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Abstract

Objective: To train a deep learning (DL) algorithm to perform fully automated semantic 

segmentation of multiple autofluorescence lesion types in Stargardt disease.

Design: Cross-sectional study with retrospective imaging data.

Subjects: 193 images from 193 eyes of 97 patients with Stargardt disease.

Methods: Fundus autofluorescence (FAF) images obtained from patient visits between 2013 and 

2020 were annotated with ground-truth labels. Model training and evaluation were performed with 

five-fold cross-validation.

Main Outcomes and Measures: Dice similarity coefficients, intraclass correlation 

coefficients (ICCs), and Bland-Altman analyses comparing algorithm-predicted and grader-labeled 

segmentations.

Results: The overall Dice similarity coefficient across all lesion classes was 0.78 (95%CI, 

0.69–0.86). Dice coefficients were 0.90 (95%CI, 0.85–0.94) for areas of definitely decreased 

autofluorescence (DDAF), 0.55 (95%CI, 0.35–0.76) for areas of questionably decreased 

autofluorescence (QDAF), and 0.88 (95%CI, 0.73–1.00) for areas of abnormal background 

autofluorescence (ABAF). ICCs comparing the ground truth and automated methods were 0.997 

(95%CI, 0.996–0.998) for DDAF, 0.863 (95%CI, 0.823–0.895) for QDAF, and 0.974 (95%CI, 

0.966–0.980) for ABAF.

Conclusions: A DL algorithm performed accurate segmentation of autofluorescence lesions in 

Stargardt disease, demonstrating the feasibility of fully automated segmentation as an alternative 

to manual or semi-automated labeling methods.
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A ResNet-UNet convolutional neural network can accurately label multiple lesion types in 

autofluorescence images for Stargardt disease, facilitating automated monitoring of disease 

progression.

Introduction

Stargardt disease is the most common juvenile-onset macular dystrophy, affecting 

approximately 1 in 8,000–10,000 individuals.1 It is inherited in an autosomal recessive 

manner, and over 900 disease-causing variants have been identified in the gene ABCA4.2,3 

The disease is clinically heterogenous, with significant variation in age of onset and 

presentation, imaging findings, and rate of progression.4

When disease-causing variants disrupt function of the ABCA4 transporter protein, toxic 

bisretinoids accumulate in the retinal pigment epithelium (RPE), leading to progressive 

changes on autofluorescence (AF) imaging. The AF lesions that arise in Stargardt disease 

have been well described.5–7 Lesions of definitely decreased autofluorescence (DDAF) are 

defined as areas where the level of AF darkness is at least 90% that of the optic disc. 

DDAF lesions signify substantial atrophy of the RPE-photoreceptor complex. Lesions of 

questionably decreased autofluorescence (QDAF) are defined as areas where the level of 

AF darkness is between 50% and 90% that of the optic disc. QDAF lesions represent 

areas of diseased outer retina that may convert into DDAF lesions. Other abnormal AF 

features in Stargardt disease include localized hypofluorescent and hyperfluorescent changes 

associated with pisciform flecks, diffuse background hyperfluorescence, and heterogenous 

hypofluorescent and hyperfluorescent background changes.8–10

The ProgStar natural history studies of Stargardt disease revealed that changes in AF lesions 

may be useful for monitoring disease progression and serving as an outcome measure 

for clinical trials.11 Automated segmentation of AF lesions may assist manual graders or 

serve as a basis for consensus in segmentation tasks for therapeutic trials. Additionally, 

automated segmentation could provide rapid or real-time rates of progression to physicians 

and patients. Previous studies have described using machine learning or deep learning 

methods to segment isolated AF features of Stargardt disease including atrophic lesions 

and flecks.12–14 However, simultaneous multi-label segmentation has not been previously 

achieved. Here we describe the training and validation of a DL algorithm for performing 

multi-label segmentation of DDAF and QDAF lesions, as well as regions of abnormal 

background AF (ABAF).

Methods

We included patients seen in the inherited retinal disease (IRD) clinic with a clinical 

diagnosis of Stargardt disease and molecular confirmation of disease with two or 

more pathogenic or likely pathogenic variants in ABCA4. The clinical diagnosis was 

established by an expert in IRDs (A.T.F or K.T.J.). Comprehensive evaluation consisted 

of family pedigree obtained by a genetic counselor (D.S. or K.B.), clinical examination, 

electroretinogram, Goldmann visual field testing, fundus photography, fundus AF, and 

macular optical coherence tomography. Molecular diagnosis was confirmed by a Clinical 

Zhao et al. Page 2

Ophthalmol Retina. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Laboratory Improvement Amendments certified laboratory. We excluded patients found 

to only have one pathogenic or likely pathogenic variant in ABCA4 or those found to 

have another likely cause of disease in a different IRD gene. Institutional Review Board 

Committee approval was obtained. This study adhered to the tenets of the Declaration of 

Helsinki.

AF images were captured using Optos 200Tx or Optos California Ultra-widefield (Optos 

Inc., Dunfermline, United Kingdom) imaging devices using an excitation wavelength of 

532 nm. Each image was cropped to the central 512 × 512 pixels including the macula 

and optic disc. Labeling of DDAF and QDAF lesions was performed by a clinician with 

training in IRDs (P.Y.Z) using Photoshop (Adobe Inc., Mountain View, California) to 

create the multi-channel label masks according to previously established criteria for DDAF 

and QDAF lesions.5,6 A 20% random sampling of the images and ground truth labels 

were verified by an expert in IRDs (KTJ). Additionally, areas of abnormal background 

autofluorescence that did not meet criteria for DDAF or QDAF were labeled as ABAF 

lesions. ABAF lesions included hypofluorescent and hyperfluorescent changes surrounding 

flecks, patches of homogenous increased background hyperfluorescence, and areas of 

heterogenous hypofluorescent and hyperfluorescent background changes. Images were 

categorized into AF subtypes as previously described.10

A modified UNet model was constructed using ResNet-50 encoder blocks (Figure 1) for the 

down-sampling portion of the model. The model is publicly available at (https://github.com/

retina-deep-learning/StarSeg). We used this ResNet-UNet model because it contains features 

to optimize segmentation. The architecture of UNet contains an encoder and decoder 

portion.15 The encoder collects feature information, while the decoder combines the feature 

information from the encoder with spatial information passed through long skip connections. 

Additionally, we modified the base UNet architecture by specifying ResNet50 as the 

encoder portion of the model. Deeper neural networks have increased ability to extract 

higher-level features from images, but with deeper networks it was also paradoxically found 

that training errors increased. This issue, known as the degradation problem, was addressed 

by He and colleagues using short skip connections to pass identity mappings, which allow 

the network layers to fit residual mappings.16 This ResNet-UNet model was constructed to 

accept grayscale image input and generate output of multi-label classifications with different 

color channels for each feature (DDAF, blue; QDAF, green; ABAF, red).

The model was evaluated using five-fold cross-validation. The RMSprop algorithm was used 

for optimization, and soft Dice loss was used for the loss function.17,18 The ResNet-50 

part of the model was pre-trained on ImageNet. Learning rate was set to 0.001 for initial 

training, and then reduced to 0.0001 for fine-tuning. Training data batch size was set to 16. 

Training data was randomly augmented using rotation of up to 30 degrees, horizontal and 

vertical translation of up to one-quarter image length, shear of up to 15 degrees, and zoom 

between 75 and 125 percent of image size. Training of each fold was completed after 600 

epochs. Computation was performed using Keras with TensorFlow version 2.4.1 as backend 

on the University of Michigan High Performance Computing Cluster (16GB NVIDIA Tesla 

V100; NVIDIA Corporation, Santa Clara, California). Intra-class correlation coefficient 

(ICC) calculations and Bland-Altman analyses were performed in R (The R Foundation, 

Zhao et al. Page 3

Ophthalmol Retina. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/retina-deep-learning/StarSeg
https://github.com/retina-deep-learning/StarSeg


Vienna, Austria). ICC estimates and their 95% confidence intervals were calculated based on 

a two-way random-effects, absolute agreement, single-measurement model.

Results

The study included 193 images from 193 eyes of 97 patients seen in the IRD clinic between 

2013 and 2020. We excluded 19 images from 10 patients due to media opacity or poor 

image quality precluding accurate image labeling. Clinical characteristics are shown in Table 

1. Mean age was 35.0 (SD = 17.3), and mean logMAR visual acuity was 0.76 (SD = 

0.53) or Snellen equivalent 20/115. Out of 97 patients, 79 (81%) had 2 disease-causing 

variants, 17 (18%) had 3 disease-causing variants, and 1 (1%) had 4 disease-causing 

variants. There were 77 unique disease-causing variants found in 97 patients. The most 

frequently found disease-causing variants were missense variant c.5882G>A (16 patients), 

missense variant c.3113C>T (14 patients), splice variant c.2588G>C (12 patients), missense 

variant c.5603A>T (12 patients), and missense variant c.1622T>C (11 patients). Image 

characteristics are shown in Table 2. Out of 193 images, 83 (43%) images were categorized 

as AF subtype 1 (localized low signal at the fovea surrounded by homogenous background), 

77 (40%) as subtype 2 (localized low signal at the macula surrounded by heterogenous 

background), and 33 (17%) as subtype 3 (multiple low-signal areas in the posterior pole 

surrounded by heterogenous background).

DL algorithm performance was evaluated using five-fold cross-validation. The Dice 

similarity coefficient over all classes of lesions was 0.78 (95%CI, 0.69–0.86). Dice 

coefficients varied among the different lesion classes. For DDAF lesions, the Dice 

coefficient was 0.90 (95%CI, 0.85–0.94). For QDAF lesions, the Dice coefficient was 0.55 

(95%CI, 0.35–0.76). For ABAF, the Dice coefficient was 0.88 (95%CI, 0.73–1.00). Figure 

2 shows images representative of the different AF subtypes found in Stargardt disease, 

their labeled ground truths, and the DL algorithm segmentation predictions. The algorithm 

was able to predict segmentations for DDAF, QDAF, and ABAF lesions across the three 

previously described AF subtypes (type 1, type 2, and type 3).10 Predicted segmentations 

for DDAF and ABAF were more consistent with the respective ground truth labels than the 

predicted segmentations for QDAF, consistent with the higher Dice coefficients for DDAF 

and ABAF.

Correlation plots of ground truth versus predicted lesion area are shown in Figure 3. The 

highest correlation was observed for DDAF, with an ICC of 0.997 (95%CI, 0.996–0.998). 

For QDAF, the ICC was 0.863 (95% CI, 0.823–0.895). For ABAF, the ICC was 0.974 

(95%CI, 0.966–0.980). Bland-Altman analyses were performed for each lesion type (Figure 

4). For DDAF, there was no statistically significant mean bias, and the limits of agreement 

between methods were −3.0 to +3.1 mm2. For QDAF, there was a statistically significant 

mean bias of +0.5 mm2, and the limits of agreement were −6.0 to +6.9 mm2. For ABAF, 

there was no statistically significant mean bias, and the limits of agreement were −13.6 to 

+13.1 mm2.
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Discussion

Convolutional neural networks based on the UNet encoder-decoder architecture have been 

previously used in ophthalmology to perform automated segmentation of geographic atrophy 

on color photos and detect referable retinal disease on OCT.15,19,20 We used a modified 

architecture in which the encoder portion of the network consisted of a ResNet-50 network 

to identify and segment multiple AF lesions of interest in Stargardt disease.

DDAF and QDAF lesions have been identified as important features for establishing severity 

and monitoring progression of Stargardt disease, as well as serving as potential outcome 

measures for therapeutic trials.5,7,11 The DL algorithm we trained achieved a high Dice 

coefficient of 0.90 (95%CI, 0.85–0.94) for segmentation of DDAF, exceeding the Dice 

coefficient of 0.78 achieved for atrophic DDAF lesions in a previous study.13 The ICC for 

algorithm DDAF predictions (0.997) was similar to the inter-grader ICC between human 

graders calculated for DDAF for both manual (0.981) and semiautomated (0.993) methods.5 

Bland-Altman analysis showed agreement between algorithm predictions and ground truth 

labels, with limits of agreement comparable to those between human graders.21

The DL algorithm achieved a lower Dice coefficient for QDAF lesions. Automated 

segmentation of QDAF lesions has not previously been described. It is challenging for 

algorithms to reliably reproduce QDAF lesions due to disagreement on lesion borders. Even 

for human graders, the inter-grader agreement for QDAF lesions is lower, especially for 

the subset of poorly-demarcated QDAF lesions (PDQDAF). The ICC for QDAF (0.863) 

was lower than that for DDAF, and comparable to the ICC previously achieved for semi-

automated segmentation of PDQDAF (0.715).5 Further research is needed to better define 

QDAF lesions to improve reproducibility.

The DL algorithm was also trained to label ABAF lesions, which included various other AF 

features of Stargardt disease such as hypofluorescence and hyperfluorescence near flecks, 

homogenously increased background hyperfluorescence, and areas with heterogenous 

hypofluorescent and hyperfluorescent background. The natural history of these various 

other lesion types is not well understood, but the DL algorithm could reproduce a ground 

truth labeling of these regions. Bland-Altman analysis of ABAF regions revealed that the 

algorithm under-predicted ABAF in a minority of images with large mean area. Further 

adjustments to the DL model or ground truth labeling methodology may be needed to make 

accurate predictions for ABAF lesions.

This study has limitations. The retrospective nature of image capture and use of a single AF 

imaging platform at a single institution. We specifically chose not to include longitudinal 

imaging data, since longitudinal images from the same patient are correlated. By excluding 

longitudinal imaging data, we sought to maximize algorithm validity and generalizability, 

but other factors may still limit generalizability. For example, other studies of FAF have 

used short-wave reduced-illuminance autofluorescence to assess areas of DDAF.22 There 

may be differences in the size of DDAF, QDAF, and ABAF lesion size depending on 

the imaging protocol. Images were labeled by a single grader, and future applications 

using multiple graders with varying levels of expertise would help further understanding 
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of intra-class correlations. A larger data set containing images from multiple AF protocols 

from different institutions could train a DL algorithm capable of accurately reproducing 

segmentations across a variety of clinical and research applications. We hope that multi-

center collaboration through an institution such as the Foundation Fighting Blindness 

Consortium will create opportunities to validate and generalize applications of deep learning 

to impact the care of patients with Stargardt disease worldwide.23

Acknowledgments

The authors would like to thank Cagri G. Besirli for supporting this work. Grant support from the Foundation 
Fighting Blindness (Clinical/Research Fellowship Award No. CD-CL-0619-0758 to P.Y.Z.), Heed Ophthalmic 
Foundation (P.Y.Z.) and from the National Eye Institute, National Institutes of Health (K12 Vision Clinician-
Scientist Development Program Award No. 2K12EY022299 to A.T.F, and K23 Mentored Clinician Scientist Award 
No. 5K23EY026985 to K.T.J.).

Financial Support:

Foundation Fighting Blindness (CD-CL-0619-0758 to P.Y.Z.)

Heed Ophthalmic Foundation (P.Y.Z.)

National Eye Institute, National Institutes of Health (1K08EY032991 to A.T.F)

National Eye Institute, National Institutes of Health (5K23EY026985 to K.T.J.)

The funding organizations had no role in the design or conduct of this research.

Abbreviations:

ABAF abnormal background autofluorescence

DDAF definitely decreased autofluorescence

DL deep learning

FAF fundus autofluorescence

ICC intraclass correlation coefficient

IRD inherited retinal disease

QDAF questionably decreased autofluorescence

RPE retinal pigment epithelium

References

1. Newsome DA, ed. Retinal Dystrophies and Degenerations. Raven Press; 1988.

2. Stargardt K.Über familiäre, progressive degeneration in der maculagegend des auges. Albrecht von 
Graefes Arch Klin Ophthalmol. Published online 1909:534–550.

3. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene 
(ABCR) is mutated in recessive Stargardt macular dystrophy. Nature genetics. 1997;15:236–246. 
doi:10.1038/ng0397-236 [PubMed: 9054934] 

4. Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, 
molecular genetics, animal models and therapeutic options. The British journal of ophthalmology. 
2017;101:25–30. doi:10.1136/bjophthalmol-2016-308823 [PubMed: 27491360] 

Zhao et al. Page 6

Ophthalmol Retina. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Kuehlewein L, Hariri AH, Ho A, et al. COMPARISON OF MANUAL AND SEMIAUTOMATED 
FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT 
DISEASE PHENOTYPE. Retina. 2016;36(6):1216–1221. doi:10.1097/IAE.0000000000000870 
[PubMed: 26583307] 

6. Strauss RW, Ho A, Munoz B, et al. The Natural History of the Progression of Atrophy Secondary to 
Stargardt Disease (ProgStar) Studies: Design and Baseline Characteristics: ProgStar Report No. 1. 
Ophthalmology. 2016;123:817–828. doi:10.1016/j.ophtha.2015.12.009 [PubMed: 26786511] 

7. Strauss RW, Kong X, Ho A, et al. Progression of Stargardt Disease as Determined by 
Fundus Autofluorescence Over a 12-Month Period: ProgStar Report No. 11. JAMA Ophthalmol. 
2019;137(10):1134–1145. doi:10.1001/jamaophthalmol.2019.2885 [PubMed: 31369039] 

8. Sparrow JR, Marsiglia M, Allikmets R, et al. Flecks in Recessive Stargardt Disease: 
Short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence 
Tomography. Invest Ophthalmol Vis Sci. 2015;56(8):5029–5039. doi:10.1167/iovs.15-16763 
[PubMed: 26230768] 

9. Kumar V.Insights into autofluorescence patterns in Stargardt macular dystrophy using ultra-
wide-field imaging. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):1917–1922. doi:10.1007/
s00417-017-3736-4 [PubMed: 28689222] 

10. Fujinami K, Lois N, Mukherjee R, et al. A longitudinal study of Stargardt disease: quantitative 
assessment of fundus autofluorescence, progression, and genotype correlations. Investigative 
ophthalmology & visual science. 2013;54:8181–8190. doi:10.1167/iovs.13-12104 [PubMed: 
24265018] 

11. Strauss RW, Munoz B, Ho A, et al. Progression of Stargardt Disease as Determined by 
Fundus Autofluorescence in the Retrospective Progression of Stargardt Disease Study (ProgStar 
Report No. 9). JAMA Ophthalmol. 2017;135:1232–1241. doi:10.1001/jamaophthalmol.2017.4152 
[PubMed: 29049437] 

12. Quellec G, Russell SR, Scheetz TE, Stone EM, Abràmoff MD. Computational quantification of 
complex fundus phenotypes in age-related macular degeneration and Stargardt disease. Invest 
Ophthalmol Vis Sci. 2011;52(6):2976–2981. doi:10.1167/iovs.10-6232 [PubMed: 21310908] 

13. Wang Z, Sadda SR, Hu Z. Deep learning for automated screening and semantic segmentation 
of age-related and juvenile atrophic macular degeneration. In: Hahn HK, Mori K, eds. Medical 
Imaging 2019: Computer-Aided Diagnosis. SPIE; 2019:62. doi:10.1117/12.2511538

14. Charng J, Xiao D, Mehdizadeh M, et al. Deep learning segmentation of hyperautofluorescent 
fleck lesions in Stargardt disease. Sci Rep. 2020;10(1):16491. doi:10.1038/s41598-020-73339-y 
[PubMed: 33020556] 

15. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image 
Segmentation. arXiv:150504597 [cs]. Published online May 18, 2015. Accessed August 9, 2019. 
http://arxiv.org/abs/1505.04597

16. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:151203385 
[cs]. Published online December 10, 2015. Accessed February 13, 2022. http://arxiv.org/abs/
1512.03385

17. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:141206980 null. Published 
online January 29, 2017. Accessed May 1, 2021. http://arxiv.org/abs/1412.6980

18. Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised Dice overlap as 
a deep learning loss function for highly unbalanced segmentations. arXiv:170703237 [cs]. 
2017;10553:240–248. doi:10.1007/978-3-319-67558-9_28

19. Liefers B, Colijn JM, González-Gonzalo C, et al. A Deep Learning Model for Segmentation of 
Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology. 2020;127(8):1086–
1096. doi:10.1016/j.ophtha.2020.02.009 [PubMed: 32197912] 

20. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis 
and referral in retinal disease. Nat Med. 2018;24(9):13421350. doi:10.1038/s41591-018-0107-6

21. Heath Jeffery RC, Thompson JA, Lo J, et al. Atrophy Expansion Rates in Stargardt Disease 
Using Ultra-Widefield Fundus Autofluorescence. Ophthalmology Science. 2021;1(1):100005. 
doi:10.1016/j.xops.2021.100005 [PubMed: 36246008] 

Zhao et al. Page 7

Ophthalmol Retina. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1412.6980


22. Strauss RW, Muñoz B, Jha A, et al. Comparison of Short-Wavelength Reduced-Illuminance 
and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy. Am J Ophthalmol. 
2016;168:269–278. doi:10.1016/j.ajo.2016.06.003 [PubMed: 27296491] 

23. Durham TA, Duncan JL, Ayala AR, et al. Tackling the Challenges of Product Development 
Through a Collaborative Rare Disease Network: The Foundation Fighting Blindness Consortium. 
Transl Vis Sci Technol. 2021;10(4):23. doi:10.1167/tvst.10.4.23

Zhao et al. Page 8

Ophthalmol Retina. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Architecture of the deep learning model used to train on the Stargardt disease imaging data 

set. The ResNet-UNet encoder-decoder model, consists of a contracting (down-sampling) 

path of ResNet-50 blocks and an expanding (up-sampling) path, with feature maps passed 

from the contracting path to the expanding path. “conv” refers to a spatial convolution layer, 

“3×3” refers to the kernel size for the convolution operation, and “ReLU” refers to the 

rectified linear unit activation function. “max pool” refers to a max pooling layer. “up conv” 

refers to an up-sampling layer. “concatenate” refers to the joining of a feature map from the 

contracting path with an up-sampling layer from the expanding path. “sigmoid” refers to the 

sigmoid activation function used after the final convolutional layer to generate probabilities 

for predictions.
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Figure 2. 
Rows of representative images (A, B, C) from the data set with corresponding ground truth 

labeling (GT) and algorithm segmentation predictions. DDAF is labeled in blue, QDAF in 

green, and ABAF in red. Image A is a subtype 1 AF pattern with localized low signal in the 

macula (DDAF and QDAF) surrounded by homogenous background. Image B is a subtype 

2 AF pattern with localized low signal in the macula (DDAF and QDAF) surrounded by 

heterogenous background. Image C shows a subtype 1 AF pattern with localized low signal 

(QDAF only) at the macula surrounded by homogenous background. Image D is a subtype 
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3 AF pattern with multiple low-signal areas (DDAF and QDAF) in the posterior pole 

surrounded by heterogenous background.
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Figure 3. 
Correlation plots comparing algorithm-predicted to ground-truth segmentation area by lesion 

type. For DDAF lesions (A), the intra-class correlation coefficient (ICC) was 0.997 (95%CI, 

0.996–0.998). For QDAF lesions (B), the ICC was 0.863 (95%CI, 0.823–0.895). For ABAF 

lesions (C), the ICC was 0.974 (95%CI, 0.966–0.980).
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Figure 4. 
Bland-Altman plots comparing algorithm-predicted to ground-truth segmentation area by 

lesion type. For DDAF lesions (A), the mean bias was not statistically significant, and the 

limits of agreement were −3.0 to +3.1 mm2. For QDAF lesions (B), there was a statistically 

significant mean bias of +0.5 mm2, and the limits of agreement were −6.0 to +6.9 mm2. 

For ABAF lesions (C), the mean bias was not statistically significant, and the limits of 

agreement were −13.6 to +13.1 mm2.
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Table 1.

Clinical Characteristics (N = 97)

Mean SD

Age (years) 35.0 17.3

Visual Acuity (logMAR) 0.76 0.53

 

N (%)

Female Sex 53 (55%)

Race

 White 81 (84%)

 Black 9 (9%)

 Asian 4 (4%)

 Other 3 (3%)

No. of Disease-Causing Variants

 2 Variants 79 (81%)

 3 Variants 17 (18%)

 4 Variants 1 (1%)

Most Common Disease-Causing Variants Frequency

 c.5882G>A, (p.Gly1961Glu), Missense 16

 c.3113C>T, (p.Ala1038Val), Missense 14

 c.2588G>C, (p.Gly863Ala), Splice 12

 c.5603A>T, (p.Asn1868Ile), Missense 12

 c.1622T>C, (p.Leu541Pro), Missense 11

 c.4139C>T, (p.Pro1380Leu), Missense 9

 c.5461–10T>C, Intronic 7

 c.6079C>T, (p.Leu2027Phe), Missense 7

 c.3322C>T, (p.Arg1108Cys), Missense 5
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Table 2.

Imaging Characteristics (193 images from 193 eyes)

FAF Subtype N (%)

 Type 1 83 (43%)

 Type 2 77 (40%)

 Type 3 33 (17%)

Heterogenous FAF Background 107 (55%)

Mean Lesion Area (mm2) Mean SD

 DDAF 9.9 20.0

 QDAF 3.4 5.9

 ABAF 36.1 29.4
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