higher81

perfusion towards the posterior portion (hippocampal tail) and both proximally and distally (solid arrow)82

from its boundary with the neocortical tissue.83

To facilitate interpretation, the perfusion map was mapped onto the canonical unfolded hippocampal84

surface, with the Sub, CA1, CA2, CA3 and CA4/DG subfields arranged from bottom to top, and the head,85

body and tail aligned from left to right. Friedman’s tests for repeated measures, based on subject-wise86

subfield averages, demonstrated significant differences in perfusion values among subfields (χ2
F (4) = 19.68,87

p < .001, Fig. 1B). Particularly, CA1 exhibited significantly lower perfusion (average of 28.78 ml/10088

g/min) compared to the other subfields (pFDR < .05), as indicated by pairwise comparisons (refer to heat89

maps in Fig. 1B). Perfusion levels in CA2, CA3, and CA4/DG did not exhibit significant variations among90

each other. These findings broadly align with Duvernoy’s seminal work19. For interactive exploration of91

vertex- and subfield-wise data, we direct the reader to our online app1.92

1https://tinyurl.com/3z8czuy9/
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Reliability of hippocampal perfusion estimates93

The low microvascular density poses challenges for ASL-based perfusion data26, resulting in relatively low94

signal-to-noise ratio (SNR), especially at the required spatial resolutions for hippocampal subfield imaging.95

To study stability and sensitivity in detecting intra-hippocampal differences, we constructed hippocampal96

perfusion maps by aggregating data from multiple runs and subjects. Fig. 2 illustrates the evolution of the97

perfusion map in the hippocampus, providing insights into the minimum required number of runs and/or98

subjects for future studies. We evaluated the stability of average perfusion and the variability, assessing99

the coefficient of variation for perfusion values (i.e., homogeneity), across vertices in each subfield, with100

varying subject (S1-10, Fig. 2A) and run (R1-8, Fig. 2B) quantities (in consecutive order). Fig. 2C101

presents the unfolded representation of vertex-wise perfusion estimates as a function of included runs102

(columns) and subjects (rows), with thick outlines and gray background indicating significant subfield103

effects (p < .05 based on the Friedman’s test). Notably, this visual representation demonstrates a gradual104

transition towards the final perfusion pattern, with discernible subfield effects observed from six subjects105

onwards. Two key observations emerge from this analysis: (a) the stability of the mean perfusion signal106

(solid lines) is largely influenced by the number of subjects in the cohort, and (b) perfusion variability107

(dotted lines) tends to deviate more than the mean perfusion signal, particularly with smaller amounts of108

included data.109

The findings in Fig. 2A and B emphasize the critical role of cohort size and data inclusion in achieving110

stable and reliable hippocampal perfusion measurements, shedding light on the interplay between stability,111

variability, and the quantity of included data. Furthermore, they reveal variations in the evolution of112

perfusion estimates depending on the sorting criteria, either subject-wise or run-wise. Therefore, we113

conducted additional analyses by performing N=1000 iterations, shuffling the order of subjects and114

runs each time, and calculating the median value to address potential sampling biases (Fig. S1). It is115

important to note that the left and right hemisphere data were averaged for each iteration, similar to116

Fig. 2C, as they were acquired simultaneously during a single run. Alongside the mean and variability117

of perfusion estimates, we assessed the dependence of perfusion temporal SNR (tSNR) and the effect118

size of between-subfield differences using the Friedman’s test Q-statistic. Heat maps in Fig. S1 show119

the median across iterations relative to the results obtained from the full fit analysis based on the 160120
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perfusion maps, indicated by the black round marker in A, which corresponds to the maps presented in121

Fig. 1. The results confirm a lower dependency of mean perfusion estimates on the amount of included122

data (up to 1% difference, Fig. S1A) compared to between-vertex variability (up to 100%, Fig. S1B).123

Notably, the number of included subjects exerts the strongest impact. In contrast, perfusion tSNR exhibits124

a gradual stabilization with increasing runs, rather than subjects (Fig. S1C). Consistent with improved125

subfield homogeneity (Fig. S1B), the between-subfield effect size gradually increases as more subjects are126

included (Fig. S1D), with a significant effect (p < .05) already observable starting from three subjects.127

Characterisation of MRI quality and morphometric hippocampal features128

To assess the influence of other hippocampal properties on the perfusion pattern, we extracted several129

acquisition- and morphology-related metrics. The acquisition-related metrics encompassed perfusion130

time-course stability (tSNR), B+
1 for blood labelling efficiency, tissue T1, susceptibility-induced image dis-131

tortions, and partial volume estimates (PVE) for gray matter (GM), white matter (WM), and cerebrospinal132

fluid (CSF) tissue classes. The average tSNR of hippocampal perfusion was 3.35 ± 0.84 (Fig. S2A). The133

labelling efficiency, represented by B+
1 , exhibited an average of 12.03 ± 1.15 µT across all data points134

(Fig. S2B) (6.54 µT is required to meet the adiabatic condition for inversion). Susceptibility-induced135

distortions in perfusion imaging were most prominent in the anterior portion (hippocampal head), peaking136

at 0.3 mm within the Sub and CA1 (Fig. S2C), consistent with their proximity to the air-tissue interface.137

However, the magnitude of these distortions was relatively modest compared to those typically observed138

in functional or diffusion MRI32, 33.139

For validation purposes, we also quantified additional hippocampal tissue properties, including140

morphology-related metrics such as cortical thickness, curvature, and gyrification derived using Hip-141

pUnfold, as well as metrics related to underlying tissue microstructure, predominantly reflecting myelin142

content based on T1w/T2w ratio maps. Each metric displayed distinct spatial patterns (Fig. S3). Cortical143

thickness was lowest in CA2, while gyrification was most pronounced along CA1 towards the head. The144

subiculum exhibited the strongest myelination, as indicated by low T1 values but high T1w/T2w ratios.145

These findings align with previous observations, confirming the expected variations in hippocampal tissue146

properties across subfields29.147
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Tracing hippocampal vascularisation148

In our second objective, we utilized high-resolution TOF-MRA data to reconstruct the macrovasculature149

of the hippocampus for combined analysis with the perfusion data. Fig. 3A illustrates a 3D reconstruction150

example of the right hippocampal macrovasculature for a single subject. The topology of the reconstructed151

vasculature aligns closely with previously identified patterns and trees of hippocampal vascularisation23.152

The prominent internal carotid artery (ICA, depicted by magenta solid lines) serves as the primary blood153

supply source to the medial temporal lobe. The posterior communicating artery (PCA) connects the ICA154

with the P1 (cyan) and P2 (white) segments of the posterior cerebral artery, with the latter running parallel155

to the anterior-posterior axis of the hippocampus. Similar to the PCA, the anterior choroidal artery (orange)156

arises from the ICA and follows a superior position in the same direction. Interactive visualizations of these157

3D reconstructions, as well as additional representations such as node-wise networks and vessel geometry158

properties (including B+
1 ), specific to each subject’s hippocampus, can be accessed in the interactive159

HTML notebooks provided in the online code repository2. Collectively, these visualizations demonstrate160

that the network of interconnected arteries described above was identifiable in most cases. However, the161

detection of thinner arteries, such as the anterior and posterior hippocampal arteries, was less reliable162

across subjects due to their diameter falling below the effective resolution of the TOF-MRA data.163

Linking hippocampal vascularisation and perfusion164

Once the vessel tree for each subject was established (Fig. 3A), vessel-related metrics were projected onto165

the hippocampal surfaces to examine the positioning of vertices and subfields relative to the hippocampal166

vasculature (refer to Fig. S4A for an example of the metrics). It is important to note that the presented167

diameter values are estimates limited by the spatial resolution of the TOF-MRA data, which hinders the168

reliable identification of vessels smaller than 0.5 mm. The averaged results across subjects highlight169

variations in the distance to vessels throughout the hippocampus, ranging from 0 to 10 mm, with differences170

observed between subfields (χ2
F (4) = 25.2, p < .001, Fig. 3B). Specifically, CA1 is located farthest from171

the vessels, with an average distance of 5.11 mm, while the subiculum (3.16 mm), CA3 (2.91 mm),172

and CA4/DG (2.90 mm) exhibit closer proximity to macrovasculature structures. Notably, the vessel173

2https://github.com/royhaast/hippocampal_perfusion
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distance map (Fig. 3B) demonstrates a distinct pattern along the anterior-posterior axis of the hippocampus.174

Moreover, vessels in close proximity to the subiculum (e.g., PCA) tend to have relatively larger diameters175

(average of 2.27 mm) compared to vessels near other subfields (χ2
F (4) = 21.4, p < .001, Fig. 3C). An176

important finding from this analysis is that the largest perfusion values are associated with the proximal177

vasculature (Fig. 3D), and overall perfusion signals remain relatively stable across different vessel sizes178

and their distances from hippocampal tissue (Fig. 3E).179

Quantification of hippocampal features cross-correlation180

Having demonstrated that perfusion levels vary across hippocampal grey matter, with higher perfusion181

levels linked to a closer distance to vascular structures, and that we have confirmed previously established182

patterns for its morphometry (thickness, gyrification and curvature) and myelination34, we set out to map183

out their interdependencies. To accomplish this, we computed the Pearson’s correlation coefficient to184

assess the similarity among all pairs of hippocampal features and their vertex-wise averages (see Fig. 4A).185

Perfusion did not demonstrate significant correlations with image distortion, B+
1 , T1, and partial volume186

estimates (proll > .05, Fig. 4A). However, a significant correlation was observed with tSNR (Pearson’s r =187

.81, proll < .001, Fig. 4A), indicating that higher perfusion values were obtained in regions less dominated188

by noise. It is reassuring that our measurements and thus findings of hippocampal perfusion patterns189

appear robust to acquisition-related metrics.190

Regarding the two macrovascular features, we found the strongest correlation between perfusion191

measures and distance to vessels (Pearson’s r = -.47, proll = .06), indicating that regions further away from192

vessels tend to exhibit lower perfusion (see Figs. 1A and 3E). The impact of vessel diameter on measured193

perfusion was relatively smaller, consistent with the notion that smaller vessels, which are more relevant194

to tissue perfusion, are typically in closer proximity to the hippocampal grey matter (Fig. 3D).195

One hypothesis for the relatively modest correlation between perfusion and the other (morphometric)196

features might be that perfusion levels are weighted stronger towards local differences in metabolic197

demand. To explore this further, we repeated the correlation analyses using cytoarchitectonic features198

derived from the BigBrain model (Fig. 4C)31, 34. These cytoarchitectonic measures provide insights into199

the distribution of cell bodies within the hippocampal grey matter across its three axes (anterior-posterior,200
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proximal-distal, and cortical depths) and can serve as proxies for variability in metabolic activity (i.e.,201

heightened activity and functional requirements). Fig. 4D shows an example of one of these features,202

linked to the center of cell body density mass along the cortical depth direction (i.e, derivative of mean X).203

Among all tested features, perfusion appears most strongly (i.e., significantly, proll < .05) correlated with204

the hippocampus’ cytoarchitectonic rather than its morphometry aspects (Fig. 4E), suggesting a stronger205

dependence of perfusion on laminar features and possible associations with metabolic demand.206

Discussion207

Emerging research suggests that certain subfields exhibit selective vulnerability to different types of208

disorders or conditions14. Previous studies have shown that part of this specificity can be ascribed to differ-209

ences in the molecular profiles across subfields35–37, such as expression of NMDA and mineralocorticoid210

receptors and the flexibility to deal with metabolic insults (e.g., hypoxia, ischaemia and reductions in the211

level of circulating hormones)38, 39. However, these factors provide only partial substrates for the selective212

vulnerability and it is hypothesized that non-molecular factors play a role as well, such as differences in213

cytoarchitecture3 and physiology (e.g., spiking rate)40. It is therefore likely that regional differences in214

metabolic demand due to their unique cellular configurations and activity render hippocampal subfields215

differently perfused by blood. As such, characterization of their perfusion will provide important insight216

to further our understanding of the hippocampus’ functioning in health and in disease.217

Perfusion in the human hippocampus218

Alterations in hippocampal perfusion have been observed in various diseases such as Alzheimer’s disease41,219

temporal lobe epilepsy42 and schizophrenia43. However, these findings have primarily relied on imaging220

techniques such as positron emission tomography (PET), single-photon emission computed tomography221

(SPECT), or ASL with limited spatial resolutions (i.e., >2.5mm isotropic) and, hence, did not allow222

quantification of perfusion differences at a subfield level. The quantification of hippocampal subfield-223

specific perfusion requires optimized imaging acquisition and analysis strategies. Therefore, the objective224

of this study was to establish an imaging framework that enables users to accurately assess variations in225

hippocampal perfusion among its subfields. Here we show that it is possible to acquire robust perfusion-226
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weighted data with consistent slab positioning across all subjects (Fig. S5A/B) for high resolution (1.5227

mm isotropic) perfusion quantification using ASL at 7T. The perfusion measures, averaged across our228

cohort, fell within the expected physiological range in healthy humans (Fig. S5C)44, 45. For reference,229

the perfusion in the visual cortex were V1: 58.24 ± 15.68 ml/100 g/min, V2: 44.42 ± 10.91 ml/100230

g/min. The quantitative perfusion values observed in the hippocampus, although lower than those in231

V1 and V2, are unlikely to be artifactual based on the robustness of our data. Instead, they are likely232

attributed to the relatively lower microvascular density, which serves as the source of our perfusion signal,233

in the hippocampus compared to neocortical tissue (like V1 and V2)46, 47. We demonstrate for the first234

time, that there are clear, measurable differences between subfields. Most strikingly, CA1 appears to be235

characterized by the lowest perfusion among hippocampal subfields, which is in line with previous in vivo236

and ex vivo indices of microvascular density in animals48 and humans24, 49. Whilst characterized by a237

lower microvascular density and blood flow, CA1 is not necessarily characterized by a difference in activity238

due to the prominent role of its (mostly pyramidal) neurons in hippocampal structure and function50. This239

thus renders CA1 particularly vulnerable in case of metabolic insults and confirms its observed higher240

susceptibility across several diseases14, 51. Furthermore, our stability analyses have demonstrated that the241

observed perfusion pattern stabilizes quickly and can be reliably detected with a relatively small sample242

size of six subjects and a total ASL scan time of only five minutes per subject (∼50 perfusion-weighted243

images). These findings indicate that a general-purpose high-resolution ASL protocol at 7T, as employed244

in this study, is capable of providing sufficient perfusion information in medial-inferior cortical regions245

like the hippocampus. Therefore, it suggests that specific optimization tailored to each region is not246

necessarily required44, 52. However, it is worth noting that the above recommendation was based on data247

obtained from healthy and experienced control subjects. For researchers, particularly those investigating248

hippocampal perfusion in clinical populations, we advise acquiring as much ASL data as feasible within249

the available scan time to ensure comprehensive analysis and accurate interpretation of the findings.250

Vascularisation and its impact on hippocampal perfusion251

Based on the aforementioned considerations, one may reasonably attribute the relatively diminished252

perfusion observed in the CA1 region and its heightened susceptibility to disease to its comparatively253
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lower microvascular density. However, it is likely that the observed differences in perfusion across the254

hippocampal subfields were not only impacted by the density of small blood vessels but also by their255

proximity to the nearby macrovasculature. This intricate network of arteries and vessels supplies oxygen256

and nutrients to the hippocampal tissue and supports its metabolic demand and proper functioning53. The257

two primary arteries involved in hippocampal perfusion are the posterior cerebral arteries (PCAs) and258

the anterior choroidal arteries (ACHAs). However, the vasculature of the brain is highly interconnected,259

and there may be additional contributions from other arteries to hippocampal perfusion, including the260

hippocampal branches of the middle cerebral arteries (MCAs)53. We employed TOF-MRA to map261

subject-specific vessel branching patterns around the hippocampus in vivo, generating reconstructions262

consistent with previous descriptions of hippocampal vascularisation22, 23, 53. Our reconstructions, along263

with joint analyses of perfusion estimates, suggests that the subiculum’s perfusion is most likely provided264

by collateral branches of the PCA’s P2 segment — a vessel that runs parallel to the anterior-posterior265

hippocampal axis and exhibits a larger diameter. Most importantly, these results suggest that the lower266

perfusion in CA1 might indeed be partly ascribed to its further distance from the macrovasculature,267

especially towards the hippocampal head. While it is possible that increased partial voluming of perfusion-268

weighted signals between arteries and the subiculum, CA2, CA3, and CA4/DG might have artificially269

elevated their perfusion estimates, the dominance of gray matter tissue contributions observed in the270

perfusion analyses decreases the likelihood of this scenario54. Combining measurements of both distance271

and diameter demonstrates that the relationship between mean perfusion and distance is strongest when272

considering smaller vessels (i.e., <2mm), whereas increased variability in perfusion across subjects273

is more closely associated with the closer proximity of relatively larger vessels (i.e., >2mm). These274

integrative analyses collectively indicate that macrovascular structures likely influence the measured275

perfusion pattern and introduce variability in hippocampal perfusion measurements among subjects.276

Therefore, it is advisable for future work to compare hippocampal perfusion maps between groups of277

subjects characterized by different hippocampal vascularisation patterns to gain insights into the observed278

differences, particularly in the context of disease22, 55.279
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Methodological aspects of quantifying hippocampal perfusion280

While we have successfully demonstrated the feasibility of reliably characterizing hippocampal perfusion,281

it remains a challenging task that necessitates certain expertise to ensure high-quality data. In this study, we282

implemented a multi-modal, multi-resolution acquisition protocol for 7T MRI. The use of 7T MRI offers283

improved image quality compared to 3T MRI, thanks to increased SNR28 and potential enhancements in284

spatial resolution. This enhancement allows for better anatomical delineation of hippocampal subregions56
285

and improved sensitivity to perfusion differences57. However, the inclusion of scans with small field-286

of-view and different orientations introduced an additional challenge in terms of data integration. This287

challenge becomes evident when overlaying the slab positioning for the various acquisitions (refer to288

Fig. S6). Nevertheless, not all of these scans are equally critical. In the following discussion, we address289

this aspect and propose a set of minimal requirements to be considered when conducting hippocampal290

perfusion imaging, ensuring feasibility and data quality.291

For anatomical imaging, we recommend acquiring at least an MP2RAGE image58 and a B+
1 map (e.g.,292

using the Sa2RAGE sequence59) to improve hippocampal T1 quantification60, 61, which subsequently en-293

hances the precision of voxel-wise perfusion estimates62. Consistency in subfield labels and harmonization294

across subjects are crucial to maximize the spatial specificity of hippocampal perfusion maps4. Therefore,295

in this study, we opted to acquire additional T2-weighted images to extract hippocampal surfaces and296

perform subfield parcellation using the HippUnfold analysis suite29. The Hippocampal Subfields group297

suggests the use of T2-weighted images for manual segmentation of the hippocampus because of their298

optimal contrast between hippocampal gray matter and stratum radiatum and lacunosum-moleculare299

(SLRM) tissue17, 63. Fig. S5 D-G provides an example of manual segmentation and corresponding surface300

representation for the left and right hemispheres of a single subject. While T2-weighted images are301

generally preferred, recent advancements in HippUnfold enable precise and automatic segmentation even302

when only T1-weighted data are available29. Furthermore, although the CA4 field and DG are distinct303

anatomical entities3, they were combined into a single label due to their limited size. However, in the most304

recent releases of HippUnfold (v1.0.0 and newer), the DG is modelled as a separate surface to increase305

specificity.306

Furthermore, we would like to emphasise several aspects regarding our perfusion imaging protocol.307
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We optimised the high-resolution ASL protocol to be acquired in approximately five minutes per run. This308

optimisation ensured robustness against subject motion during scanning and minimised data loss, which is309

particularly crucial for clinical applications. Additionally, ASL-based perfusion imaging is a B+
1 sensitive310

technique and therefore challenging to acquire at 7T due to its transmit field inhomogeneities, especially311

towards the lower part of the brain (e.g., inferior frontal and temporal lobes)64. This consideration is312

important to note when transitioning from 3T to 7T for perfusion imaging. To address this, we employed313

dielectric pads65, 66 and an optimised inversion (TR-FOCI67) pulse to achieve higher labelling efficiency314

(i.e., α=0.95) in the hippocampal region (Fig. S2B) and the adjacent vasculature (Fig. S4B) for all315

subjects27, 66. Lastly and more generally, reducing geometric distortions, high-spatial resolution and316

isotropic voxels are crucial to reduce partial voluming effects and thereby, improve the perfusion CNR68.317

Some ASL protocols employ 3D-GRASE readouts to obtain relatively higher SNR69 but they come at318

the cost of increased blurring in the z-direction70 as well as higher SAR at ultra-high field strengths.319

Alternatively, ASL with spiral71 and 3D-EPI72 readouts have shown promise to enable high-resolution,320

SAR efficient perfusion imaging at ultra-high fields. In this study, we did not sought out to optimise the321

PLD parameter for hippocampal imaging in particular due to our cohort consisting of young, healthy322

participants and to prevent erroneous estimation of hippocampal grey matter perfusion73. However, this323

should be considered when imaging other cohorts such healthy elderly or patients as the longer arrival324

times necessitate increasing PLD to obtain robust perfusion74.325

Concluding remarks326

By quantifying blood flow across hippocampal subfields, we can gain a better understanding of the327

normal patterns of perfusion and how they relate to the specific functions associated with each subfield.328

Here we presented and validated a 7T MRI imaging framework that allows in vivo characterization of329

perfusion differences across the hippocampus. Our hippocampal perfusion map can serve as a baseline330

for comparison with diseased states where it might possibly allow for early detection and/or assessment331

of disease progression in individuals with hippocampal-related disorders. Diseases that cause even332

modest reductions in hippocampal blood flow, potentially due to capillary rarefaction, hyperconstriction333

and inward remodeling of hippocampal arterioles, would likely have a tremendous impact on neuronal334
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function, memory and cognition75.335

Methods336

Eleven healthy volunteers (mean age 26±3.2 years, 5 males) participated in this study after having provided337

written informed consent. The study was approved by the Ethics Review Committee Psychology and338

Neuroscience (ERCPN) at the Faculty of Psychology and Neuroscience, Maastricht University, The339

Netherlands, and all procedures followed the principles expressed in the Declaration of Helsinki.340

Data acquisition341

All data were acquired on a Siemens Magnetom 7T scanner (Siemens Healthineers, Erlangen, Germany)342

with an SC72 whole-body gradient system capable of maximum gradient amplitude of 70 mT/m, maximum343

slew rate of 200 T/m/s using a 1Tx/32Rx phased array head coil (Nova Medical, USA) housed at Scannexus344

B.V., Maastricht, The Netherlands. The participant preparatory and positioning procedure followed the345

protocol previously described in27, 57, 72. Briefly put, the centre of the eyes were used as the iso-centre346

reference (instead of the eyebrows, as is typically done), supplemental cushions were provided to the347

participants under the neck, to ensure that the large feeding arteries to the brain were as close to parallel to348

the B0 as possible. In addition, two 13×13×0.5 cm3 high-permittivity dielectric pads containing a 2.8:1349

solution of calcium titanate (CaTiO3) in heavy water (D2O) by weight76 were placed on either side of the350

neck to improve the B+
1 (therefore, labelling) efficiency at 7T65. In 6 participants, a third dielectric pad351

was placed over the participant’s right lateral side to reduce the impact of the hemispheric asymmetry of352

the coil’s inherent B+
1 profile66.353

Anatomical data354

A whole-brain 3D-MP2RAGE58 dataset at 1.0 mm isotropic resolution was acquired first and used to355

inform slice positioning during the rest of the session. A 3D-Sa2RAGE59 dataset at 2 mm isotropic was356

acquired to facilitate B+
1 correction of the T1 maps77. At least three repetitions of an ultra-high-resolution357

0.4 mm in-plane resolution T2-weighted 2D-TSE78 were acquired using oblique coronal slices positioned358

to cover the entire hippocampal complex bilaterally. Two ultra-high resolution 0.5 mm isotropic 3D-359

MP2RAGE scans with a partial coverage (entire hippocampal region axially) were acquired. Due to SAR360
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Table 1. MRI acquisition details. See Supplementary Fig. 6 for a schematic of the scanning order and
positioning of the imaging slabs.

Anatomy Perfusion Vasculature
Parameter MP2RAGE TSE T2w ASL TOF-MRA
TR (ms) 6000 6000 9000 2861 15
TE (ms) 1.88 3.98 105 14 3.59
TI1/TI2 (ms) 800/2750 983/2940 700/1800
FA1/FA2 () 4/5 6/7 132 70 15
GRAPPA 4 (A-P) 2 (A-P) 2 (F-H) 3 3 (F-H)
No. of slices 192 72 50 32 220
Slice direction Sagittal Sagittal Coronal Sagittal Coronal
Field of view (mm) 256×256 184×184 192×192 192×192 210×210
Matrix size 256×256×192 368×368×144 512×512×50 128×128× 448×448×x440
Resolution (mm) 1×1×1 0.5×0.5×0.5 0.4×0.4×1 1.5×1.5×1.5 0.5×0.5×0.5
Phase partial Fourier 6/8 Off 6/8 6/8
Slice partial Fourier Off 6/8 6/8
Bandwidth (Hz/px) 250 140 90 1698 203
Acquisition time (m:s) 7:14 5:26 4:41 4:49 5:50
Number of runs 1 2 3 8 2
Total acquisition time 1:20:21 (h:m:s)

constraints, 2D-TSE scans could not be acquired consecutively, the 0.5 mm 3D-MP2RAGE scans were361

interspersed between the 2D-TSE scans for time efficiency. Finally, two repetitions of ultra-high resolution362

0.5 mm isotropic 3D multi-slab time-of-flight79–81 MR angiograms were acquired (3D-TOF-MRA).363

Complete sequence details are tabulated in Table 1.364

Perfusion data365

Perfusion data was acquired at 1.5 mm isotropic resolution using a Pulsed Arterial Spin Labelling366

(PASL) sequence82 employing a FAIR83 QUIPSS II84 labelling scheme with a 2D-EPI readout. For each367

participant, eight consecutive runs of 50 control-label repeats (i.e., 100 volumes) were acquired with368

each run lasting ±5 min. An equilibrium magnetisation (M0) image was acquired using the same PASL369

sequence and 2D-EPI readout, but with no magnetisation preparation and the TR increased to 20 s. A370

second M0 image was acquired immediately after with the opposite phase-encoding direction for distortion371

correction.372

Anatomical data processing373

All stages of data processing and registrations were subject to careful visual inspection for quality control.374
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TSE375

The TSE runs were first resampled to 0.3 mm isotropic resolution using a 5th order B-Spline interpolation376

with ANTs’s ResampleImage3. A minimally deformed average TSE template was created from the 0.3377

mm TSE datasets using ANTs’s antsMultivariateTemplateConstruction2.sh script85. This resampled 0.3378

mm isotropic TSE template image was used for manual hippocampal segmentation and was defined as the379

final reference space for co-registering all other image modalities in the present study.380

MP2RAGE381

Signal from dielectric pads were first masked out4 of both whole-brain (1 mm3) and high-resolution382

(0.5 mm3) MP2RAGE datasets (forthwith referred in text using prefixes ‘wb-’ and ‘hires-’, respectively)383

following which they were corrected for transmit efficiency (B+
1 ) inhomogeneities using a separately384

acquired Sa2RAGE B+
1 map59 in line with77, and following the code and procedure provided by5,60.385

The B+
1 corrected MP2RAGE UNI images were then pre-processed using presurfer686. The cleaned386

wb-UNI image was used as input using the default recon-all pipeline for cortical segmentation and surface387

reconstruction in Freesurfer 7.1.187,7. The cleaned hires-UNI, and the B+
1 corrected hires-UNI images388

and hires-T1 maps were resampled to 0.3 mm isotropic resolution using a 5th order B-Spline interpolation389

with ANTs’s ResampleImage. A minimally deformed average template image was created using ANTs’s390

antsMultivariateTemplateConstruction2.sh script and the average B+
1 corrected hires-UNI image and391

hires-T1 map were used in further analyses.392

TOF-MRA393

The TOF-MRA MRA data were first resampled to 0.3 mm isotropic resolution using a 5th order B-Spline394

interpolation with ANTs’s ResampleImage. Next, the second run was co-registered to the first run by a395

rigid-body transformation using greedy with the Neighbourhood Cross Correlation (NCC) metric. Then,396

the estimated transformation matrix was converted to an ITK matrix using c3d_affine_tool and the second397

run was resampled using ANTs’s antsApplyTransforms and its Lanczos Windowed Sinc interpolator. An398

3https://github.com/ANTsX/ANTs
4https://github.com/srikash/ants_deface_depad/blob/master/PadsOff
5https://github.com/JosePMarques/MP2RAGE-related-scripts
6https://github.com/srikash/presurfer
7https://surfer.nmr.mgh.harvard.edu
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average TOF-MRA image was calculated using ANTs’s AverageImages and this average 0.3 mm isotropic399

TOF-MRA image was used for vascular segmentation.400

Perfusion data processing401

First, the ’blip-up’ and ’blip-down’ M0 EPI datasets were rigidly realigned to their respective first volume402

in the timeseries using FSL’s flirt with the NMI cost function (normmi) and resampled using the spline403

interpolator. Then, a temporal mean was calculated from the realigned M0 timeseries. Next, a rigid-body404

registration was estimated from the blip-down (moving image) to the blip-up (fixed image) using FSL’s405

flirt. The blip-up and registered blip-down M0 image were combined into a 4D file using FSL’s fslmerge406

and the phase-encoding distortion correction was estimated using FSL’s topup33.407

All ASL images were rigidly motion-corrected using the blip-up M0 as a reference space using an408

iterative implementation of FSL’s flirt. Motion matrices and phase-encoding distortion estimate were409

combined into a warp using FSL’s convertwarp. All ASL runs were corrected for motion and phase-410

encoding distortions using a single resampling step using FSL’s applywarp and spline interpolation.411

Perfusion-weighted images (PWI) were calculated from the ASL timeseries datasets using the surround-412

subtraction approach88, 89 as implemented in FSL’s asl_file. Perfusion temporal signal-to-noise (tSNR) map413

was calculated by dividing the PWI temporal mean by the PWI temporal standard deviation. Perfusion414

quantification was carried out in native space using oxasl8 using the PASL model44. The following415

parameters were modified as per our acquisition scheme (inversion efficiency = 0.95,57) and the field-416

strength (T1,blood = 2.2 s,90; subject-wise T1 image was provided using –t1img32, 77, 91).417

Registration to 0.3 mm TSE space418

Anatomical data419

The wb-UNI (moving image) was co-registered to the hires-UNI (fixed image) by a rigid-body transfor-420

mation using greedy,992 with the Normalised Mutual Information (NMI) cost function. The registrations421

was visually inspected for quality control. The estimated transformation was applied using greedy and its422

LABEL interpolator to resample the WM segmentation from Freesurfer to the hires-MP2RAGE space.423

8https://github.com/physimals/oxasl
9https://github.com/pyushkevich/greedy
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The estimated transformation matrix was converted to an FSL compatible matrix (‘wb2hires’) using424

c3d_affine_tool10.425

The transformation between the hires-MP2RAGE and TSE datasets was estimated in two stages.426

First, a rigid-body registration was estimated from the TSE (moving image) to the hires-UNI (fixed427

image) using greedy with a Normalised Mutual Information (NMI) metric. Then, c3d_affine_tool was428

used to convert this c3d matrix to an FSL matrix. The second stage involved use of the boundary-based429

registration (BBR93) cost function as implemented in FSL’s flirt together with the initialisation matrix430

from the first stage to register the TSE (moving image) to the hires-UNI (fixed image) in a robust manner.431

The registrations was visually inspected for quality control. The resulting transformation matrix (i.e.432

‘tse2hires’) was inverted using FSL’s convert_xfm to obtain the hires-MP2RAGE to TSE transformation433

(‘hires2tse’). Finally, this transformation matrix was applied using the spline interpolator in FSL’s flirt to434

the hires-T1 map to transform it to the TSE space.435

TOF-MRA data436

The TOF-MRA (moving image) was co-registered to the TSE (fixed image) by a rigid-body transformation437

using greedy with the NCC metric. The registration was visually inspected for quality control. Then,438

the estimated transformation matrix was converted to an ITK compatible matrix using c3d_affine_tool.439

Finally, the TOF-MRA was resampled using ANTs’s antsApplyTransforms and its Lanczos Windowed440

Sinc interpolator.441

Perfusion data442

The registration strategy to transform the ASL data into the TSE was as follows. First, a rigid-body443

transformation matrix was estimated from the ASL data (moving image) to the wb-UNI image using444

FSL’s flirt with the BBR cost function (‘asl2wb’). The ‘asl2wb’ and ‘wb2hires’ (estimated previously)445

transformation matrices were concatenated using FSL’s convert_xfm to obtain the ‘asl2hires’ transformation446

matrix, which is the affine transformation from the ASL native space to the hires-UNI space. Second, the447

‘asl2hires’ and ‘hires2tse’ (estimated previously) transformation matrices were concatenated to obtain448

the ‘asl2tse’ transformation matrix, which is the affine transformation from the ASL space to the 0.3449

10https://github.com/pyushkevich/c3d
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mm TSE reference space. All derivatives from the ASL data such as perfusion and perfusion tSNR were450

transformed from their native space to the TSE space using a single resampling step using FSL’s flirt and451

its spline interpolator by applying the final ‘asl2tse’ transformation matrix. The registration quality was452

visually inspected at every stage of the transformation including all the intermediate steps.453

Hippocampus and subfield segmentation454

The 0.3 mm isotropic average TSE data were used to manually segment the hippocampus for each455

subject (Supplemetnary Fig. 5D). In the average TSE data, the contrast between the stratum radiatum456

and lacunosum-moleculare (SLRM), or ‘dark band’, and the neighbouring hippocampal GM tissue is457

improved and was essential to facilitate manual segmentation. First, individual masks for both SLRM and458

GM tissues were created semi-automatically using the active contour segmentation mode in ITK-SNAP459

v3.8.094 and were manually edited following the recommendations in34. Additionally, several ‘boundary’460

labels were added to encode for the anterior-posterior (A-P), proximal-distal (P-D) and inner-outer (I-O)461

axes (Supplemetnary Fig. 5E).462

Following the manual segmentation, each hippocampus was unfolded using the snakemake95 imple-463

mentation of our in-house developed hippocampal unfolding tool (Fig. S5F-G)29 . In brief, this method464

entails the following steps: (i) alignment of the subject-specific T2w image and its manual segmentation465

to the coronal oblique atlas space, (ii) imposing coordinates along the A-P, P-D and I-O dimensions onto466

the hippocampal GM by solving the Laplace equation, (iii) extracting inner, mid-thickness and outer GM467

surfaces whilst ensuring one-to-one vertex correspondence between them, and (iv) estimating the native-468

to-unfolded space transformation to analyse data in a common 2D plane. A detailed description of the469

unfolding algorithm can be found in the original work34 and online documentation11. All the surface-based470

output was generated within the GIfTI framework to allow easy manipulation, volume-to-surface mapping471

(see following sections) and visualization using Connectome Workbench96. Exploration of the manual472

segmentations and HippUnfold output is possible using the HTML visualization notebooks provided in473

the online code repository.474

11https://hippunfold.readthedocs.io
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Vascular segmentation and reconstruction475

The average 0.3 mm TOF-MRA data were used to identify macrovascular structures within the vicinity of476

the hippocampus. First, the TOF-MRA image was spatially filtered using non-linear anisotropic diffu-477

sion97, 98 by exploiting the structure tensor field derived from the images as implemented in Segmentator478

v1.6.099,12. This preserves the boundaries between vessels and brain tissue while reducing intra-tissue479

class image noise. Next steps were carried out in MeVisLab v3.3100,13. First, vessel-like structures480

were extracted from the ‘smoothed’ TOF-MRA image for 3D reconstruction. Then, for each subject and481

hemisphere, the input image was rescaled to range between 0-100 a. u. (i.e., to match intensity ranges482

across subjects), then thresholded to increase the contrast between vessels and background (i.e., GM and483

WM, image intensity < 10, a. u.) tissue and finally used to manually define ±150 seeding points to484

segment connected vessels. This ensures that all voxels connected in the x, y or z direction with a seed485

point, and within the specified intensity range will be segmented. Here, the lower threshold was optimised486

for each subject based on manual inspection of the vascular tree after its automatic 3D reconstruction. This487

was achieved by (a) extracting the vessels’ skeleton based on the centerline of the binary segmentation488

label, (b) transforming the skeleton into a graph to encode geometrical and structural shape properties so489

as to allow (c) the decoding of the graph properties into an polygonal surface of the vascular tree for 3D490

visualization101. Finally, surfaces were transformed to voxel-wise representations and skeleton graphs491

saved as an XML file for network reconstruction and analyses.492

Data integration and visualization493

Subsequently, the hippocampal mid-thickness surface, ASL and TOF-MRA output maps were combined494

to assess their relationship. First, for each mid-thickness vertex, distance (in mm) to the most nearby495

vessel structure was calculated by taking the minimum euclidean distance to all vessel centreline voxels496

minus their radius102. These, as well as the respective vessel diameters, were then exported as GIfTI497

metric files using nibabel v3.2.0103. Second, for the co-registered imaging data, Connectome Workbench’s498

-volume-to-surface-mapping command-line tool was used to sample along the hippocampal GM mid-499

thickness vertices, hereby constraining the mapping algorithm to only include voxels that were labeled500

12https://github.com/ofgulban/segmentator
13https://www.mevislab.de
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as GM and found between the inner and outer GM surfaces. As such, each vertex’s value represents a501

weighted average of the voxels along the IO dimension with lower weights for voxels positioned more502

distal to the mid-thickness surface.503

Additionally, we developed a Python-based framework for network-based analyses of the vasculature’s504

structure. Skeleton graph XML files are parsed to define segment type (start, termination, branchpoint505

or skeleton) by examining the degree of connectivity, as well as connecting edges using the NetworkX506

package104. Each edge represents a physical connection between two nodes of type (i) start–skeleton,507

(ii) bifurcation–skeleton, (iii) skeleton–skeleton or (iv) skeleton–end with properties defining length,508

diameter, volume and surface area. Nodes and edges are used to construct a network for extraction of the509

shortest path from a given node to the rest of the vascular tree, as well as to compute different network510

characteristics (e.g., connected components, lowest common ancestors). Finally, vascular networks can be511

visualized and inspected interactively using implementation of the plotly interface. Individual MeVisLab512

workflows, output files and visualization notebooks for each subject and hemisphere can be found in the513

online repository.514

Statistical analyses515

Statistical analyses were performed using the pingouin Python package105. The non-parametric Friedman’s516

test for repeated measures analyses of variance was used to assess differences across subfields. In case of a517

significant subfield effect, the Wilcoxon signed rank-test was applied for pairwise-comparisons, correcting518

for multiple comparison using the Benjamini-Hochberg false-discovery rate (FDRBH) method. The519

Pearson’s correlation coefficient was used to assess correlations among hippocampal surface maps (e.g.,520

perfusion vs. T1w/T2w), while controlling for spatial autocorrelation106 using ’roll’-based permutation521

testing (proll) as well as multiple comparisons using FDRBH correction when constructing the correlation522

heatmaps. Briefly, to generate null distributions, N=5000 permuted maps are generated by randomly523

shifting the 2D hippocampal maps across one or both axes using SciPy’s shift function and through rotation524

using their rotate function107. Here, extension of maps was ensured by wrapping around to the opposite525

edge. Significance was then determined based on the position of the empirical correlation coefficient with526

respect to the generated null distribution6.527
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Figure 1. Perfusion mapping in the hippocampus. (A) The figure displays perfusion values (ml/100
g/min) mapped on folded and unfolded hippocampal surfaces. The dotted and solid arrows indicate the
anterior-posterior and proximal-distal axes, respectively. Subfield boundaries, derived from
cytoarchitectonic features of the BigBrain atlas, are overlaid on the unfolded map. (B) Subfield averages,
color-coded based on the subfield atlas overlaid on maps in D, are presented for each subject and
hemisphere (circles for the left hemisphere, diamonds for the right hemisphere), as well as per vertex
(semi-transparent dots averaged across subjects and hemispheres). Pairwise comparisons between subfield
averages are depicted as heatmaps, with FDRBH-corrected p-values indicated by asterisks: *p < .05, **p <
.01, ***p < .005.
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Figure 2. Evolution of high-resolution perfusion maps. The figure illustrates the progression of
high-resolution perfusion maps, showcasing the percentage difference in mean perfusion (solid lines, top)
and variability (dotted lines, bottom) across the entire hippocampus (in black) and individual subfields
(color-coded). The evolution is presented as a function of (A) the number of included subjects or (B) runs.
(C) Additionally, the figure depicts the unfolding of the average perfusion map and its evolution as a
function of the number of included runs (rows) and subjects (columns) in consecutive order.
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Figure 3. Hippocampal vasculature and perfusion relationship. (A) Three-dimensional reconstruction of
a subject’s macrovasculature in close proximity to the right hippocampus, showcasing delineated vessel
segments. (B) Hippocampal vessel distance (mm) depicted on an unfolded hippocampal surface. Strip
plots display color-coded subfield averages for each subject, including left hemisphere (circles) and right
hemisphere (diamonds), along with per vertex values (i.e., averages across subjects and hemispheres
shown as semi-transparent dots). Heatmaps illustrate pairwise comparisons between subfield averages,
with FDRBH-corrected p-values indicated by asterisks: *p < .05, **p < .01, ***p < .005. (C) Similar to
(B), but representing vessel diameter (mm) of the nearest vessel. (D) Scatter plot illustrating the
relationship between vertex-wise mean perfusion (ml/100 g/min) and the shortest distance to a vessel
(mm), stratified by respective vessel diameter (color-coded as thinner or thicker than 2 mm). Linear fits for
each group are depicted by solid and dashed black lines. (E) Similar to (D), but contrasting with perfusion
variability determined by the coefficient of variation across all maps (i.e., across runs and subjects).
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Figure 4. Between-feature correlations. (A-B) Heatmaps depicting the correlations between different
features (see Supplementary Figs. 2 and 3) on their vertex-wise averages, with corresponding Pearson’s
correlation coefficients annotated. Significant correlations, after correcting for spatial autocorrelation and
multiple comparisons, are indicated by bold annotations. Panels (C-E) illustrate the correlations between
perfusion and various hippocampal morphometric and cell density measures derived from BigBrain. In
panel (E), the point plot displays permuted Pearson’s correlation coefficients represented by
semi-transparent black markers, which were used to calculate color-coded significance levels.
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Supplementary Figure 1. Bootstrap analysis. Evolution of (A) mean perfusion, (B) perfusion
variability (coefficient of variation), (C) mean tSNR and (D) between subfields effect size using the
median across N=100 bootstrap samples. For each metric, heatmaps depict the percentage difference with
respect to the final estimates as function of number of included runs and subjects for global hippocampal
estimates. Line plots show the impact of number of included runs (across all subjects) and subject (across
all runs) on global and subfield-specific estimates. Superimposed contours indicate the 0% level for A, B
and C and p-value thresholds for D.
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Supplementary Figure 2. MRI quality metrics. Average (A) perfusion tSNR (a.u.), (B) B+
1 (µT), (C)

T1 (msec), (D) image distortion (mm) and (E) partial volume estimates (PVE) are mapped on the unfolded
hippocampal surface. Dotted lines indicate subfield boundaries. The center plots show subfield averages
for left (solid) and right (dashedline) hemispheres separately. Color-coded (as per subfield atlas overlaid
on center images) subfield averages are shown for each subject and left (circles) and right (diamonds)
hemisphere, as well as per vertex (i.e., averaged across subjects and hemispheres, semi-transparent dots,
right plots). PVE estimates are displayed as line plots and color-coded based on tissue class.
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Supplementary Figure 3. Morphometric hippocampal tissue properties. (A) Thickness (mm), (B)
gyrification (a.u.), (C) curvature (a.u.) and (D) myelination (i.e., T1w/T2w, a.u.) are displayed for an
example subject with color-coded surface outlines superimposed onto a coronal slice (left). Center images
show the respective averages mapped on the unfolded hippocampal surface with dotted lines delineating
subfield boundaries. Color-coded (as per subfield atlas overlaid on center images) subfield averages are
shown for each subject and left (circles) and right (diamonds) hemisphere, as well as per vertex (i.e.,
averaged across subjects and hemispheres, semi-transparent dots, right plots).
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Supplementary Figure 4. Hippocampal vasculature and grey matter projections. Example of a
three-dimensional reconstruction of a subject’s macrovasculature near the right hippocampus color-coded
for vessel diameter. Shortest distance between hippocampal vertices and the vessel tree is projected on the
folded hippocampal surfaces. The colourmap on the vessels indicates local diameter (mm) while on the
surface maps indicates the distance (mm) to closest vessel.
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Supplementary Figure 5. Hippocampal perfusion imaging and subfield segmentation. (A) Cortical
projections of the vertex-wise coverage, and (B) average perfusion across subjects, (C) average perfusion
distribution in cortex and hippocampus. (D) Example T2w data for a single subject’s left and right
hippocampus, (E) manual segmentation of hippocampal tissue, (F-G) HippUnfold subfield labelling and
fitted surface.
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Supplementary Figure 6. MRI modalities in the present study. (A) Scanning timeline showing the
order of acquisitions colored by MRI modality. (B) Positioning of each MRI modality with respect to the
whole-brain reference.
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