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ABSTRACT

Labelling of nascent stem loops with fluorescent proteins has fostered the visualization of transcription in living cells. Quantitative analysis of
recorded fluorescence traces can shed light on kinetic transcription parameters and regulatory mechanisms. However, existing methods
typically focus on steady state dynamics. Here, we combine a stochastic process transcription model with a hierarchical Bayesian method to
infer global as well locally shared parameters for groups of cells and recover unobserved quantities such as initiation times and polymerase
loading of the gene. We apply our approach to the cyclic response of the yeast CUP1 locus to heavy metal stress. Within the previously
described slow cycle of transcriptional activity on the scale of minutes, we discover fast time-modulated bursting on the scale of seconds.
Model comparison suggests that slow oscillations of transcriptional output are regulated by the amplitude of the bursts. Several polymerases
may initiate during a burst.

Introduction
Transcription is one of the fundamental processes of cellular
life. RNA synthesis consists of the three major steps of
initiation, elongation and termination. A closer look reveals
that the individual steps are highly regulated and subject to
intrinsic as well as extrinsic stochastic effects1–4. The details
of transcriptional regulation on the molecular level are still far
from understood.

Single-cell measurements of RNA have revealed that tran-
scription is not only heterogenous between cells or within the
genome but can also change for the same gene over time. The
frequently observed pattern of high transcriptional activity
interspersed with periods of silence is known as transcriptional
bursting5. Recent evidence suggest that bursting may occur
on multiple superimposed timescales6. It is unclear how these
different timescales are regulated. A common question of
interest is whether transcriptional output is regulated by burst
amplitude, burst frequency, or burst duration7–9. Traditionally,
this is investigated using RNA counting data. Continuous
transcription with exponentially distributed time intervals be-
tween initiation events leads to a Poisson distribution of mature
mRNA. Therefore, deviations from the Poisson distribution
may indicate bursty transcription. Early work in this direction
modeled the promoter as a telegraph process that stochastically
switches between transcriptionally active and inactive states.
In the active state, transcriptional output follows a Poisson
process. For inference, predicted distributions of the model
are matched to empirical RNA count histograms5,10, 11. Later,
the method was extended to multi-state models and to include
nascent mRNA by solving the chemical master equation of

the underlying system numerically2,9. While successful at
confirming bursting, information theory suggests that RNA
counting data is fundamentally limited in distinguishing dif-
ferent multi-state promoters12,13. In addition, the employed
models oversimplify elongation and termination. Therefore,
all variance in the observed data is necessarily attributed to
the initiation process which may bias results towards more
complex promoter models.

Novel imaging techniques such as the stem loop approach
now enable time-resolved measurements of single transcription
sites (TS) in live cells and in real time by fusing a fluorescent
marker to a binding protein that attaches to hairpin structures
formed by the nascent mRNA14,15. Observed by a fluorescence
microscope, the TS appears as a moving diffraction-limited
spot with fluctuating intensity. An idealized time trace of
a single polymerase consists of an approximately uniform
increase in intensity, followed by a plateau phase when all
stem loops have been formed and a sharp drop when the
transcript detaches from the transcript site16. For actively
transcribed genes, the observed intensity is a superposition
of several polymerases that have initiated with varying inter-
event times. Together with other sources of noise accumulated
during image acquisition the resulting trace may seem highly
random. Thus, while time-resolved measurements of single
transcriptions sites are potentially more informative than RNA
counting data, they are also much more challenging from an
inference perspective. Phenomenologically, bursting has been
studied by binarizing the fluorescent traces via thresholding.
Modifying suspected regulators then allows to measure the
corresponding effect on burst statistics17. However, for fast
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Figure 1. Engineering, visualization, and characterization of the CUP1 transcription site. a Oscillations in CUP1 mRNA expression
level quantified by RT-qPCR and normalized by expression of the housekeeping gene ACT1. Error bars represent standard error of the mean
(SEM) from two biological replicates. b Schematic of the 14x PP7 reporter replacing one copy of the CUP1 ORF in chromosome VIII of S.
cerevisiae. Two types of the stem loop sequence (red and green stems, purple loops, or bulges) are present in the reporter sequence, each stem
is bound by a PP7-GFP dimer. Hence, 28 GFP molecules associate with single mRNA. The length of reporter transcript is 862 bp, however a
few transcripts may be longer as there is no terminator immediately after 14xPP7. The expression of KANMX observed by RT-qPCR is
constitutive and does not follow oscillations of 14X PP7 transcripts, which indicates that great majority of 14xPP7 transcripts stop before
KANMX ORF (data not shown). c Example field view of cells with active TS containing nascent 14x PP7 reporter transcripts. Cells were
imaged after 9 min of Cu2+ induction. Z-stack of the entire cell volume is presented as a maximum intensity projection for the GFP channel.
Scale: 5 µm. d TS in individual cell display independent spikes of activity. TS dynamics from 10 representative cells are presented for the
first 21 min since Cu2+ addition, imaged with 1 min time-lapse. Maximum intensity projections of the entire z-volume of the cells were
cropped by keeping the TS in the center of the 13x13 pixels area. e Illustration of the movie collection for datasets imaged with 3 s time-lapse.
Movies on the same coverslip are started every 3 min and are recorded for 90 s (green blocks). The remaining time is used to move the
microscope to the next position on the coverslip. By collecting several such movie sequences starting either 3 min or 4.5 min after induction,
the whole first cycle is covered. f The fraction of cells in the population showing an active TS follows the oscillation pattern of expression of
the whole CUP1 locus. Cells with TS were counted in independent fields imaged sequentially with 3 min time interval. Error bars represent
standard error of the percentage (SEP). g TS in individual cells express more transcripts at the peak of the oscillation. In sequential 90 s
movies collected after Cu2+ addition with 3 s time-lapse, the spot intensities were measured in the first frame of every movie. The graph
shows the population average of these spot intensities indicating that transcriptional output of individual cells follows the oscillation pattern of
the whole system. h Schematics of CUP1 multi-scale bursting. Top – long oscillations between transcription (ON1 state) and no-transcription
phases (OFF1 state) on the population level (cf. a and d). Bottom – short transcription spikes (ON2 and OFF2 states) as observed for
individual TS (f). Transcriptional amplitude of the spikes is defined by the average number of mRNA produced per spike (striped lines
represent different nascent mRNA produced during spike). The gene switches from an inactive OFF2 state to an active ON2 state with rate
𝑘on, and back to OFF2 state with rate 𝑘off. As this work focuses on the first ON1 phase, subscripts are dropped from hereon.

switching dynamics, extracting bursts directly from the trace is
prone to error18. First, a simple Poisson signal convolved with

non-Gaussian observation noise and measured with a detection
threshold may give an impression of burstiness. Second, if
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time between two bursts is shorter than the production time
of the nascent mRNA, a bursty signal may be classified as
continuous. A more sophisticated method for trace analysis
that allows to determine initiation rate and expected production
time of nascent transcripts is based on the autocorrelation
function of the intensity signal16,19. From a stochastic kinetic
model of transcription, a theoretical autocorrelation function
for the system is computed and then fit to match the empir-
ical autocorrelation function of the traces. This provides a
computationally efficient approach to extract average mRNA
production times. An adaptation for dual-color labelling of
the same transcript is also available20. However, by design,
fluctuation analysis works best for stationary systems and
long observation times. Extensions to non-stationary settings
or more complex transcription models involving multi-state
promoters or interactions between individual polymerases are
challenging and currently rely on phenomenological correc-
tions20,21. An alternative idea is to split the problem into
two parts. In a first step, initiation times are reconstructed
from a fluorescent trace by a deconvolution algorithm. In
a second step, the recovered initiation time distribution is
then compared to theoretical predictions of different promoter
models22. While this form of analysis proved effective, it
requires reliable extraction of initiation time sequences which
may not be possible for more irregular signals. Bayesian
inference in combination with stochastic process models of
transcription provides a principled framework to extract in-
formation from individual single-site traces. Due to the high
computational demands, studies in this direction have been
limited to simplified models where elongation and termina-
tion are treated as deterministic processes23. More complex
models with stochastic elongation and termination have so
far only been used within moment-based or simulation-based
inference frameworks24,25.

In this work, we use a kinetic model with stochastic treat-
ment of the main transcription steps and develop a hierarchical
Bayesian framework that performs joint inference on a col-
lection of traces. The hierarchical approach allows one to
jointly infer cycle-independent parameters shared by all cells
and cycle-dependent parameters shared by cells within the
same time window. This improves accuracy significantly com-
pared to inferring data from individual traces and then pooling
the results. We use this approach to investigate dynamic
changes in the kinetics of transcription for CUP1 promoter
in Saccharomyces cerevisiae. Previously, CUP1 has been
shown to undergo a slow cycle of transcriptional activity with
variable transcriptional output on a timescale of minutes in
response to a heavy metal stressor26. Within this slow cycle,
fast bursts of transcription on the scale of seconds regulated
by fast interdependent cycling of transcription activator and
chromatin remodeler were inferred from smFISH modeling27.
In this work, we investigated the first period of the slow cycle
by monitoring transcription sites in live cell using the stem
loop approach and Bayesian inference. To account for the
non-stationary setting, we split the cycle into short windows

with higher frame rate and used the hierarchical Bayesian
inference framework. By employing stochastic variational
inference28, the method can handle datasets consisting of sev-
eral thousand traces. Model comparison of several candidate
models reveals fast bursting of CUP1 on the scale of seconds,
indicated by quasiperiodic transcription in individual cells
through the slow cycle of bursting. This bursting on a faster
timescale on the order of seconds is comparable in timescale
with previously observed cycling of transcription activator on
CUP1 promoters27. Our discovery supports the hypothesis
of fast bursts of transcription activated by fast cycling of TF.
Regulation of the CUP1 transcriptional output occurs most
likely via modulation of the burst amplitude. In addition to
parameter posterior distributions our method can recover via
latent state inference based on stochastic filtering unobserved
dynamic quantities such as initiation times and polymerase
loading. We demonstrate that multiple polymerases may be
loaded onto the same promoter during a burst. We also observe
that the elongation speed of RNAP II varies, undergoing a slow
cycle correlated with the slow cycle of transcription output.
Our method reveals a delay between rise-and-fall patterns of
observed bursts and the actual intervals of activity. While
we demonstrated the method on non-stationary transcription
data, our approach is applicable to a wide range of systems
that can be modeled as a Markov jump process and can be
straightforwardly adapted to other sources of heterogeneity.
We provide a corresponding Python toolbox available at XXX.

Results
In continuous presence of Cu2+, CUP1 undergoes bursts
of transcription
CUP1 encodes metallothionein protein Cup1 that protects the
cells from heavy metal stress. CUP1 is present in 10 tandem
copies per chromosome VIII in Saccharomyces cerevisiae26.
In yeast cells activated with Cu2+, quantification of mature
mRNA by RT-qPCR reveals oscillations in CUP1 mRNA
transcriptional output in the cell population (Fig. 1a). This
indicates that as described for several but not all systems, in
continuous presence of an activator, CUP1 transcription occurs
not continuously but in oscillations: periods of transcriptional
activity are interspersed with periods of transcriptional silence
(Fig. 1h). Moreover, transcription output is modulated through
the cycle. As shown previously, these oscillations are not
dependent on cell cycle26. In living cells, we can monitor
nascent mRNA formation at CUP1 TS via the stem loop
approach (Fig. 1b,c)14,15. A single ORF within the array of
CUP1 genes was replaced in one chromosome of the diploid
yeast by a reporter encoding PP7 stem loops, visualized by
the PP7 phage coat protein (PCP) tagged with GFP as a single
green spot. Signal to noise was optimized in this system
by low-level expression of PCP-GFP under a constitutive
promoter pSEC61 (see SI Appendix, Sec. S5.1). As the
mRNA of the reporter contains only stem loops, it is not
translated due to abundant stop codons, and thus, no protein
is produced. Reporter is controlled by a natural pCUP1
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Figure 2. Stochastic kinetic model of transcription. a Kinetic transcription model based on TASEP. The DNA template is coarse-grained
and partitioned into sites of 120 nt corresponding roughly to twice the footprint of a stem loop. Therefore, each of the first sites is associated
with two dual GFP. The promoter switches between a transcriptionally active state (green) and an inactive state (red) with rates 𝑘on and 𝑘off .
In the active state, Polymerases initiate with rate 𝑘i, step along the lattice at rate 𝑘e and terminate with rate 𝑘t. b Illustration of a two-state
promoter model switching between an inactive and an active state with rates 𝑘on and 𝑘off . These parameters implicitly define other
bursting-related quantities such as the burst duration 𝜏on, the time between bursts 𝜏off and the burst frequency 𝑓b. The burst amplitude 𝑁b is
defined as the number of initiation events per burst. c Illustration of a single polymerase initiating and progressing on the lattice. The three
kinetic parameters of the TASEP model determine quantities such as termination time 𝜏𝑡 , elongation time 𝜏𝑒 and mRNA production time 𝜏𝑝 .
The relation for expected elongation time is only valid when the polymerase density is low, in general there is now closed form expression
available due to possible polymerase interactions. d Illustration of how to simulate synthetic traces. First, a trajectory from the
telegraph-augmented TASEP model is created using the Gillespie algorithm. This typically produces a superposition of several polymerases.
This is illustrated in form of a kymograph plot that shows the probability of a site to be occupied over time. From the full occupancy 𝑋 (𝑡) we
can extract unobserved quantities of interest such as the polymerase loading 𝑁p (𝑡), or initiation, elongation and production times of mRNAs
(panel c) and the time between initiation events Δ𝜏i (panel b). To simulate the measured fluorescence intensity, we first extract the number of
stem loops 𝑁s (𝑡) by summing the contributions of all polymerases. The spot intensity 𝐼 (𝑡) is then formed by multiplication with intensity per
GFP 𝛾, addition of background levels 𝑏0 and 𝑏1 and exponential bleaching with rate 𝜆. Finally, the continuous-time intensity is sampled at
equidistant time points and convolved with multiplicative noise to obtain the simulated measurements 𝑌 (𝑡).

within the natural CUP1 array; thus, expression of the reporter
characterizes initiation from the CUP1 promoters. However,
the reporter sequence is different from natural CUP1 ORF,
and the transcript is longer. Thus, the production time for this
reporter may not reflect the production of the wild-type CUP1
ORF sequence.

By counting the fraction of the cells with active nascent
reporter mRNA over time (responder ratio), we confirmed
a time-modulated response to constant activation by Cu2+

(first oscillation is quantified in Fig. 1f). Interestingly, in the
movies of TS the average brightness of the individual TS
also changed depending on the time of activation, indicating
that at the peak of oscillation each TS produces more mRNA
(Fig. 1g). This implies that the time-varying transcriptional
output on the population level observed by RT-qPCR cannot
be explained by a change in the number of responding cells
alone but that parameters of transcription are modulated
over time. Therefore, CUP1 transcription is not in a steady
state. Interestingly, individual TS observed through the first

oscillation show independent dynamics, and the majority of
the cells display several bursts of activity (Fig. 1d, exemplary
cells no. 1, 3, 5, 7, 9). This suggest modulation on two
scales: long-term oscillations on the order of several minutes
governing transcriptional output of the cell population (slow
cycle) and fast spikes (bursting) on the order of seconds
regulating output of individual TS (Fig. 1h). The long-term
oscillations are schematically represented by interspersed ON1
and OFF1 states. The short-term spikes are represented by
interspersed ON2 and OFF2 states.

In this paper, we focused on the characterization of transcrip-
tional activity within the first transcription phase of roughly
30 min. Due to photobleaching, such a long period cannot be
imaged with our setup under a high frame rate. However, more
importantly, the observed modulation of transcriptional output
indicates that averaging through the long periods of observa-
tion may hide putative oscillatory variability in transcription
parameters. We therefore split the cycle into small windows
and performed parameter inference on all traces within the
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same window (cf. Fig. 4a). The first dataset was recorded with
12 s time-lapse for 300 s. We observed that a time-lapse of
12 s was too long for the relatively short gene template leading
to problems separating elongation speed and termination rate.
In addition, a duration of 5 min turned out too long to capture
dynamic parameter changes adequately. Thus, we collected
a second dataset with a duration of 90 s imaged with a time-
lapse of 3 s (Fig. 1e) leading to a high frame rate covering
of the first 30 min after induction. After quality control, we
extracted fluorescent traces with a custom tracker based on
three-dimensional Gaussian fitting of the transcription site
combined with ideas from stochastic filtering (SI Appendix,
Sec. S12). Thus, we obtained two datasets of traces, each
containing more than 3000 traces, with varying starting times
during the first transcription phase. A detailed description
of the pre-processing and the collected datasets is provided
in SI Appendix, Sec. S6. To quantitatively analyze these
non-stationary datasets we developed a Bayesian inference
approach based on a stochastic kinetic model of transcription
discussed in the following sections.

Stochastic kinetic model of transcription
Our model (Fig. 2) is based on the totally asymmetric exclusion
process (TASEP), where the DNA template is partitioned into
𝐿 sites30. Polymerases initiate at site 1 with rate 𝑘 i. After
initiation, elongation proceeds in discrete steps with rate 𝑘e.
Termination occurs at site 𝐿 with rate 𝑘 t (Fig. 2a). Early termi-
nation is not permitted. While typical models of transcription
assume independent polymerases, the TASEP model permits
at most one polymerase per site allowing possible interactions
in actively transcribed genes. Our model adopts this behavior
for all but the termination site accounting for the possibility
of transcripts residing at the TS after elongation. A typical
progression of a single polymerase is shown in Fig. 2c.

The times between transitions are exponentially distributed.
Thus, the model is a continuous-time Markov chain (CTMC)
describing the stochastic movement of RNAP II on the DNA
template by the occupancy vector 𝑋 (𝑡) = (𝑋1 (𝑡), . . . , 𝑋𝐿 (𝑡)).
In order to model bursting, we introduce an additional promoter
site 𝑋0 (𝑡) that switches between an active and an inactive state
with rates 𝑘on and 𝑘off (Fig. 2b). In the extended model,
initiation at site 𝑋1 (𝑡) is only allowed if the promoter site
𝑋0 (𝑡) is in the active state. This behavior is akin to the random
telegraph model31 often used for the analysis of RNA counting
data9,10, 17, 32. Within this model, transcription dynamics are
governed by the vector of parameters 𝜃 = (𝑘on, 𝑘off , 𝑘 i, 𝑘e, 𝑘 t).
The extended model is still a CTMC, therefore samples can
be generated by the Gillespie algorithm. We denote such a
full sample path as 𝑋[0,𝑇 ] . The transient probability 𝑝(𝑥, 𝑡) ≡
Pr(𝑋 (𝑡) = 𝑥) satisfies a master equation

d
d𝑡

𝑝(𝑥, 𝑡) =
∑︁
𝑥′

𝑄(𝑥 ′, 𝑥 | 𝜃)𝑝(𝑥 ′, 𝑡) (1)

where the sum is over all possible configurations of the lattice
and 𝑄 is the transition function of the process parametrized

by 𝜃. Details on how to construct 𝑄 are given in SI Appendix,
Sec. S8.1.

In order to compare simulated to measured traces, the
occupancy 𝑋 (𝑡) has to be converted to predicted intensity
(Fig. 2d). As the positions of stem loops are known, one can
compute the number of GFPs attached to every nascent mRNA
from the lattice occupancy 𝑋 (𝑡). To convert the number of
GFPs to predicted intensity, one requires a scaling factor 𝛾
and the bleaching rate 𝜆 and background variables 𝑏0, 𝑏1.
The predicted intensity is then sampled at measurement times
𝑡1, . . . , 𝑡𝑛 and passed through a multiplicative noise model to
obtain a synthetic trace 𝑌 = (𝑌1, . . . , 𝑌𝑛). For later use, we
combine all parameters related to the observation model into
the vector 𝜔. A detailed description of the observation model
can be found in SI Appendix, Sec. S8.2.

Calibration of the observation model
The parameters of the observation model have a major impact
on the simulated measurements. Since this can cause issues
with parameter identifiability, we perform independent calibra-
tion measurements for the scaling factor 𝛾 and the bleaching
rate 𝜆. To estimate the scaling factor, we engineered three
yeast strains with sub-cellular structures attached to a known
number of GFP molecules (see Methods - Yeast strains and
plasmids) and measured spot intensities for a number of cells.
As shown in Fig. 3a, the intensity distributions of the three con-
structs roughly follow a linear shape. Next, we combined the
observation model for intensity prediction with vague priors
and computed a posterior distribution using Monte Carlo. A
similar Bayesian calibration was applied to time-lapse data of
a static construct to determine the bleaching rate. An in-depth
description is given in SI Appendix, Sec. S9. The posterior
distributions from the calibration measurements where used
as priors for the time trace inference.

Autocorrelation analysis is not applicable
A traditional approach to estimate kinetic parameters of live
transcription sites is to use the autocorrelation function (ACF)
of the intensity traces16,19, 21 (Fig. 3b). However, ACF analysis
is designed for long traces in a steady state setting. To test
the applicability of this analysis to CUP1 transcription, we
analyzed traces for a single time window starting 9 min after
the addition of Cu2+ (Methods) where TS activity is close to its
peak (cf. Fig. 1g). Average ACF of real data, collected for 90 s
total, is difficult to interpret and cannot be used for extracting
kinetic parameters (Fig. 3c, right panel). As the ACF remains
declining even at the longest delays, 90 s appear to be an
insufficient amount of time for correlation analysis to be used.
In fact, our simulations suggested that a TS has to be observed
for at least 15 min (Fig. 3c, left panel). Although it may be
possible to obtain an interpretable ACF by collecting over
a longer time period, this would also lead to averaging over
time-points from different parts of the slow cycle imposing
the steady state assumption.
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Figure 3. Inference from single cell traces. a Intensity distribution of the three strains used for calibration over the expected number of
GFPs. Darker regions indicate a higher density. The red line indicates a linear regression fit to the data. b The autocorrelation of a single TS
is generated by multiplying a signal shifted in time by a delay, 𝜏, and multiplying it with the original signal and integrating. By repeating this
process over many values of 𝜏, the ACF function is generated for a single trace. Autocorrelation function averaged for many traces can reveal
temporal characteristics of the system. c Left panel: Average autocorrelation of 1000 simulated trajectories for a time-lapse of 3 s observed
over 90 s and 900 s showing an ideal autocorrelation function that could be analyzed to extract transcription parameters. Right panel: Average
autocorrelation of CUP1 transcription sites from 282 cells imaged for 90 s with 3 s time-lapse after 9 min of Cu2+ activation compared to
simulated results. d Illustration of Bayesian inference for single cell traces. From a measured trace 𝑌 (𝑡), we obtain the posterior distributions
of model parameters 𝜃, and observation parameters 𝜔. Note that this is an illustration as 𝜃 and 𝜔 are vectors of multiple parameters. In
addition, latent state inference recovers the most likely sample paths of the unobserved lattice process 𝑋 (𝑡) and the promoter state 𝑋0 (𝑡).
From these traces, other dynamic quantities of interest such as the polymerases loading 𝑁𝑝 (𝑡) and the number of active stem loops 𝑁𝑠 (𝑡) can
be extracted. e Probabilistic graphical model representation of the single trace inference problem. Arrows indicate conditional relationships in
the data generating process, grey color indicates that the corresponding node is observed29. The process 𝑋 (𝑡) is sampled at times 𝑡1, . . . , 𝑡𝑛
and observed via noisy measurement 𝑌 = (𝑌1, . . . , 𝑌𝑛). As illustrated by the nodes 𝑋 (𝑡𝑖 + ℎ), 𝑋 (𝑡) is continuous in time. f Graphical model
of the joint inference problem with pooling of 𝑚 traces to infer shared parameters. A plate indicates multiple conditionally independent
variables given the parent29. Every pair 𝑋 (𝑖)

[0,𝑇 ] , 𝑌
(𝑖) is of the form shown in e. g Gaussian kernel density representation of the results of joint

Bayesian inference of the initiation rate on an increasing number of pooled simulated traces. As the number of traces increases, the posterior
concentrates around the true value used to generate the data.

Pooled Bayesian inference identifies model parameters

The goal of Bayesian inference is essentially to invert the
data generation process depicted in Fig. 2. Given a mea-

sured trace 𝑦 = (𝑦1, . . . , 𝑦𝑛) we want to reconstruct kinetic
parameters 𝜃, observation parameters 𝜔 (parameter inference).
In addition, a stochastic process model also allows to re-

6/46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.20.545522doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545522
http://creativecommons.org/licenses/by-nc-nd/4.0/


construct the most probable lattice configurations over time
𝑥 [0,𝑇 ] given the data (state inference, Fig. 3d). More formally,
this corresponds to computing the joint posterior distribution
𝑝(𝜃, 𝜔, 𝑥 [0,𝑇 ] | 𝑦1, . . . , 𝑦𝑛). A probabilistic graphical model
(PGM) representation of the single trace inference problem is
given in Fig. 3e.

Sampling from this posterior distribution using Markov
chain Monte Carlo (MCMC) involves evaluating the marginal
data likelihood 𝑝(𝑦1, . . . , 𝑦𝑛 | 𝜃, 𝜔) which in turn requires
integration of the master equation (1) for many different config-
urations of model parameters 𝜃 and observation parameters 𝜔.
We developed an efficient approach to evaluate the marginal
likelihood and its gradient in parallel for multiple traces which
allows to apply efficient gradient-based inference algorithms
such as Hamiltonian Monte Carlo (HMC) and stochastic vari-
ational inference (SVI) (SI Appendix, Sec. S10).

Inference from single traces is often challenging due to
issues with parameter identifiability33. To test identifiability
for our setup, we simulated a set of synthetic traces following
the steps illustrated in Fig. 2 using a fixed parameter configu-
ration (SI Appendix, Table S14). Indeed, Bayesian inference
of a single trace essentially reproduces the prior distribution
indicating that a single trace does not contain sufficient infor-
mation to identify the system (Fig. 3g, left panel). Pooling
multiple traces and performing inference jointly (Fig. 3f) can
improve the results substantially. Indeed, inference accuracy
increases with the number of pooled cell, implying the system
is identifiable given sufficient data (Fig. 3g, right panel). We
stress that the pooling performed in joint Bayesian inference
is a principled approach and more reliable compared to per-
forming inference on single traces and then comparing the
posterior means. An extended plot showing the posterior of
more parameters is provided in SI Appendix, Fig. S19.

Hierarchical Bayesian model captures slow cycle of tran-
scription
In order to analyze the dependence of the parameters on
the slow cycle, we split the dataset into subgroups pooling
all traces that share the same time window since induction.
As individual movies are short (90 s), we can assume con-
stant parameters during individual windows leading to a joint
Bayesian inference problem (cf. Fig. 3f,g) for each window.
This straightforward approach has two problems. First, in
some of the windows the number of traces is quite small (SI
Appendix, Table S13) leading to unreliable inference. Second,
not all of the parameters are expected to depend on the slow
cycle. To take full account of the pooling, we developed a
collection of mixed hierarchical models where some param-
eters are shared locally between traces in the same window
and others are shared globally between all traces (Fig. 4a). A
PGM representation of one such model with local initiation
rate is shown in Fig 4b. For each of these models, we also
included a version with a constitutive promoter (i.e. 𝑋0 (𝑡) = 1
for all times) to investigate if the data supports the bursting hy-
pothesis. While increasing inference accuracy, a hierarchical

model of 3000 traces was too computationally expensive for
MCMC, as every step of MCMC requires evaluation of the
log-likelihood of all traces in the dataset. Inference of the full
dataset was therefore done by SVI28.

Allowing local variability of different parameter combina-
tions gives rise to a collection of models. Bayesian model
selection based on the marginal likelihood provides a sys-
tematic approach of finding the most likely model given the
data and automatically penalizes models with too many free
parameters34. As the marginal likelihood is costly to compute,
we used the evidence lower bound (ELBO), that is obtained by
variational inference, as an approximation. To prevent possible
issues with model mismatch that cannot be detected from the
marginal likelihood alone, we designed an additional metric
based on the posterior predictive35 that relies on the Wasser-
stein distance between predicted and measured cycle (Fig. 4c
and Methods — Model selection).The results of the model
selection are shown in Fig 4d. A small value of the Wasserstein
distance indicates that that data simulated from the learned
model (posterior predictive) agrees well with measured data.
In contrast, a higher value of ΔELBO suggest that the learned
model is more probable than other models, given the data.
Consequently, the overall best models are found in the lower
right region of the graph. We also observe that most of the
investigated models are close to a line in the two-dimensional
evaluation space, indicating consistency of the two scores. A
full account of all tested models on both datasets is given in
SI Appendix, Table S15. We observe that a time-dependent
elongation rate alone cannot explain the cycle. Additionally,
the graph suggests that a switching promoter is more probable
than a constitutive promoter. The best explanation of the slow
cycle is a combination of time-dependent initiation rate with
time-independent promoter switching rates. This implies that
for CUP1 the cyclic response is likely regulated by burst am-
plitude rather than burst frequency. The best ranking models
are able to reproduce the intensity pattern over the cycle fairly
well (Fig. 4e). Corresponding parameter posteriors of the best
ranking model are shown in Fig. 4f,g. The posterior initiation
rate (Fig. 4f) closely follows the cycle pattern known from
responder ratio and spot intensity distribution (cf. Fig. 1f, g).
Interestingly, the variance of the posterior is larger close to the
cycle peak.

Previously we demonstrated that heterogeneity in CUP1
transcriptional response is exacerbated by depletion of chro-
matin remodeler RSC27. This implies that this heterogeneity
is caused by variable accessibility of the binding sites in the
promoter to transcription activator Ace1p. Thus, we propose
gradual changes in promoter accessibility through the slow
cycle of transcription. Current observation is compatible with
the following hypothesis - the rate of increase in accessibility is
the same for all cells, but the maximal opening of the binding
sites at the peak of the cycle may vary, providing heterogeneity
in transcriptional output.

Posterior distributions for global model parameters are given
in Fig. 4f. The full graph including all observation parameters
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Figure 4. Hierarchical Bayesian inference of the first slow cycle. a Illustration of the hierarchical model for the first slow cycle. Traces are
grouped into windows according to the starting time with respect to Cu2+ induction. Parameters are split into local and global parameters.
Local parameters are shared between traces of the same window, global parameters are shared between all traces. While for illustration
purposes, only three windows are shown, the traces of the 3 s dataset are assigned to 19 windows. b A PGM representation of the hierarchical
inference problem for a model with local initiation rate and all remaining parameters constant. c Illustration of the predictive score 𝑆.
Synthetic traces are simulated from the fitted model. The intensity distribution of the simulated data is compared to the intensity distribution
of the real data by the Wasserstein metric, a general similarity measure for probability distribution. The score 𝐶 is obtained by averaging over
all windows and the parameter posterior. d Two-fold model selection based on the posterior predictive score 𝑆 based on the Wasserstein
distance and approximate Bayes factor ΔELBO. For 𝑆 smaller values indicate that simulated data is more similar to measured data (smaller is
better), for ΔELBO higher values indicate a larger probability of the model compared to a reference model. The reference model, assuming no
switching and only global parameters, is the same for all data points. e Mean intensity of the first frame of traces over the slow cycle. The
dashed line indicates experimental results of the 3 s dataset (cf. Fig 1), the shaded regions corresponds to a 90 % credible interval of the
posterior predictive distribution. f, g Gaussian kernel density representations of the SVI approximate parameter posteriors of the best ranking
model. f Local initiation rate per time-window since induction. g Global kinetic parameters.

can be found in SI Appendix, Fig. S20. As distributions
of 𝑘on and 𝑘off are close, the promoter seems to be active
approximately half of the time with an active time of ≈25 s.

Stochastic filtering reveals time dependence of unob-
served quantities
The true power of a continuous-time stochastic process is the
possibility for latent state inference (cf. Fig. 3d). Given a
measured trace, we can reconstruct the trajectories of the latent
stochastic process that have most likely produced the obser-
vations by the backward filtering forward sampling approach
(Methods - Bayesian inference). Results for three exemplary

traces are shown in Fig. 5a. These traces are selected to reflect
typical cases present in the dataset: continuous expression,
a single burst and a double burst. The posterior predictive
plots in the top panel demonstrate that our model is capable of
explaining qualitatively different traces of the dataset. The re-
constructed distributions of the number of polymerase and stem
loops over time closely follows the shape of the observations
(Fig. 5a, second and third row). The polymerase distribution
indicates that CUP1 is a highly transcribed gene that binds
multiple polymerases simultaneously. This observation agrees
with earlier predictions from smFISH modeling27. From the
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Figure 5. State inference. a Posterior path distributions for three characteristic traces from the 3 s dataset. The top panel shows the measured
data 𝑌 (𝑡) (gray dots) compared to the corresponding posterior predictive mean (red line) with 90 % credible interval (red shaded). Lower
panels show the posterior distribution over time of the polymerase loading 𝑁𝑝 (𝑡) including termination site, the number of active stem loops
𝑁𝑠 (𝑡), kymograph of actively elongating polymerases and promoter activity 𝑋0 (𝑡). Here, darker colors indicate higher probability. The three
selected traces represent typical cases in the dataset: a spot that is already active when imaging starts and stays active during the interval (a), a
single rise followed by a decay (b), and a more dynamic site with multiple separated phases of activity. b Average local elongation speeds per
site and over the slow cycle. Elongation speeds were computed by simulating traces from the state posterior as shown in panel a. For these
traces, we extracted the times polymerases remained at each individual sites. Result were collected for all traces of a window and averaged
over the posterior paths. c-h Initiation-related summary statistics over the first slow cycle. Statistics were computed by simulating a posterior
sample (one smoothing sample for every trace in the dataset) and then pooling over windows. The results were then averaged over the
parameter posterior. Red dots indicate the posterior mean, error bars correspond to 90 % credible interval. c Average number of initiation
events per trace. d Average fraction of time spent in the active promoter state. e Average number of bursts per trace. f Average duration of a
burst. g Average number of initiation events per burst (burst amplitude). h Coefficient of variation of the distribution of times between
initiation events.

kymograph plot (fourth row), we can observe the movements
of individual polymerases along the lattice. The bottom row
demonstrates that the model is capable of reconstructing the
promoter activity. Importantly, the active intervals are shifted
in time with respect to the rise-and-fall patterns of the mea-
surements and the inactive phase is identified even though the
intensity does not drop to base level. This is an advantage of
a model-based method compared to approaches that identify
bursts directly from the traces. As shown in the kymograph,
several polymerases may initiate during a burst. From the
posterior path distribution, arbitrary path statistics such as the

number of initiation events in a given time interval or the distri-
bution of time between initiation events can be computed. By
comparing such statistics of posterior paths over the cycle, we
can investigate the time dependence of unobserved quantities.
We stress that this is different from analyzing sample paths
simulated from the fitted model. As the model is a Markov
process, forward simulations will always exhibit exponential
inter-event time distributions between fundamental events. In
contrast the posterior process is non-homogenous, and can
recover non-exponential inter-event times if the data provides
evidence accordingly. As one path statistic of interest we
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investigated local elongation times by which we mean the
average dwell time of the polymerases on individual sites as it
progresses the lattice (cf. Fig. 2c). A graphical representation
of the elongation times over the lattice and over the cycle is
shown in Fig. 5b. Interestingly, polymerases tend to progress
slower during the peak of the cycle. As during the peak of the
cycle, the number of transcribing polymerases is also higher,
this indicates a higher polymerase density is associated with
lower average speed per polymerase. This could be caused,
e.g. by steric hinderance from tightly spaced polymerase or
competition for elongation factors.

We investigated a number of selected path statistics related
to initiation dynamics (Fig. 5c-h). The number of initiation
events per trace closely follows the cycle. This is expected
as the number of initiation events is directly related to the
initiation rate 𝑘 i (Fig. 5c). In contrast, the mean activity of
the promoter shows an inverse relation which seems counter
intuitive (Fig. 5d). A possible explanation is the small number
of initiation events away from the peak. When there are few
events, it is not possible to reliably distinguish bursty and
non-bursty behavior. Therefore, inference favors the simpler
explanation of constitutive expression with small rate. An
alternative explanation would be a multi-state promoter that is
in a leaky baseline state away from the peak and switches to a
more active regime during the cycle peak. The average burst
duration (Fig. 5f) points in a similar direction: In the later part
of the cycle, burst durations are longer with smaller number of
initiation events per burst. The number of bursts per trace does
not show a clear dependence on time since induction (Fig. 5e).
The burst amplitude follows the cycle in a slightly shifted form
(Fig. 5g). Interestingly, the peak of the cycle shows shorter
burst times combined with higher burst amplitude meaning
that time between initiation events is much shorter during
the cycle peak. This suggest that efficiency of the initiation
machinery is one target of regulation during the slow cycle.
Finally, we studied the distribution of times between initiation
events (Fig. 5g) by means of the coefficient of variation (CV).
A CV of one corresponds to an exponential distribution and
suggest constitutive expression. A CV larger than one indicates
a heavy-tailed distribution which suggest burstiness. Indeed,
in the beginning and in the end, the coefficient of variation
of the inter-event time distribution is close to one suggesting
exponential behavior while close to the peak we observe larger
values indicating burstiness. Note that for some quantities the
uncertainty is significantly larger away from the peak. This
is explained by the smaller number of selected traces in the
corresponding windows (cf. SI Appendix, Table S13).

Methods
Yeast strains and plasmids
We utilized haploid strains of Saccharomyces cerevisiae (BY4742
and BY4741) for live transcript analysis. The strains were engineered
to include 14X PP7 binding sites and a MET3 integrative vector for
expressing PP7-NLS-GFP. For photobleaching correction and GFP
calibration, we used strains YTK541, YTK1231, and YTK1268, each

containing a known number of GFP molecules per locus. Further
details are provided in the SI Appendix, Sec. S5.1.

Media and growth conditions
YTK1799 cells were grown in CSM-URA media under specific
conditions for live transcript analysis (SI Appendix, Sec. S5.2).
The growth protocol involved a series of inoculations, refrigeration,
and daily inoculations to maintain consistent results. Cells were
harvested and placed under a CSM-URA agarose pad for imaging.
Strains YTK541, YTK1231, and YTK1268 were grown under similar
conditions for photobleaching correction and GFP calibration.

Quantitative RT-PCR (RT-qPCR)
RNA was extracted from samples at specified time points post-Cu
induction. The extracted RNA was used to prepare cDNA, which was
then used for quantitative real-time PCR (qPCR). The expression of
the housekeeping gene ACT1 was used for normalization. The process
was repeated at least twice, with qPCR performed in duplicates for
each experiment.

Microscope settings and imaging conditions
Live cells were imaged using a DeltaVIsion Elite Microscope under
specific conditions (SI Appendix, Sec. S5.4). 3D time-lapse movies
were acquired at room temperature using a specific imaging regime
to cover the entire slow cycle. The same conditions were used for
imaging strain YTK1231 for photobleaching correction.

Trace extraction
We developed a custom 3D method based on sequential filtering
to track fluorescence spots and quantify fluorescence levels. The
method involves a state estimation using an approximate recursive
filter based on the Laplace approximation and includes a binary
state to take account of vanishing spots. Details are provided in SI
Appendix, Sec. S6.2 and Sec. S12.

Calibration measurements
We performed calibration measurements using strains YTK541,
YTK1231, and YTK1268 containing a known number of GFP per
locus. Spot intensities were measured as for the live cell experiments
but only for a single time point. Assuming a linear relationship
between number of GFP and intensity, we extracted estimates of
the scaling factor by Bayesian log-linear regression. Similarly, an
independent estimate for the bleaching rate was obtained by recording
videos of strain YTK1231 and assuming an exponential decay of spot
brightness. A detailed description is given in SI Appendix, Sec. S9.

Stochastic modeling
The model is an instance of a Markov jump process that satisfies
the master equation 1. The system’s state represents the occupation
of lattice sites by RNAP II and the transition matrix is defined
by initiation, elongation and termination along with the exclusion
principle (SI Appendix, Sec. S8.1). By splitting the transition matrix
into contributions corresponding to individual parameters, the master
equation can be solved efficiently for a given parameter vector for fairly
large state spaces by the Krylov subspace approximation for matrix
exponentials41,42. The lattice state is converted to fluorescence
intensity by assuming an affine-linear dependence on the number of
formed stem loops and a multiplicative noise model with a correction
for small intensities. Details are provided in SI Appendix, Sec. S8.2.
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Autocorelation analysis
The average autocorrelation functions (ACF) were calculated as
described in21 using the intensities of all TS tracks over time. The
ACF was calculated for 3s intervals and 12s intervals after correcting
the individual traces for photobleaching.

Bayesian inference
The joint posterior 𝑝(𝜃, 𝜔, 𝑥 [0,𝑇 ] | 𝑦1, . . . , 𝑦𝑛) of model parameters
𝜃, observation parameters 𝜔 and latent lattice trajectory 𝑥 [0,𝑇 ] was
split into marginal parameter posterior 𝑝(𝜃)𝑝(𝜔)𝑝(𝑦 | 𝜃, 𝜔) and the
conditional state posterior 𝑝(𝑥 [0,𝑇 ] | 𝜃, 𝜔, 𝑦1, . . . , 𝑦𝑛). Sampling
from the marginal parameter posterior was realized by HMC and
SVI using the probabilistic programming language Pyro45. To
integrate the stochastic process model with Pyro, we developed
a procedure to evaluate to evaluate the marginal data likelihood
log 𝑝(𝑦 | 𝜃, 𝜔) by stochastic filtering. Combined with a modified
backward filter to compute the gradients, we designed a differentiable
inference procedure applicable to general Markov jump process
models. To recover the full posterior, we used backward filtering
forward sampling approach to generate posterior paths from the
conditional state posterior 𝑝(𝑥 [0,𝑇 ] | 𝜃, 𝜔, 𝑦1, . . . , 𝑦𝑛). For a more
comprehensive description, we refer to SI Appendix, Sec. S10. The
corresponding code is available as a Python package at XXX.48

Model selection
We used a two-fold approach to Bayesian model selection. The
evidence lower bound obtained from variational inference was used
to approximate the marginal likelihood of different models and
corresponding Bayes factors. In order to check for model mismatch,
we used an additional metric based on the Wasserstein distance of the
posterior predictive distribution and the empirical data distribution.
The details are given in SI Appendix, Sec. S11.
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SI Appendix

S1 Experimental details
S1.1 Yeast strains and plasmids
For live transcript analysis, we engineered the haploid strains of Saccharomyces cerevisiae (BY4742 and BY4741), which are
isogenic to S288C (Research Genetics/Invitrogen, Huntsville, AL). 14X PP7 binding sites (hairpins) were amplified from
pTL03136 using primers T1053, T1054 and integrated in one of the haploids by replacing one of the CUP1 ORFs in the yeast
genome by homologous recombination37. For expressing PP7-GFP coat protein, we constructed a MET3 integrative vector
(pTSK630) to express PP7-NLS-GFP from SEC61 promoter and integrated this vector by SacI XhoI digestion in both the
haploids. This vector can be available upon request. For the photobleaching correction, we used a diploid strain YTK1231 in
which both the CUP1 arrays are replaced by 256 copies of LacO and lacI-GFP-NLS is expressed from pHIS3. For preparing the
calibration curve for the number of GFP molecules verses brightness/intensity, we used three yeast strains (YTK541, YTK1231
and YTK1268) with known numbers of GFP molecules per locus. YTK541, contains a tandem array of 10 copies of CUP1
locus with 40 binding sites for the transcription activator Ace1p-GFP. CUP1 is activated by Cu, and at the peak of activity CUP1
array binds 120 molecules of GFP. In YTK1231, each lacO binding site may be associated with a dimer of the lac Repressor
(LacI-GFP)38. Therefore, the array of 256 tandem lacO binding sites is associated with 512 LacI-GFP molecules. In YTK1268,
the spindle pole body of the diploid yeast strain contains approximately 1000 molecules of Spc42-GFP. Strain genotypes are
provided in Table S8, plasmids in Table S9 and primer sequences in Table S10.

S1.2 Media and growth conditions
For live transcript analysis, cells of YTK1799 were plated on CSM-URA plate (from −80 ◦C frozen glycerol stock) and grown
for 48 h at 28 ◦C. 3 to 5 colonies were inoculated in 3 mL CSM-URA media (in 14 mL polypropylene tubes, Cat no. 352059,
Falcon, Maxico) and grown for overnight at 28 ◦C, 230 RPM. 250 µL of this overnight grown culture was inoculated in 25 mL
CSM-URA (in 250 mL flask) and grown at 28 ◦C, 230 RPM for 24 h. This flask was removed from the shaker and kept in
refrigerator at 4 ◦C. We used this refrigerated culture for daily inoculations for a month to get consistent results (to avoid day to
day variations in transcription induction kinetics due to difference in the age of the culture). From this refrigerated culture,
we inoculated 60 µL in 3 mL of fresh CSM-URA media (in 14 mL polypropylene tubes, Cat no. 352059, Falcon, Maxico) in
the morning and grew the cultures for 5 h at 28 ◦C, 230 RPM. Cells were harvested by centrifugation (2200 RPM for 1 min)
and cells were placed under the CSM-URA agarose pad (100 µM CuSO4) for imaging. For the photobleaching correction and
GFP calibration curve, strains YTK541, YTK1231 and YTK1268 were grown under the same conditions, except YTK541 and
YTK1268 were grown in CSM-HIS media.

S1.3 Quantitative RT-PCR (RT-qPCR)
Samples were harvested at indicated time points after Cu induction. RNA was extracted (from yeast cells) using the ISOLATE
II RNA Mini kit (Bioline, UK, Cat no. BIO-52072). cDNA was prepared using the iScript cDNA synthesis kit (BioRad,
Cat no.: 1708891) starting with 1 mg of total RNA. Quantitative real-time PCR (qPCR) was performed as described27. For
normalization, the expression of the housekeeping gene ACT1 was quantified. Primers used for this quantification are listed in
Table S10 (T531, T532 for CUP1 and T1055, T1056 for ACT1). To confirm the absence of contaminating genomic DNA in
cDNA preparations, reverse transcriptase negative (-RT) samples were used as a control, which produced the Ct value difference
of >10 cycles between “-RT” and “+RT”samples, indicating a negligible amount of genomic DNA contamination in cDNA
samples. mRNA extraction, cDNA synthesis, and qPCR were repeated at least twice, and qPCR was performed in duplicates for
each experiment. Error bars indicate SEM.

S1.4 Microscope settings and imaging conditions
For imaging live cells, 5 h grown cultures were harvested by centrifugation (2200 RPM for 1 min) and 3 µL of cell pellet were
placed in Lab-Tek II chambered coverglass (1.5 Borosilicate Gass, Nunc, ThermoFisher Scientific, MA, US), mixed with
equal volume of 200 µM CuSO4 containing CSM-URA and covered by 1cm x 1cm CSM-URA agarose pad (100 µM CuSO4).
A timer was started immediately upon mixing the cells with 200 µM CuSO4 containing CSM-URA. 3D time-lapse movies
were acquired at the room temperature on the DeltaVIsion Elite Microscope, using 100x 1.4 NA oil immersion objective lens,
sCMOS camera, FITC filter set (15 ms exposure, Ex 488/27; Em 505/45, Chroma Technology Corp, Bellows Falls, VT), 15
z-steps at every 400 nm, 1x1 binning and 1024x1024 pixels. Time-lapse movies with 3 s time interval were acquired for 90 s,
followed by changing the field within next 90 s, imaging new field for another 90 s and so on. This imaging regime was repeated
9 times within 30 min to cover the entire slow cycle. E.g. to cover the entire slow cycle of 30 min with 3 s time interval, first set
of movies were started for new field of cells after 3, 6, 9, 12, 15, 18, 21, 24, 27 min after copper induction and acquired for 90 s.
Remaining 90 s (between 3 min and 6 min time points, between 6 min and 9 min time points, and so on) were used for moving to
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the next field of cells. Second set of movies were acquired for new field of cells after 4.5, 7.5, 10.5, 13.5, 16.5, 19.5, 22.5, 25.5
and 28.5 min after copper induction and acquired for 90 s to compensate the missing time points from the first set. Similarly,
time-lapse movies for 12 s time interval were recorded for 5 min, followed by changing the field of view within the next 1 min. A
first set of movies was started after 3, 9, 15, 21, 27 min after induction. A second set of movies was stared at 6, 12, 18, 24 min
after induction. For the photobleaching correction, strain YTK1231 was imaged under the same condition with 3 s time interval.

Table S1. Yeast strains used in this study

Strain ID Application Source Genotype

YTK541 GFP calibration This study MATα, his3-D1 leu2-D0 ura3-D0 lys2-D0 ace1-
D1::KAN TRP1::TRP1ORF-pCap2-ACE1-tripleGFP-
HIS3

YTK1231 GFP and photobleach-
ing calibration

This study MATa/MATα, his3-D1/his3-D1 leu2-D0/leu2-
D0 trp1/TRP1 ura3-D0/ura3-D0 lys2-d::pHIS3-
lacI-GFP-NLS-Nat1/ lys2-d::pHIS3-lacI-GFP-
NLS-Nat1 MET15/met15-D0 Cu1::KAN-
(LacO)256/Cu3::(LacO)256 [pRS426 pHIS3-LacI-
GFP-URA3]

YTK1268 GFP calibration This study MATa/MATα, his3-d1/his3-d1 leu2-d0/leu2-d0 met15-
d0/MET15 LYS2/lys2-d0 ura3-d0/ura3-d0 SPC42-GFP-
HIS3/SPC42-GFP-HIS3

YTK1799 3s movies, 12s movies This study MATa/MATα, his3-d1/his3-d1 leu2-d0/leu2-d0
lys2-d0/LYS2 MET15/met15-d0 ura3-d0/ura3-
d0 pdr5-d::LoxP/pdr5-d::LoxP trp1d::pADH-
AFB2::LEU2/trp1d::pADH-AFB2::LEU2 ace1-
d::pCAP2-ACE1-mCherry-TRP1/ ace1-d::pCAP2-
ACE1-mCherry-TRP1 RSC2-AID-9Myc::HIS5/RSC2-
AID-9Myc::HIS5 CUP1-PP7hairpins(14)-
KANMX/CUP1 MET3::pSEC61-PP7-GFP-CTCT-
URA3/MET3::pSEC61-PP7-GFP-CTCT-URA3

Table S2. Plasmids used in this study

Plasmid
Name

Application Primers Source

pTL031 For amplifying 14x PP7 binding sites (hairpins) T1053-T1054 Lenstra and Larson,
201636

pTSK630 For integrating pSEC61-PP7-GFP-CYCT at
MET3 locus using URA3 (K. lactis) as a selec-
tion marker. Cut with SacI and XhoI to integrate
into MET3

This study
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Table S3. Sequences of the primers used in this study

Primer ID Application Sequence

T1053 For replacing one copy of CUP1 ORF with
14x PP7 binding sites (Forward)

gatattaagaaaaacaaactgtacaatcaatcaatcaat-
catcacataaa gtaaaacgacggccagtgagcg*

T1054 For replacing one copy of CUP1 ORF with
14x PP7 binding sites (Reverse)

aaaattaaaaacagcaaatagttagatgaatatattaaagactattcgtt
gttttcgacactggatggcggcg*

T531 RT-qPCR CATTTCCCAGAGCAGCATGA
T532 RT-qPCR GTCATGAGTGCCAATGCCAA
T1055 RT-qPCR ggttgctgctttggttattgataacgg
T1056 RT-qPCR gttcttctggggcaactctc

*Homologous sequences for site-specific integration are shown in blue. Sequences homologous to plasmid DNA are shown in red.

Table S4. Structures used for GFP calibration

Strain Sub-cellular structure Expected GFP

YTK541 CUP1 array / Ace1p-3xGFP 120
YTK1231 lacO (256) / LacI-GFP 512

YTK1231Enh lacO (256) / LacI-GFP 512
YTK1268 SPB/ Spc42-GFP 1000

Table S5. Datasets collected in this study

Dataset Strain No.Movies

3s YTK1799 82
12s YTK1799 71

Photobleaching 3s YTK1231 25
Photobleaching 12s YTK1231 20

GFP calibration YTK541, YTK1231, YTK1799, YTK1268 20

S2 Data acquisition and pre-processing
S2.1 Cell selection
As a first step, we extracted movies of individual cells from the full movies. In order to extract cells with spots, we computed
two projections: a maximum projection over all frames leading to a 2D movie and a maximum projection over all time frames
and slices producing a single image. The latter single image allowed to identify all cells that develop an active transcription site
during imaging. For the identified cells we drew ROIs in the initial time frame of the 2D video. These initial ROIs were tracked
over time and used to extract 3D movies of individual cells. For each cell, the full image stack over time was stored for trace
extraction. Fluorescence intensity traces were obtained as described in Sec. S6.2. A more detailed description of the custom
tracker is given in Sec. S12.

S2.2 Trace extraction
To track fluorescence spots and quantify fluorescence levels, we developed a custom 3D method based on sequential filtering.
The location of the spot within an image stack at time 𝑡𝑘 is given by 𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ). The spot is modeled as a diffraction
limited point source such that the intensity 𝐼 of the pixel at position 𝑟 can be described as

𝐼𝑘 (𝑟) = 𝑏𝑘 + 𝐼𝑘 exp
[
−1

2
(𝑟 − 𝑟𝑘 )𝑇 Σ−1

PSF (𝑟 − 𝑟𝑘 )
]

where the diagonal matrix ΣPSF describes the shape of the point spread function of the optical system, 𝑏𝑘 is a local background
and 𝐼𝑘 is the peak intensity of the spot that is related to the underlying intensity of the point source by a constant factor. In
addition, we introduce a binary variable 𝑠𝑘 that describes whether the spot is visible in frame 𝑘 . This leads to a total state
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𝑥𝑘 = (𝑟𝑘 , 𝑏𝑘 , 𝑦𝑘 , 𝑠𝑘 ). The observation model is given by the predicted intensity per pixel with additive Gaussian noise. State
estimation is carried out using the standard recursive filtering approach43. Due to the non-linear observation model, a Laplace
approximation is used to evaluate filter updates. The details are given in S12. The filter provides estimates of 𝐼𝑘 for 𝑘 = 1, . . . , 𝑛
which are treated as the noisy measurements 𝑦1, . . . , 𝑦𝑛 for the main analysis. Traces showing dividing spots due to DNA
replication were excluded from further analysis. In this study we do not take into account the noise from the fraction of the cells
that completed the replication of the reporter gene, but did not separate sister chromatids, which may lead to transcription of
two alleles in the same spot.

S2.3 Quality Control
In the images, some of the cells showed too high or too low GFP expression or were otherwise malfunctioning. In the 12s data
set, we identified 3260 cells where an active TS is visible in at least one time frame during imaging. After tracking, all traces
were compared manually to the corresponding cell video for quality checking. During this screening, we removed all potentially
problematic traces, e.g. floating or dividing cells. The remaining 3036 high quality traces were used for further analysis. The
same procedure was applied to the 3s data set leading to a selection of 3685 of an initial 4053 cells. A detailed summary of
extracted cells per time interval is given in Table S13.

Table S6. Cells extracted from the 3 𝑠 and 12 𝑠 data sets

Time since
induction

3𝑠 data set 12𝑠 data set
Extracted Selected Extracted Selected

3 min 20 17 223 208
4.5 min 78 68
6 min 170 157 361 339

7.5 min 227 202
9 min 308 282 627 589

10.5 min 322 285
12 min 391 365 498 448

13.5 min 315 300
15 min 427 399 533 510

16.5 min 284 270
18 min 351 313 477 440

19.5 min 248 228
21 min 255 231 251 232

22.5 min 143 120
24 min 214 195 172 162

25.5 min 108 93
27 min 125 105 118 108

28.5 min 50 40
30 min 17 15

S3 Exploratory analysis
Before turning to the model-based Bayesian inference approach, we performed descriptive statistical analysis to confirm the
cyclic activity of the CUP1 promoter known from earlier studies.

S3.1 Total image brightness
The movies within different dataset were collected on different days. To ensure that these movies are comparable, we check the
total intensity distributions of the first time frame of every movie. By focusing on the first time step, we can avoid confounding
effects of bleaching. Boxplot representations of the intensity distributions (Fig. S11) reveal some variations in the intensity
distribution. To understand these variations, it is important to note that the images consist mostly of extra-cellular background.
Biological differences mainly affect the nuclear brightness and can thus not be responsible for large distribution shifts. Possible
factors that could affect total brightness are the agarose medium in the background or variations in illumination or other factors
of the optical system.

The most striking difference is that the movies collected on day 4 in the 3s dataset are significantly brighter than all other
movies in this dataset. To make the dataset more homogenous, we exclude the day 4 movies from all further analysis. We also
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observe that the 12s dataset is significantly brighter than the 3s dataset. The reason for this difference is unclear as several
months are between the recording dates. However, as we analyze the dataset separately and optical factors such as the gfp
scaling are inferred from the dataset, we do not view this as a problem. The third observation we discuss here is that the
brightness tends to decrease for movies take from the same coverslip. This is most likely due to some cross-bleaching from
imaging neighboring positions. Since the effect is rather small, we will ignore it in the following analysis.
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Figure S6. Pixel intensity distributions for the first time frame of every movie in form of a box plot shown for the 3 s dataset (a) and the 12 s
dataset (b). Lower and upper border of the rectangles represent 25th and 75th percentile, respectively. The bold line within the box indicates
the median. Every color family represents one experiment day, while the shading withing a color family indicates movies taken from the same
coverslip

S3.2 Spot Brightness
We now take a first look at the spot brightness. Similarly as an the previous section, we consider only the first frame of every
movie to avoid effects of bleaching. For every movie, the spot intensities of all active cells in the first frame were pooled. The
corresponding distributions are shown in the form of boxplots for both 3s and 12s dataset in Fig. S12.

Especially in the 3s dataset one can observe a clear dependence of spot brightness on the time since induction. Since the
movies taken from the same coverslip are ordered sequentially, they correspond to spot measurements every 3 minutes or every
6 minutes for 3 s dataset and 12 s dataset, respectively. The observed sharp increase followed by a longer decrease is well in
accordance with measurements from RT-qPCR. In addition, the results from different coverslips are quite similar and show less
variation than the total intensity distributions in Fig. S11. The reason for this is that spot intensities are measured relative to
local nuclear background such that additive noise affecting the total brightness of images is filtered out by the spot tracking. The
one exception from this are the movies from day 4, which we have already decided to treat as outliers due to their much higher
overall brightness.

The dependence on time since induction is also visible in the 12 s dataset albeit less clear than for the 12 s dataset. One reason
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for this is that there are fewer measurements per coverslip due to the longer duration of the individual movies. In addition, some
series of the movies are shifted by 3 minutes leading to a less regular appearance.

Finally, it seems that the spots in the 12 s dataset are overall brighter than in the 3 s dataset. Two possible explanations come
to mind. The first possibility is that the cell cultures differ in activity which is possible due the time between the collection
of the datasets. Alternatively, multiplicative noise affecting the total intensity distribution could explain the differences as it
would not be filtered out by the spot tracking. In practice, it could also be a combination of both factors. We deal with this by
estimating the observation model (cf. Sec. S9) parameters individually for every dataset. Any multiplicative noise will be
captured by the estimated GFP scaling factor such that remaining differences can be attributed to Biological causes.
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Figure S7. Pixel intensity distributions for the first time frame of every movie in form of a box plot shown for the 3 s dataset (a) and the 12 s
dataset (b). Lower and upper border of the rectangles represent 25th and 75th percentile, respectively. The bold line within the box ndicates
the median. Every color family represents one experiment day, while the shading withing a color family indicates movies taken from the same
coverslip.

S3.3 Investigating time-dependant activity
The presence of non-stationary transcription dynamics can be already seen from the movie histograms in Fig. S12. We will now
take a closer look by inspecting the average spot intensities pooled over all movies that started with the same time delay with
respect to induction. As before, we will only consider the first time frame of each movie to avoid the effects of bleaching. The
first row in Fig. S13 shows the average spot intensity over the cycle. For both 3 s dataset (left) and 12 s dataset (right) wie see a
sharp rise of the intensity in the early part of the observed interval followed by a slower decay. While the general shape of both
curves is similar, the spots in the 12s dataset are generally brighter as we have seen from the per-movie distributions (cf. Fig.
S12). The second row of Fig. S13 shows the number of responding cells divided by the total number of cells per time window.
To assign cells to the class of responders or non-responders, we used a standard Gaussian mixture classifier on the spot intensity
distributions of the datasets. In order to avoid bias by the overall different brightness, we applied this classifier individually on
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Figure S8. Dependence of summary statistics on the time since induction. The first row shows the mean of the spot intensities pooled over all
videos with the same time delay since induction. The second row shows the number of responders divided by the total number of cells per
time window. Error bars indicate standard error. Results for the 3 s dataset are also shown in the main text (Fig. 1f, g)

each dataset. The resulting responder ratios of both datasets agree well.

S4 Model

S4.1 Kinetic Transcription Model
As described in the main text, the model is an example of a Markov jump process that satisfies the master equation (1). The
transition function 𝑄 defines the probability of an event to happen in an infinitesimal interval ℎ

𝑃(𝑋 (𝑡 + ℎ) = 𝑥 ′ | 𝑋 (𝑡) = 𝑥) = 𝑄(𝑥, 𝑥 ′ | 𝜃)ℎ + 𝑜(ℎ) .

The transition function is fully specified by the vector of parameters 𝜃 = (𝑘on, 𝑘off , 𝑘 i, 𝑘e, 𝑘 t)⊤ and the conditions under which
transitions can occur, leading to

𝑄(𝑥, 𝑥 ′ | 𝜃) =



𝑘on 𝑥0 = 0, 𝑥 ′0 = 1 ,
𝑘off 𝑥0 = 1, 𝑥 ′0 = 1 ,
𝑘 i 𝑥0 = 1, 𝑥1 = 0, 𝑥 ′1 = 1 ,
𝑘e 𝑥𝑖 = 1, 𝑥𝑖+1 = 0, 𝑥 ′𝑖 = 0, 𝑥 ′𝑖+1 = 1 , 𝑖 = 1, . . . , 𝐿 − 1 ,
𝑘 t 𝑥 ′𝑙 = 𝑥𝑙 − 1

.
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For parameter inference, we need to evaluate the system for many different parameter configurations. It is therefore convenient
to represent the transition functions as

𝑄(𝑥, 𝑥 ′ | 𝜃) =
5∑︁
𝑖=1

𝜃𝑖𝑅𝑖 (𝑥, 𝑥 ′) . (S2)

The operators 𝑅𝑖 are independent of the parameters. By enumerating the states of the system, the probability 𝑝(𝑥, 𝑡) can be
represented by a vector p(𝑡) and the transition function 𝑄 becomes a sparse matrix Q. With this, the master equation becomes

d
d𝑡

p(𝑡) = Qp(𝑡) .
A formal solution of this system is given by the matrix exponential

p(𝑡) = exp (Q𝑡) p0

with initial distribution p0. For sparse Q, this can be efficiently solved for fairly large state spaces by the Krylov subspace
approximation for matrix exponentials41,42.

S4.2 Observation Model
The kinetic model discussed above is a continuous time model. In practice, one cannot observe such a systems in continuous time
but rather at discrete sample times 𝑡1, . . . , 𝑡𝑛. In addition, we do not observe the process 𝑋 (𝑡𝑘 ) directly. Here, our measurement
𝑌 (𝑡𝑘 ) is provided by the total intensity of the fluorescence spots as measured by the tracking algorithm. In the following, we
construct a model that relates 𝑋 and 𝑌 . First, note that as the polymerase traverses the gene, an additional stem loop is added
for every site until at some point the maximum number of stem loops is acquired. For the remaining part of the transcription
process, the number of stem loops stays constant. After termination, the mRNA is released and rapidly diffuses away from
transcription site. The corresponding spot is thus no longer visible and we observe a sharp drop in intensity. Hence, if 𝑎 ∈ N𝐿+1

encodes the number of stem loops associated with the sites of the gene, the variable

𝑁 (𝑡) =
𝐿∑︁
𝑖=0

𝛼𝑖𝑋𝑖 (𝑡) (S3)

corresponds to the number of visible stem loops at time 𝑡. Assuming that stem loops are occupied by GFP fast compared to the
elongation speed, the total spot signal can be described as

𝐼 (𝑡) = 𝑏0 + 𝑒−𝜆𝑡 (𝑏1 + 𝛾𝑁 (𝑡)) . (S4)

Here, 𝜆 is the bleaching factor and 𝑏0, 𝑏1 correspond to baseline background and a bleachable part of the background respectively.
The factor 𝛾 encodes the intensity contribution per GFP molecule. During image acquisition and intensity estimation, the
signal is corrupted by various forms of noise such as z-diffusion of the transcription site, photon counting noise on the camera
chip, variations in the media, mismatch of the point-spread function with the Gaussian approximation, irregular background
illumination, etc. We subsume all these effects into a single multiplicative noise variable leading to the relation

𝑌1 (𝑡𝑘 ) = 𝐼 (𝑡𝑘 ) exp(𝜎𝜖𝑘 ) , (S5)

where 𝜖𝑘 are independent and standard normally distributed. While (S10) is a reasonable approximation for larger signals, it
is not suitable for very small signals. The reason for this is that at low intensity, due to fundamental limitations of the spot
detection, there is an increased probability that a spot is missed or that a local fluctuation is confused with a signal. To take
account of this effect, we introduce the random background signal

𝑌0 (𝑡𝑘 ) = 𝐼0 exp(𝜎𝜖𝑘 )
and an additional unobserved random variable 𝑍 (𝑡𝑘 ) ∈ {0, 1} with

Pr(𝑍 (𝑡𝑘 ) = 1 | 𝐼 (𝑡𝑘 )) = sigmoid
(
𝑤 log

(
𝐼 (𝑡𝑘 )
𝐼0

))
where sigmoid(𝑥) = (1 + exp(−𝑥))−1 and 𝑤 is a response parameter. The final observation model is then given by

𝑌 (𝑡𝑘 ) = 𝑍 (𝑡𝑘 )𝑌1 (𝑡𝑘 ) + (1 − 𝑍 (𝑡𝑘 ))𝑌0 (𝑡𝑘 ) . (S6)

This can be understood as a soft threshold for spot detection. When the true spot intensity 𝐼 is larger than 𝐼0, 𝑍 will likely be
one and we measure the signal 𝑌1 with high probability. When 𝐼 is smaller than 𝐼0, 𝑍 is likely zero and we observe the spurious
signal 𝑌0 with high probability. The likelihood corresponding to (S11) is that of a mixture of two lognormal distributions with
parameters log(𝐼) and log(𝐼0). An overview of all parameters involved in kinetic and observation model is given in Table S14.
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Figure S9. Expected elongation times of a gene template
with size 𝑙 = 1200 nt for different values of the elongation
rate 𝑘e. The thick black curve indicates the value obtained
from independent polymerase movement by the relation
𝑡e = 𝑙

𝑘e
. Red dots show the expected elongation time from

simulations of a TASEP model with a site size of 120 nt.
Error bars indicate the standard deviation of the distribution.
Initiation rate 𝑘i and termination rate 𝑘t are fixed and chosen
such that typically multiple polymerases are on the template
and no traffic jams are caused by the termination site.

Many models for transcription assume independent movement of
individual polymerases. This leads to a simple relation between
elongation rate and elongation time as 𝑡e = 𝑙

𝑘e
where 𝑙 is the size of the

translated region. Due to possible interactions between polymerases,
this relation is not valid in the TASEP model. As shown in Fig.
S14, the TASEP model requires a higher value compared to an
independence model to produce the same expected elongation time.
This difference becomes smaller for higher elongation rates, since
a fast movement of individual polymerases decreases the probability
of interaction. As an example, consider the dotted black line in Fig.
S14 corresponding to an elongation time of 12 s. To produce such
an elongation time, the independent model requires an elongation
rate of 100 nt s−1, while the TASEP model requires and elongation
rate of roughly 120 nt s−1.

S4.4 Coarse-graining
The most natural quantization of the gene into sites would be to
associate every site with a single nucleotide. This would, however,
lead to more than 1000 sites and since the state space of the model
scales as 2𝐿 would make inference intractable. In addition, we only
observe the system by one-dimensional summary statistic every few
seconds such that most of the detailed dynamics are not captured. It
is thus necessary to combine several nucleotides into a single site. A
good candidate for such a coarse-graining is the DNA footprint of a
stem loop, which is roughly 60 nt, as the appearance of a stem loop
is the most fine-grained observable. For a DNA template consisting
of 1200 nt, this would lead to 𝐿 = 22 sites. While the master equation this model is still tractable, it requires significant
computational effort such that only a small number of cells can be handled this way. As argued in the main text, it is important to
pool many traces in order to overcome structural identifiability limitations of the system. As a compromise between tractability
and resolution, we choose a partition size of 120 nt corresponding to two stem loops leading to a system of 𝐿 = 12 sites.

The coarse-graining changes the waiting time distribution between appearance of two stem loops. If one starts from a
fine-grained model where every site corresponds to a single nucleotide, the waiting time for jumps of size 120 bp is much more
peaked compared to the exponential distribution. To investigate the robustness of the inference against this kind of mismatch,
we simulated 100 trajectories from a fine-grained model described in23 Supp. M. The model is similar to the TASEP model we
use for inference, but uses one site for every nucleotide. In addition, RNAP molecules have a footprint of 40 sites and individual
stems loops appear every 60 sites with 14 stem loops in total. The number of sites was set to 1200 roughly corresponding
to the gene investigates experimentally. The elongation rate was set to 𝑘elong = 100 nt s−1, for all other parameters we used
the standard values of the coarse-grained model. We generated 100 trajectories with 3 s time-lapse and performed pooled
inference. For simplicity, we assume a constitutive promoter an drop the switching site. The results are presented in Fig. S15a.
They indicate that while initiation and termination rate are inferred quite accurately, the estimated elongation rate is, however,
significantly larger than the ground truth used to generate data in the fine-grained model. This can be explained by the exclusion
property of the TASEP process. In the coarse-grained model, collisions will happen more frequently on average since the space
is limited. In order to achieve a similar total elongation time, the rate has to be increased to account for the possible blocking.
To verify this, we generated trajectories from fine-grained model and coarse-grained model and extracted the distribution of
total transcription times (Fig. S15b). The mean elongation time predicted by the learned coarse-grained model is quite close to
the mean elongation time of the fine-grained model. This demonstrates that even though there is a mismatch, the model learns
physically meaningful quantities. However, we stress that this is merely an example to illustrate model mismatch. In practice,
the distribution of elongation times predicted by the fine-grained model is likely too narrow as it ignores effects such as pausing,
reverse steps, chromatin remodelling, etc. Thus, a coarse-grained model with wider waiting time distribution may be a better
approximation to the real data, as long as these effects are not modeled explicitly.

S4.5 Overview of the model parameters
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Figure S10. a Pooled posterior inference of a non-switching model on traces generated by the fine-grained TASEP model with a time laps of
3 s. Observation parameters are not shown but were also estimated during inference. The rows show histogram approximations of the prior
distribution (blue) and the posterior distribution (red) for the model parameters. Black lines indicate the parameter value used to generate the
data. b Distribution of total elongation times obtained from forward simulation of the coarse-grained model (left and middle) and the
fine-grained model (right). The elongation right of the left plot is a typical value of the prior distribution, the elongation rate of the middle
plot is a typical value of the posterior distribution. Black lines indicate the empirical mean.

Table S7. Overview of the model parameters

Parameter Default value Explanation

𝑘on 0.025 s−1 On-switching rate of the promoter state
𝑘off 0.025 s−1 Off-switching rate of the promoter state
𝑘 i 0.3 s−1 Initiation rate of polymerases, given the promoter is in the

active state
𝑘e 100 nt s−1 Elongation rate per polymerase. Must be divided by the site

size to convert to a jump rate between sites
𝑘 t 0.3 s−1 Termination rate from the pooled termination site. 1

𝑘t
is the

average time a transcript is visible at the transcription site
after elongation.

𝐿 11 Number of TASEP lattice sites. Due to the additional pro-
moter site 𝑋0, the full model has 𝐿 + 1 sites.

𝑏0 5 a.u. Non-bleachable baseline fluorescence intensity
𝑏1 5 a.u. Bleachable background fluorescence intensity
𝛾 1.1 a.u. Fluorescence intensity per unit of GFP
𝜆 1 × 10−3 s−1 Exponential bleaching rate
𝐼0 25 a.u. Soft detection threshold of a true spot signal
𝑤 4 Tuning parameter to determine the sharpness of the soft detec-

tion
𝜎 0.1 Noise level standard deviation in the log-domain of the signal
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S5 Experimental details
S5.1 Yeast strains and plasmids
For live transcript analysis, we engineered the haploid strains of Saccharomyces cerevisiae (BY4742 and BY4741), which are
isogenic to S288C (Research Genetics/Invitrogen, Huntsville, AL). 14X PP7 binding sites (hairpins) were amplified from
pTL03136 using primers T1053, T1054 and integrated in one of the haploids by replacing one of the CUP1 ORFs in the yeast
genome by homologous recombination37. For expressing PP7-GFP coat protein, we constructed a MET3 integrative vector
(pTSK630) to express PP7-NLS-GFP from SEC61 promoter and integrated this vector by SacI XhoI digestion in both the
haploids. This vector can be available upon request. For the photobleaching correction, we used a diploid strain YTK1231 in
which both the CUP1 arrays are replaced by 256 copies of LacO and lacI-GFP-NLS is expressed from pHIS3. For preparing the
calibration curve for the number of GFP molecules verses brightness/intensity, we used three yeast strains (YTK541, YTK1231
and YTK1268) with known numbers of GFP molecules per locus. YTK541, contains a tandem array of 10 copies of CUP1
locus with 40 binding sites for the transcription activator Ace1p-GFP. CUP1 is activated by Cu, and at the peak of activity CUP1
array binds 120 molecules of GFP. In YTK1231, each lacO binding site may be associated with a dimer of the lac Repressor
(LacI-GFP)38. Therefore, the array of 256 tandem lacO binding sites is associated with 512 LacI-GFP molecules. In YTK1268,
the spindle pole body of the diploid yeast strain contains approximately 1000 molecules of Spc42-GFP. Strain genotypes are
provided in Table S8, plasmids in Table S9 and primer sequences in Table S10.

S5.2 Media and growth conditions
For live transcript analysis, cells of YTK1799 were plated on CSM-URA plate (from −80 ◦C frozen glycerol stock) and grown
for 48 h at 28 ◦C. 3 to 5 colonies were inoculated in 3 mL CSM-URA media (in 14 mL polypropylene tubes, Cat no. 352059,
Falcon, Maxico) and grown for overnight at 28 ◦C, 230 RPM. 250 µL of this overnight grown culture was inoculated in 25 mL
CSM-URA (in 250 mL flask) and grown at 28 ◦C, 230 RPM for 24 h. This flask was removed from the shaker and kept in
refrigerator at 4 ◦C. We used this refrigerated culture for daily inoculations for a month to get consistent results (to avoid day to
day variations in transcription induction kinetics due to difference in the age of the culture). From this refrigerated culture,
we inoculated 60 µL in 3 mL of fresh CSM-URA media (in 14 mL polypropylene tubes, Cat no. 352059, Falcon, Maxico) in
the morning and grew the cultures for 5 h at 28 ◦C, 230 RPM. Cells were harvested by centrifugation (2200 RPM for 1 min)
and cells were placed under the CSM-URA agarose pad (100 µM CuSO4) for imaging. For the photobleaching correction and
GFP calibration curve, strains YTK541, YTK1231 and YTK1268 were grown under the same conditions, except YTK541 and
YTK1268 were grown in CSM-HIS media.

S5.3 Quantitative RT-PCR (RT-qPCR)
Samples were harvested at indicated time points after Cu induction. RNA was extracted (from yeast cells) using the ISOLATE
II RNA Mini kit (Bioline, UK, Cat no. BIO-52072). cDNA was prepared using the iScript cDNA synthesis kit (BioRad,
Cat no.: 1708891) starting with 1 mg of total RNA. Quantitative real-time PCR (qPCR) was performed as described27. For
normalization, the expression of the housekeeping gene ACT1 was quantified. Primers used for this quantification are listed in
Table S10 (T531, T532 for CUP1 and T1055, T1056 for ACT1). To confirm the absence of contaminating genomic DNA in
cDNA preparations, reverse transcriptase negative (-RT) samples were used as a control, which produced the Ct value difference
of >10 cycles between “-RT” and “+RT”samples, indicating a negligible amount of genomic DNA contamination in cDNA
samples. mRNA extraction, cDNA synthesis, and qPCR were repeated at least twice, and qPCR was performed in duplicates for
each experiment. Error bars indicate SEM.

S5.4 Microscope settings and imaging conditions
For imaging live cells, 5 h grown cultures were harvested by centrifugation (2200 RPM for 1 min) and 3 µL of cell pellet were
placed in Lab-Tek II chambered coverglass (1.5 Borosilicate Gass, Nunc, ThermoFisher Scientific, MA, US), mixed with
equal volume of 200 µM CuSO4 containing CSM-URA and covered by 1cm x 1cm CSM-URA agarose pad (100 µM CuSO4).
A timer was started immediately upon mixing the cells with 200 µM CuSO4 containing CSM-URA. 3D time-lapse movies
were acquired at the room temperature on the DeltaVIsion Elite Microscope, using 100x 1.4 NA oil immersion objective lens,
sCMOS camera, FITC filter set (15 ms exposure, Ex 488/27; Em 505/45, Chroma Technology Corp, Bellows Falls, VT), 15
z-steps at every 400 nm, 1x1 binning and 1024x1024 pixels. Time-lapse movies with 3 s time interval were acquired for 90 s,
followed by changing the field within next 90 s, imaging new field for another 90 s and so on. This imaging regime was repeated
9 times within 30 min to cover the entire slow cycle. E.g. to cover the entire slow cycle of 30 min with 3 s time interval, first set
of movies were started for new field of cells after 3, 6, 9, 12, 15, 18, 21, 24, 27 min after copper induction and acquired for 90 s.
Remaining 90 s (between 3 min and 6 min time points, between 6 min and 9 min time points, and so on) were used for moving to
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the next field of cells. Second set of movies were acquired for new field of cells after 4.5, 7.5, 10.5, 13.5, 16.5, 19.5, 22.5, 25.5
and 28.5 min after copper induction and acquired for 90 s to compensate the missing time points from the first set. Similarly,
time-lapse movies for 12 s time interval were recorded for 5 min, followed by changing the field of view within the next 1 min. A
first set of movies was started after 3, 9, 15, 21, 27 min after induction. A second set of movies was stared at 6, 12, 18, 24 min
after induction. For the photobleaching correction, strain YTK1231 was imaged under the same condition with 3 s time interval.

Table S8. Yeast strains used in this study

Strain ID Application Source Genotype

YTK541 GFP calibration This study MATα, his3-D1 leu2-D0 ura3-D0 lys2-D0 ace1-
D1::KAN TRP1::TRP1ORF-pCap2-ACE1-tripleGFP-
HIS3

YTK1231 GFP and photobleach-
ing calibration

This study MATa/MATα, his3-D1/his3-D1 leu2-D0/leu2-
D0 trp1/TRP1 ura3-D0/ura3-D0 lys2-d::pHIS3-
lacI-GFP-NLS-Nat1/ lys2-d::pHIS3-lacI-GFP-
NLS-Nat1 MET15/met15-D0 Cu1::KAN-
(LacO)256/Cu3::(LacO)256 [pRS426 pHIS3-LacI-
GFP-URA3]

YTK1268 GFP calibration This study MATa/MATα, his3-d1/his3-d1 leu2-d0/leu2-d0 met15-
d0/MET15 LYS2/lys2-d0 ura3-d0/ura3-d0 SPC42-GFP-
HIS3/SPC42-GFP-HIS3

YTK1799 3s movies, 12s movies This study MATa/MATα, his3-d1/his3-d1 leu2-d0/leu2-d0
lys2-d0/LYS2 MET15/met15-d0 ura3-d0/ura3-
d0 pdr5-d::LoxP/pdr5-d::LoxP trp1d::pADH-
AFB2::LEU2/trp1d::pADH-AFB2::LEU2 ace1-
d::pCAP2-ACE1-mCherry-TRP1/ ace1-d::pCAP2-
ACE1-mCherry-TRP1 RSC2-AID-9Myc::HIS5/RSC2-
AID-9Myc::HIS5 CUP1-PP7hairpins(14)-
KANMX/CUP1 MET3::pSEC61-PP7-GFP-CTCT-
URA3/MET3::pSEC61-PP7-GFP-CTCT-URA3

Table S9. Plasmids used in this study

Plasmid
Name

Application Primers Source

pTL031 For amplifying 14x PP7 binding sites (hairpins) T1053-T1054 Lenstra and Larson,
201636

pTSK630 For integrating pSEC61-PP7-GFP-CYCT at
MET3 locus using URA3 (K. lactis) as a selec-
tion marker. Cut with SacI and XhoI to integrate
into MET3

This study
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Table S10. Sequences of the primers used in this study

Primer ID Application Sequence

T1053 For replacing one copy of CUP1 ORF with
14x PP7 binding sites (Forward)

gatattaagaaaaacaaactgtacaatcaatcaatcaat-
catcacataaa gtaaaacgacggccagtgagcg*

T1054 For replacing one copy of CUP1 ORF with
14x PP7 binding sites (Reverse)

aaaattaaaaacagcaaatagttagatgaatatattaaagactattcgtt
gttttcgacactggatggcggcg*

T531 RT-qPCR CATTTCCCAGAGCAGCATGA
T532 RT-qPCR GTCATGAGTGCCAATGCCAA
T1055 RT-qPCR ggttgctgctttggttattgataacgg
T1056 RT-qPCR gttcttctggggcaactctc

*Homologous sequences for site-specific integration are shown in blue. Sequences homologous to plasmid DNA are shown in red.

Table S11. Structures used for GFP calibration

Strain Sub-cellular structure Expected GFP

YTK541 CUP1 array / Ace1p-3xGFP 120
YTK1231 lacO (256) / LacI-GFP 512

YTK1231Enh lacO (256) / LacI-GFP 512
YTK1268 SPB/ Spc42-GFP 1000

Table S12. Datasets collected in this study

Dataset Strain No.Movies

3s YTK1799 82
12s YTK1799 71

Photobleaching 3s YTK1231 25
Photobleaching 12s YTK1231 20

GFP calibration YTK541, YTK1231, YTK1799, YTK1268 20

S6 Data acquisition and pre-processing
S6.1 Cell selection
As a first step, we extracted movies of individual cells from the full movies. In order to extract cells with spots, we computed
two projections: a maximum projection over all frames leading to a 2D movie and a maximum projection over all time frames
and slices producing a single image. The latter single image allowed to identify all cells that develop an active transcription site
during imaging. For the identified cells we drew ROIs in the initial time frame of the 2D video. These initial ROIs were tracked
over time and used to extract 3D movies of individual cells. For each cell, the full image stack over time was stored for trace
extraction. Fluorescence intensity traces were obtained as described in Sec. S6.2. A more detailed description of the custom
tracker is given in Sec. S12.

S6.2 Trace extraction
To track fluorescence spots and quantify fluorescence levels, we developed a custom 3D method based on sequential filtering.
The location of the spot within an image stack at time 𝑡𝑘 is given by 𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ). The spot is modeled as a diffraction
limited point source such that the intensity 𝐼 of the pixel at position 𝑟 can be described as

𝐼𝑘 (𝑟) = 𝑏𝑘 + 𝐼𝑘 exp
[
−1

2
(𝑟 − 𝑟𝑘 )𝑇 Σ−1

PSF (𝑟 − 𝑟𝑘 )
]

where the diagonal matrix ΣPSF describes the shape of the point spread function of the optical system, 𝑏𝑘 is a local background
and 𝐼𝑘 is the peak intensity of the spot that is related to the underlying intensity of the point source by a constant factor. In
addition, we introduce a binary variable 𝑠𝑘 that describes whether the spot is visible in frame 𝑘 . This leads to a total state
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𝑥𝑘 = (𝑟𝑘 , 𝑏𝑘 , 𝑦𝑘 , 𝑠𝑘 ). The observation model is given by the predicted intensity per pixel with additive Gaussian noise. State
estimation is carried out using the standard recursive filtering approach43. Due to the non-linear observation model, a Laplace
approximation is used to evaluate filter updates. The details are given in S12. The filter provides estimates of 𝐼𝑘 for 𝑘 = 1, . . . , 𝑛
which are treated as the noisy measurements 𝑦1, . . . , 𝑦𝑛 for the main analysis. Traces showing dividing spots due to DNA
replication were excluded from further analysis. In this study we do not take into account the noise from the fraction of the cells
that completed the replication of the reporter gene, but did not separate sister chromatids, which may lead to transcription of
two alleles in the same spot.

S6.3 Quality Control
In the images, some of the cells showed too high or too low GFP expression or were otherwise malfunctioning. In the 12s data
set, we identified 3260 cells where an active TS is visible in at least one time frame during imaging. After tracking, all traces
were compared manually to the corresponding cell video for quality checking. During this screening, we removed all potentially
problematic traces, e.g. floating or dividing cells. The remaining 3036 high quality traces were used for further analysis. The
same procedure was applied to the 3s data set leading to a selection of 3685 of an initial 4053 cells. A detailed summary of
extracted cells per time interval is given in Table S13.

Table S13. Cells extracted from the 3 𝑠 and 12 𝑠 data sets

Time since
induction

3𝑠 data set 12𝑠 data set
Extracted Selected Extracted Selected

3 min 20 17 223 208
4.5 min 78 68
6 min 170 157 361 339

7.5 min 227 202
9 min 308 282 627 589

10.5 min 322 285
12 min 391 365 498 448

13.5 min 315 300
15 min 427 399 533 510

16.5 min 284 270
18 min 351 313 477 440

19.5 min 248 228
21 min 255 231 251 232

22.5 min 143 120
24 min 214 195 172 162

25.5 min 108 93
27 min 125 105 118 108

28.5 min 50 40
30 min 17 15

S7 Exploratory analysis
Before turning to the model-based Bayesian inference approach, we performed descriptive statistical analysis to confirm the
cyclic activity of the CUP1 promoter known from earlier studies.

S7.1 Total image brightness
The movies within different dataset were collected on different days. To ensure that these movies are comparable, we check the
total intensity distributions of the first time frame of every movie. By focusing on the first time step, we can avoid confounding
effects of bleaching. Boxplot representations of the intensity distributions (Fig. S11) reveal some variations in the intensity
distribution. To understand these variations, it is important to note that the images consist mostly of extra-cellular background.
Biological differences mainly affect the nuclear brightness and can thus not be responsible for large distribution shifts. Possible
factors that could affect total brightness are the agarose medium in the background or variations in illumination or other factors
of the optical system.

The most striking difference is that the movies collected on day 4 in the 3s dataset are significantly brighter than all other
movies in this dataset. To make the dataset more homogenous, we exclude the day 4 movies from all further analysis. We also
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observe that the 12s dataset is significantly brighter than the 3s dataset. The reason for this difference is unclear as several
months are between the recording dates. However, as we analyze the dataset separately and optical factors such as the gfp
scaling are inferred from the dataset, we do not view this as a problem. The third observation we discuss here is that the
brightness tends to decrease for movies take from the same coverslip. This is most likely due to some cross-bleaching from
imaging neighboring positions. Since the effect is rather small, we will ignore it in the following analysis.
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Figure S11. Pixel intensity distributions for the first time frame of every movie in form of a box plot shown for the 3 s dataset (a) and the 12 s
dataset (b). Lower and upper border of the rectangles represent 25th and 75th percentile, respectively. The bold line within the box indicates
the median. Every color family represents one experiment day, while the shading withing a color family indicates movies taken from the same
coverslip

S7.2 Spot Brightness
We now take a first look at the spot brightness. Similarly as an the previous section, we consider only the first frame of every
movie to avoid effects of bleaching. For every movie, the spot intensities of all active cells in the first frame were pooled. The
corresponding distributions are shown in the form of boxplots for both 3s and 12s dataset in Fig. S12.

Especially in the 3s dataset one can observe a clear dependence of spot brightness on the time since induction. Since the
movies taken from the same coverslip are ordered sequentially, they correspond to spot measurements every 3 minutes or every
6 minutes for 3 s dataset and 12 s dataset, respectively. The observed sharp increase followed by a longer decrease is well in
accordance with measurements from RT-qPCR. In addition, the results from different coverslips are quite similar and show less
variation than the total intensity distributions in Fig. S11. The reason for this is that spot intensities are measured relative to
local nuclear background such that additive noise affecting the total brightness of images is filtered out by the spot tracking. The
one exception from this are the movies from day 4, which we have already decided to treat as outliers due to their much higher
overall brightness.

The dependence on time since induction is also visible in the 12 s dataset albeit less clear than for the 12 s dataset. One reason
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for this is that there are fewer measurements per coverslip due to the longer duration of the individual movies. In addition, some
series of the movies are shifted by 3 minutes leading to a less regular appearance.

Finally, it seems that the spots in the 12 s dataset are overall brighter than in the 3 s dataset. Two possible explanations come
to mind. The first possibility is that the cell cultures differ in activity which is possible due the time between the collection
of the datasets. Alternatively, multiplicative noise affecting the total intensity distribution could explain the differences as it
would not be filtered out by the spot tracking. In practice, it could also be a combination of both factors. We deal with this by
estimating the observation model (cf. Sec. S9) parameters individually for every dataset. Any multiplicative noise will be
captured by the estimated GFP scaling factor such that remaining differences can be attributed to Biological causes.

0 10 20 30 40 50 60 70 80

Movie index

0

50

100

150

200

250

300

350

400

In
te
ns

ity
di
st
rib

ut
io
n

a

Day 3
Day 4
Day 5
Day 6

0 10 20 30 40 50 60 70

Movie index

0

100

200

300

400

500

In
te
ns

ity
di
st
rib

ut
io
n

b

Day 0
Day 1
Day 2

Figure S12. Pixel intensity distributions for the first time frame of every movie in form of a box plot shown for the 3 s dataset (a) and the 12 s
dataset (b). Lower and upper border of the rectangles represent 25th and 75th percentile, respectively. The bold line within the box ndicates
the median. Every color family represents one experiment day, while the shading withing a color family indicates movies taken from the same
coverslip.

S7.3 Investigating time-dependant activity
The presence of non-stationary transcription dynamics can be already seen from the movie histograms in Fig. S12. We will now
take a closer look by inspecting the average spot intensities pooled over all movies that started with the same time delay with
respect to induction. As before, we will only consider the first time frame of each movie to avoid the effects of bleaching. The
first row in Fig. S13 shows the average spot intensity over the cycle. For both 3 s dataset (left) and 12 s dataset (right) wie see a
sharp rise of the intensity in the early part of the observed interval followed by a slower decay. While the general shape of both
curves is similar, the spots in the 12s dataset are generally brighter as we have seen from the per-movie distributions (cf. Fig.
S12). The second row of Fig. S13 shows the number of responding cells divided by the total number of cells per time window.
To assign cells to the class of responders or non-responders, we used a standard Gaussian mixture classifier on the spot intensity
distributions of the datasets. In order to avoid bias by the overall different brightness, we applied this classifier individually on
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Figure S13. Dependence of summary statistics on the time since induction. The first row shows the mean of the spot intensities pooled over
all videos with the same time delay since induction. The second row shows the number of responders divided by the total number of cells per
time window. Error bars indicate standard error. Results for the 3 s dataset are also shown in the main text (Fig. 1f, g)

each dataset. The resulting responder ratios of both datasets agree well.

S8 Model

S8.1 Kinetic Transcription Model
As described in the main text, the model is an example of a Markov jump process that satisfies the master equation (1). The
transition function 𝑄 defines the probability of an event to happen in an infinitesimal interval ℎ

𝑃(𝑋 (𝑡 + ℎ) = 𝑥 ′ | 𝑋 (𝑡) = 𝑥) = 𝑄(𝑥, 𝑥 ′ | 𝜃)ℎ + 𝑜(ℎ) .

The transition function is fully specified by the vector of parameters 𝜃 = (𝑘on, 𝑘off , 𝑘 i, 𝑘e, 𝑘 t)⊤ and the conditions under which
transitions can occur, leading to

𝑄(𝑥, 𝑥 ′ | 𝜃) =



𝑘on 𝑥0 = 0, 𝑥 ′0 = 1 ,
𝑘off 𝑥0 = 1, 𝑥 ′0 = 1 ,
𝑘 i 𝑥0 = 1, 𝑥1 = 0, 𝑥 ′1 = 1 ,
𝑘e 𝑥𝑖 = 1, 𝑥𝑖+1 = 0, 𝑥 ′𝑖 = 0, 𝑥 ′𝑖+1 = 1 , 𝑖 = 1, . . . , 𝐿 − 1 ,
𝑘 t 𝑥 ′𝑙 = 𝑥𝑙 − 1

.
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For parameter inference, we need to evaluate the system for many different parameter configurations. It is therefore convenient
to represent the transition functions as

𝑄(𝑥, 𝑥 ′ | 𝜃) =
5∑︁
𝑖=1

𝜃𝑖𝑅𝑖 (𝑥, 𝑥 ′) . (S7)

The operators 𝑅𝑖 are independent of the parameters. By enumerating the states of the system, the probability 𝑝(𝑥, 𝑡) can be
represented by a vector p(𝑡) and the transition function 𝑄 becomes a sparse matrix Q. With this, the master equation becomes

d
d𝑡

p(𝑡) = Qp(𝑡) .
A formal solution of this system is given by the matrix exponential

p(𝑡) = exp (Q𝑡) p0

with initial distribution p0. For sparse Q, this can be efficiently solved for fairly large state spaces by the Krylov subspace
approximation for matrix exponentials41,42.

S8.2 Observation Model
The kinetic model discussed above is a continuous time model. In practice, one cannot observe such a systems in continuous time
but rather at discrete sample times 𝑡1, . . . , 𝑡𝑛. In addition, we do not observe the process 𝑋 (𝑡𝑘 ) directly. Here, our measurement
𝑌 (𝑡𝑘 ) is provided by the total intensity of the fluorescence spots as measured by the tracking algorithm. In the following, we
construct a model that relates 𝑋 and 𝑌 . First, note that as the polymerase traverses the gene, an additional stem loop is added
for every site until at some point the maximum number of stem loops is acquired. For the remaining part of the transcription
process, the number of stem loops stays constant. After termination, the mRNA is released and rapidly diffuses away from
transcription site. The corresponding spot is thus no longer visible and we observe a sharp drop in intensity. Hence, if 𝑎 ∈ N𝐿+1

encodes the number of stem loops associated with the sites of the gene, the variable

𝑁 (𝑡) =
𝐿∑︁
𝑖=0

𝛼𝑖𝑋𝑖 (𝑡) (S8)

corresponds to the number of visible stem loops at time 𝑡. Assuming that stem loops are occupied by GFP fast compared to the
elongation speed, the total spot signal can be described as

𝐼 (𝑡) = 𝑏0 + 𝑒−𝜆𝑡 (𝑏1 + 𝛾𝑁 (𝑡)) . (S9)

Here, 𝜆 is the bleaching factor and 𝑏0, 𝑏1 correspond to baseline background and a bleachable part of the background respectively.
The factor 𝛾 encodes the intensity contribution per GFP molecule. During image acquisition and intensity estimation, the
signal is corrupted by various forms of noise such as z-diffusion of the transcription site, photon counting noise on the camera
chip, variations in the media, mismatch of the point-spread function with the Gaussian approximation, irregular background
illumination, etc. We subsume all these effects into a single multiplicative noise variable leading to the relation

𝑌1 (𝑡𝑘 ) = 𝐼 (𝑡𝑘 ) exp(𝜎𝜖𝑘 ) , (S10)

where 𝜖𝑘 are independent and standard normally distributed. While (S10) is a reasonable approximation for larger signals, it
is not suitable for very small signals. The reason for this is that at low intensity, due to fundamental limitations of the spot
detection, there is an increased probability that a spot is missed or that a local fluctuation is confused with a signal. To take
account of this effect, we introduce the random background signal

𝑌0 (𝑡𝑘 ) = 𝐼0 exp(𝜎𝜖𝑘 )
and an additional unobserved random variable 𝑍 (𝑡𝑘 ) ∈ {0, 1} with

Pr(𝑍 (𝑡𝑘 ) = 1 | 𝐼 (𝑡𝑘 )) = sigmoid
(
𝑤 log

(
𝐼 (𝑡𝑘 )
𝐼0

))
where sigmoid(𝑥) = (1 + exp(−𝑥))−1 and 𝑤 is a response parameter. The final observation model is then given by

𝑌 (𝑡𝑘 ) = 𝑍 (𝑡𝑘 )𝑌1 (𝑡𝑘 ) + (1 − 𝑍 (𝑡𝑘 ))𝑌0 (𝑡𝑘 ) . (S11)

This can be understood as a soft threshold for spot detection. When the true spot intensity 𝐼 is larger than 𝐼0, 𝑍 will likely be
one and we measure the signal 𝑌1 with high probability. When 𝐼 is smaller than 𝐼0, 𝑍 is likely zero and we observe the spurious
signal 𝑌0 with high probability. The likelihood corresponding to (S11) is that of a mixture of two lognormal distributions with
parameters log(𝐼) and log(𝐼0). An overview of all parameters involved in kinetic and observation model is given in Table S14.
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S8.3 Elongation times
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Figure S14. Expected elongation times of a gene template
with size 𝑙 = 1200 nt for different values of the elongation
rate 𝑘e. The thick black curve indicates the value obtained
from independent polymerase movement by the relation
𝑡e = 𝑙

𝑘e
. Red dots show the expected elongation time from

simulations of a TASEP model with a site size of 120 nt.
Error bars indicate the standard deviation of the distribution.
Initiation rate 𝑘i and termination rate 𝑘t are fixed and chosen
such that typically multiple polymerases are on the template
and no traffic jams are caused by the termination site.

Many models for transcription assume independent movement of
individual polymerases. This leads to a simple relation between
elongation rate and elongation time as 𝑡e = 𝑙

𝑘e
where 𝑙 is the size of the

translated region. Due to possible interactions between polymerases,
this relation is not valid in the TASEP model. As shown in Fig.
S14, the TASEP model requires a higher value compared to an
independence model to produce the same expected elongation time.
This difference becomes smaller for higher elongation rates, since
a fast movement of individual polymerases decreases the probability
of interaction. As an example, consider the dotted black line in Fig.
S14 corresponding to an elongation time of 12 s. To produce such
an elongation time, the independent model requires an elongation
rate of 100 nt s−1, while the TASEP model requires and elongation
rate of roughly 120 nt s−1.

S8.4 Coarse-graining
The most natural quantization of the gene into sites would be to
associate every site with a single nucleotide. This would, however,
lead to more than 1000 sites and since the state space of the model
scales as 2𝐿 would make inference intractable. In addition, we only
observe the system by one-dimensional summary statistic every few
seconds such that most of the detailed dynamics are not captured. It
is thus necessary to combine several nucleotides into a single site. A
good candidate for such a coarse-graining is the DNA footprint of a
stem loop, which is roughly 60 nt, as the appearance of a stem loop
is the most fine-grained observable. For a DNA template consisting
of 1200 nt, this would lead to 𝐿 = 22 sites. While the master equation this model is still tractable, it requires significant
computational effort such that only a small number of cells can be handled this way. As argued in the main text, it is important to
pool many traces in order to overcome structural identifiability limitations of the system. As a compromise between tractability
and resolution, we choose a partition size of 120 nt corresponding to two stem loops leading to a system of 𝐿 = 12 sites.

The coarse-graining changes the waiting time distribution between appearance of two stem loops. If one starts from a
fine-grained model where every site corresponds to a single nucleotide, the waiting time for jumps of size 120 bp is much more
peaked compared to the exponential distribution. To investigate the robustness of the inference against this kind of mismatch,
we simulated 100 trajectories from a fine-grained model described in23 Supp. M. The model is similar to the TASEP model we
use for inference, but uses one site for every nucleotide. In addition, RNAP molecules have a footprint of 40 sites and individual
stems loops appear every 60 sites with 14 stem loops in total. The number of sites was set to 1200 roughly corresponding
to the gene investigates experimentally. The elongation rate was set to 𝑘elong = 100 nt s−1, for all other parameters we used
the standard values of the coarse-grained model. We generated 100 trajectories with 3 s time-lapse and performed pooled
inference. For simplicity, we assume a constitutive promoter an drop the switching site. The results are presented in Fig. S15a.
They indicate that while initiation and termination rate are inferred quite accurately, the estimated elongation rate is, however,
significantly larger than the ground truth used to generate data in the fine-grained model. This can be explained by the exclusion
property of the TASEP process. In the coarse-grained model, collisions will happen more frequently on average since the space
is limited. In order to achieve a similar total elongation time, the rate has to be increased to account for the possible blocking.
To verify this, we generated trajectories from fine-grained model and coarse-grained model and extracted the distribution of
total transcription times (Fig. S15b). The mean elongation time predicted by the learned coarse-grained model is quite close to
the mean elongation time of the fine-grained model. This demonstrates that even though there is a mismatch, the model learns
physically meaningful quantities. However, we stress that this is merely an example to illustrate model mismatch. In practice,
the distribution of elongation times predicted by the fine-grained model is likely too narrow as it ignores effects such as pausing,
reverse steps, chromatin remodelling, etc. Thus, a coarse-grained model with wider waiting time distribution may be a better
approximation to the real data, as long as these effects are not modeled explicitly.

S8.5 Overview of the model parameters
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Figure S15. a Pooled posterior inference of a non-switching model on traces generated by the fine-grained TASEP model with a time laps of
3 s. Observation parameters are not shown but were also estimated during inference. The rows show histogram approximations of the prior
distribution (blue) and the posterior distribution (red) for the model parameters. Black lines indicate the parameter value used to generate the
data. b Distribution of total elongation times obtained from forward simulation of the coarse-grained model (left and middle) and the
fine-grained model (right). The elongation right of the left plot is a typical value of the prior distribution, the elongation rate of the middle
plot is a typical value of the posterior distribution. Black lines indicate the empirical mean.

Table S14. Overview of the model parameters

Parameter Default value Explanation

𝑘on 0.025 s−1 On-switching rate of the promoter state
𝑘off 0.025 s−1 Off-switching rate of the promoter state
𝑘 i 0.3 s−1 Initiation rate of polymerases, given the promoter is in the

active state
𝑘e 100 nt s−1 Elongation rate per polymerase. Must be divided by the site

size to convert to a jump rate between sites
𝑘 t 0.3 s−1 Termination rate from the pooled termination site. 1

𝑘t
is the

average time a transcript is visible at the transcription site
after elongation.

𝐿 11 Number of TASEP lattice sites. Due to the additional pro-
moter site 𝑋0, the full model has 𝐿 + 1 sites.

𝑏0 5 a.u. Non-bleachable baseline fluorescence intensity
𝑏1 5 a.u. Bleachable background fluorescence intensity
𝛾 1.1 a.u. Fluorescence intensity per unit of GFP
𝜆 1 × 10−3 s−1 Exponential bleaching rate
𝐼0 25 a.u. Soft detection threshold of a true spot signal
𝑤 4 Tuning parameter to determine the sharpness of the soft detec-

tion
𝜎 0.1 Noise level standard deviation in the log-domain of the signal
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S9 Calibration
The observation model as described in Sec. S8.2 contains a number of unknown parameters. In particular, the bleaching rate 𝜆
and the GFP scaling factor 𝛾 can have a significant effect on the inference results. It is therefore helpful to obtain independent
estimates of these quantities from dedicated control data sets which can be used as prior distributions in the live cell inference
procedure. The last subsection deals with the point spread function (PSF) of the optical system. While the PSF is not directly
contained in the generative model, it is used to extract the intensity measurements from the images.

S9.1 GFP-intensity scaling
For calibration measurements, we activated CUP1 array in YTK541 with Cu and imaged the cells between 5 and 15 min of the
Cu treatment, at the peak of their transcriptional activity to ensure that all the 40 binding sites are occupied with Ace1p-3xGFP
fusion, and thus the total number of GFP per CUP1 array is 120. In YTK1231, we measured the brightness of the lacO/LacI-GFP
array in telophase or G1 cells to ensure that we observe single non-duplicated array. LacI-GFP was present on multicopy
plasmid, and some of the cells in the population were overexpressing LacI-GFP and thus displayed a high nuclear background.
Therefore, we excluded the cells with abnormally bright nucleoplasm or arrays. In diploid cells of YTK1268, two peaks are
observed in the SPB size distribution and about 5 % of the SPB in the population are significantly larger than average39,40. This
happens because the SPB grows over time through the cell cycle. At G2 stage the SPB is split in two. Therefore, we avoided
newly split SPB and selected only single SPB in the cells in telophase or in G1, where maximal size of the SPB is expected. As
a control we also measured the cells in G2 with two SPB well separated by spindle and observed diminished brightness of
those structures, as expected. Also, we selected the sub-population of SPB based on the range of brightness excluding from
the measurements the SPB that were abnormally bright. Spot intensities of all structures were measured as for the live cell
experiments (see Sec. S6.2) but only for a single time point.

A field view for each of the different strains used for this is shown in Fig. S16a. A first overview of the calibration data as
shown in Fig. S16b reveals that the linear approximation assumed in (S9) is reasonable. In addition, the noise increases with
expected number of GFP confirming the multiplicative noise model (S10). For a more detailed analysis, note that we have
single images rather than videos as calibration data. Thus, with 𝑡 = 0 and (S9) reduces to

𝐼 = 𝑏∗0 + 𝛾𝑁GFP , (S12)

where 𝑏∗0 = 𝑏0 + 𝑏1 and 𝑁GFP corresponds to the number of GFP associated with a particular structure. Together with the noise
model (S10) and priors for 𝑏∗0 and 𝛾, we can perform Bayesian inference by Hamiltonian Monte Carlo. The obtained posterior is
shown in Fig. S16c. It is well approximated by a Gamma distribution Γ(𝛼, 𝛽) with 𝛼 ≈ 4226.4, 𝛽 = 3822.8. This distribution
is used as a prior for the main inference part.

S9.2 Bleaching Rate
To obtain an independent estimate of the bleaching rate, we recorded videos with 12 s intervals between observations with strain
YTK1231 with lacO/LacI-GFP. Since GFP load is fixed for this structure, we expect any systematic changes in brightness over
time to be caused by bleaching. This allows for an independent estimate of the bleaching factor. The mean intensity of this data
over time is shown in Fig. S17a along with an exponential fit. We observe that the effect of bleaching is not very strong in
the time window considered. To calibrate the observation model for Bayesian inference, we use Markov chain Monte Carlo
sampling so get a posterior distribution over the bleaching factor that can be used as a prior for the main experiments. We again
start from (S9). In contrast to the GFP calibration, time course data is available. However, 𝑏1 and 𝐼 are not distinguishable due
to the lack of spot dynamics leading to te reduced model

𝐼 (𝑡) = 𝑏0 + 𝐼∗ exp(−𝜆𝑡) .

The corresponding Bayesian posterior for the parameter 𝜆 is shown in Fig. S17b leading to an estimate of 𝜆 = 0.007 s−1. For
the 3 s interval movies, we do not use separate calibration data. Instead, we observe that light exposure is the main factor
determining the bleaching rate. A four-fold increase in imaging frequency should therefore correspond to a four-fold increase in
the bleaching rate. As this calibration only serves to construct a prior distribution, this estimate is deemed sufficient.

S9.3 Point Spread Function
We use a model-based approach to evaluate the spot intensity where the spot is described as a local background 𝑏 plus a point
source with intensity at (𝑥0, 𝑦0). In the image space, this corresponds to an intensity profile of the form

𝐼 (𝑥, 𝑦) = 𝑏 + 𝐼0 exp

(
− 1

2𝜎2
PSF

(𝑥 − 𝑥2
0) −

1
2𝜎2

PSF
(𝑦 − 𝑦2

0)
)
. (S13)
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Figure S16. a Representative field views of cells with known numbers of GFP molecules per locus. b Color-coded histogram representations
of the intensity distributions for the different strains. Darker colors indicate areas of higher density. The red line shows a least-squares fit of
(S12) to the distribution. c Histogram of the posterior samples of 𝑝(𝛾 | 𝐼1, . . . , 𝐼𝑛) based on intensity estimates from 𝑛 = 509 images (red).
The blue curve corresponds to a gamma distribution fitted to the posterior samples.

The exponential term in (S13) corresponds to the point spread function with 𝜎𝑃𝑆𝐹 and peak intensity 𝐼0 describing the shape of
the point in the image space. The parameter 𝜎𝑃𝑆𝐹 depends on the properties of the optical system. While there are approximate
formulas, these estimates are often not very accurate in systems with high aperture. We therefore infer 𝜎𝑃𝑆𝐹 directly from a
calibration dataset.

In fluorescence microscopy, the image is usually acquired by a CCD camera that discretizes the image space into a pixel grid.
An example of a spot image from the strain YTK1268 with spindle pole body is shown in Fig. S16a. The predicted intensity
𝑝(𝑖, 𝑗) of the pixel at position 𝑖, 𝑗 is given by

𝑝(𝑖, 𝑗) =
∫ 𝑥𝑖+1

𝑥𝑖

∫ 𝑦𝑖+1

𝑦𝑖

𝐼 (𝑥, 𝑦)d𝑥d𝑦

with pixel boundaries 𝑥𝑖 , 𝑥𝑖+1, 𝑦𝑖 , 𝑦𝑖+1. We assume now that the pixels have square shape and choose a coordinate system such
that the pixel area is one. The intensity can then be expressed by

𝑝(𝑖, 𝑗) = 𝑏 + 𝜋

2
𝜎2

PSF𝐼0

(
erf

(
𝑥𝑖+1 − 𝑥0√

2𝜎PSF

)
− erf

(
𝑥𝑖 − 𝑥0√

2𝜎PSF

)) (
erf

(
𝑦𝑖+1 − 𝑦0√

2𝜎PSF

)
− erf

(
𝑦𝑖 − 𝑦0√

2𝜎PSF

))
.

Finally, in the measurement process, the intensity is corrupted by multiplicative noise. The measured intensity 𝐼 (𝑖, 𝑗) is thus
given by

𝐼 (𝑖, 𝑗) = 𝑝(𝑖, 𝑗) exp(𝜎obs𝜖𝑖 𝑗 ) (S14)
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Figure S17. a Mean spot intensity of 𝑛 = 252 cells of YTK1231 shown over time (red). The shaded region indicates the standard error. The
blue line is a least squares fit of an exponential function. b Histogram of the posterior samples of 𝑝(𝜆 | 𝐼1, . . . , 𝐼𝑛) based on intensity
estimates from 𝑛 = 252 videos (red). The blue curve corresponds to a gamma distribution fitted to the posterior samples.

where 𝜎obs is the noise level and 𝜖𝑖 𝑗 are i.i.d. standard normal random variables. By choosing priors for 𝑏, 𝐼0, 𝑥0, 𝑦0 and 𝜎PSF,
we have constructed a generative probabilistic model for spot images. We can then compute the posterior 𝑝(𝜎PSF | 𝐼) given an
image 𝐼. Generalization to multiple image samples is straightforward. A graphical model representation is shown in Fig. S18b.
Using a non-informative prior, we run Hamiltonian Monte Carlo for inference. As shown in Fig. S18c, the resulting posterior is
quite concentrated which justifies using a point estimate of 𝜎PSF ≈ 1.926 during spot intensity estimation.

a

fPSF

x0

y0

I0

Î
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Figure S18. a Example of a spot image obtained from the strain YTK1268 with a spindle pole body. b Probabilistic graphical model for
inferring the point spread function parameter 𝜎PSF jointly from 𝑛 images. c Histogram of the posterior samples of 𝑝(𝛾 | 𝐼1, . . . , 𝐼𝑛) based on
𝑛 = 509 images. The red line corresponds to a log-normal distribution fitted to the posterior samples.

S10 Inference
S10.1 Fully Bayesian inference
Given an observed trace 𝑦 = (𝑦1, . . . , 𝑦𝑛) we are interested in estimating the latent state 𝑥 [0,𝑇 ] , the model parameters 𝜃 and the
observation parameters 𝜔. In a Bayesian approach, this corresponds to computing the joint posterior 𝑝(𝜃, 𝜔, 𝑥 [0,𝑇 ] | 𝑦1, . . . , 𝑦𝑛).
Targeting this posterior directly with Monte Carlo methods is difficult. Exploiting the relation

𝑝(𝜃, 𝜔, 𝑥 [0,𝑇 ] | 𝑦1, . . . , 𝑦𝑛) = 𝑝(𝜃, 𝜔 | 𝑦1, . . . , 𝑦𝑛)𝑝(𝑥 [0,𝑇 ] | 𝜃, 𝜔, 𝑦1, . . . , 𝑦𝑛)

full posterior can be split joint into two parts: The marginal parameter posterior

𝑝(𝜃, 𝜔 | 𝑦) ∝ 𝑝(𝜃)𝑝(𝜔)𝑝(𝑦 | 𝜃, 𝜔) (S15)
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and the conditional state posterior 𝑝(𝑥 [0,𝑇 ] | 𝜃, 𝜔, 𝑦1, . . . , 𝑦𝑛). Intuitively, the conditional state posterior characterizes the
distribution of paths of the underlying continuous-time process that have most likely created the observed trace 𝑦. One can
generate samples from such a conditional Markov process using the backward filtering forward sampling approach. This is
based on the observation that for a Markov jump process with generator 𝑄(𝑥, 𝑥 ′) the smoothing process is equivalent to a
modified process with time-dependent generator46

𝑄̃(𝑥, 𝑥 ′, 𝑡) = 𝛽(𝑥 ′, 𝑡)
𝛽(𝑥, 𝑡) 𝑄(𝑥, 𝑥 ′) . (S16)

Here, 𝛽(𝑥, 𝑡) = 𝑝(𝑦𝑘 , . . . , 𝑘𝑛 | 𝑋 (𝑡) = 𝑥) with 𝑘 = min{𝑖 : 𝑡𝑖 > 𝑡} is the probability density of future observations given the
current state. Now 𝛽(𝑥, 𝑡) satisfies a backward equation

d
d𝑡

𝛽(𝑥, 𝑡) = −
∑︁
𝑥′

𝑄(𝑥, 𝑥 ′)𝛽(𝑥 ′, 𝑡) (S17)

with reset conditions

𝛽(𝑥, 𝑡−𝑘 ) = 𝛽(𝑥, 𝑡𝑘 )𝑝(𝑦𝑘 | 𝑋 (𝑡𝑘 ) = 𝑥), 𝑘 = 1, . . . , 𝑛.

Sampling proceeds by solving (S17) backward in time and then using (S16) within a time-dependent version of the stochastic
simulation algorithm44. The marginal parameter posterior (S15) is a continuous, finite-dimensional distribution and can, in
principle, be tackled by a number of MCMC algorithms. A computational challenge, however, is that sampling from (S15)
using MCMC requires evaluation of the marginal data likelihood 𝑝(𝑦 | 𝜃, 𝜔). The marginal likelihood can be evaluated using
filtering theory for Markov processes. Consider the filter distribution 𝛼(𝑥, 𝑡) = Pr(𝑥(𝑡) = 𝑥 | 𝑦1, . . . , 𝑦𝑘 ), 𝑘 = max{𝑖 : 𝑡𝑖 ≤ 𝑡}
describing the best estimate of the current state of the system given all past observations. From general recursive filtering theory,
we obtain that 𝛼(𝑥, 𝑡) obeys the master equation in between the observation times, and at the observation times satisfies the
update conditions

𝛼(𝑥, 𝑡𝑘 ) = 𝐶−1
𝑘 𝑝(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥, 𝜔) ,

𝐶𝑘 =
∑︁
𝑥

𝛼(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥, 𝜔) .

Furthermore

log 𝑝(𝑦 | 𝜃, 𝜔) =
𝑛∑︁

𝑘=1
log𝐶𝑘 .

A derivation of the filter solution of the marginal likelihood is discussed in Sec. S10.2. To evaluate the gradient of the marginal
likelihood we use the adjoin method and obtain

d
d𝜃𝑖

log 𝑝(𝑦 | 𝜃, 𝜔) =
∫ 𝑇

0

∑︁
𝑥,𝑥′

𝛽(𝑥, 𝑡)𝑅𝑖 (𝑥, 𝑥 ′)𝑝(𝑥 ′, 𝑡)d𝑡 (S18)

where 𝛽(𝑥, 𝑡) is a backward filter as in (S17) but with modified reset conditions

𝛽(𝑥, 𝑡−𝑘 ) =
𝑝(𝑦𝑘 | 𝑥, 𝜔)

𝐶𝑘

(
𝛽(𝑥, 𝑡𝑘 )

−
∑︁
𝑥′

𝛽(𝑥 ′, 𝑡𝑘 )𝑝(𝑥 ′, 𝑡+𝑘 )𝑝(𝑦𝑘 | 𝑥 ′, 𝜔) + 1
)

and 𝑅𝑖 is the parameter independent part of the generator (cf. (S7)). A derivation of the modified backward filter is provided
in Sec. S10.3. Having access to log 𝑝(𝑦 | 𝜃, 𝜔) and ∇𝜃 log 𝑝(𝑦 | 𝜃, 𝜔) allows to use efficient Monte Carlo methods such as
Hamiltonian Monte Carlo47. In addition, the model can be integrated with probabilistic programming48 facilitating easy reuse
and modification of our approach.

In practice, we use the marginal approach for parameter inference. If latent state inference is required, the full posterior can
be reconstructed by resampling 𝜃, 𝜔 from the parameter posterior and generate a trajectory from the smoothing process. These
samples can be used to investigate arbitrary summary statistics of the latent process given the data, for example initiation times
and local polymerase speed.
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The discussion above refers to inference from a single trace. In case of a dataset D = {𝑦 (1) , . . . , 𝑦 (𝑚) } of 𝑚 traces,
a joint analysis with a hierarchical model is possible. To generalize the above to such a scenario, we view each trace
𝑦 (𝑖) = (𝑦 (𝑖)1 , . . . , 𝑦

(𝑖)
𝑛 ) as one single random variable (cf. main text, Fig 2e,f). As 𝑝(𝑦 (𝑖) | 𝜃, 𝜔) is a finite dimensional

distribution, constructing hierarchical models for a collection of traces follows the usual rules of probabilistic modeling and
Bayesian inference35. Hierarchical modeling is discussed further in Sec. S10.4. The joint analysis requires evaluating forward
and backward filters for every trace in the dataset in every step of MCMC. Therefore, full MCMC becomes infeasible for more
then a few hundred traces. A viable alternative in this case is stochastic variational inference with mini-batching, that allows to
efficiently compute the best approximation of the posterior within a parametric family of distributions28.

S10.2 Marginal likelihood by stochastic filtering
Formally, the marginal data likelihood is given by

𝑝(𝑦1,...,𝑛 | 𝜃, 𝜔) =
∫

d𝑥 [0,𝑇 ] 𝑝(𝑥 [0,𝑇 ] , 𝜃)
𝑛∏

𝑘=1
𝑝(𝑦𝑘 | 𝑋 (𝑡𝑘 ), 𝜔) (S19)

where the integral is over all sample paths of stochastic process 𝑋 (𝑡). Using the Markov property, the path integral (S19)
reduces to the finite dimensional sum

𝑝(𝑦1,...,𝑛 | 𝜃, 𝜔) =
∑︁

𝑥1 ,...,𝑥𝑛

Pr(𝑋 (𝑡1) = 𝑥1, . . . , 𝑋 (𝑡𝑛) = 𝑥𝑛)
𝑛∏

𝑘=1
𝑝(𝑦𝑘 | 𝑋 (𝑡𝑘 ))

=
∑︁
𝑥1

Pr(𝑋 (𝑡1) = 𝑥1)𝑝(𝑦𝑘 | 𝑋 (𝑡𝑘 ))
𝑛∏

𝑘=2

∑︁
𝑥𝑘

Pr(𝑋 (𝑡𝑘 ) = 𝑥𝑘 | 𝑋 (𝑡𝑘−1) = 𝑥𝑘−1)𝑝(𝑦𝑘 | 𝑋 (𝑡𝑘 ))

which is analogous to the likelihood of a hidden Markov model43. The above expression can be computed recursively by
stochastic filtering. To see this, we introduce the forward filter

d
d𝑡
𝛼(𝑥, 𝑡) =

∑︁
𝑥′

𝑄(𝑥 ′, 𝑥)𝑝(𝑥 ′, 𝑡) (S20)

𝛼(𝑥, 𝑡𝑘 ) = 𝐶−1
𝑘 𝛼(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥, 𝜔) (S21)

𝐶𝑘 =
∑︁
𝑥

𝛼(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥, 𝜔) (S22)

For the normalization constant 𝐶𝑘 we have

𝐶𝑘 =
∑︁
𝑥𝑘

𝑝(𝑦𝑘 | 𝑥𝑘 )𝛼(𝑥𝑘 | 𝑦1, . . . , 𝑦𝑘−1, 𝜃) = 𝑝(𝑦𝑘 | 𝑦1, . . . , 𝑦𝑛−1)

from which follows

𝑝(𝑦 | 𝜃) =
𝑛∏

𝑘=1
𝐶𝑘 .

S10.3 Gradient of the marginal likelihood
To calculate the gradient ∇𝜃 𝑝(𝑦 | 𝜃, 𝜔), we observe that the likelihood depends on the parameters only implicitly through the
prediction step in (S20). More specifically, we require the derivative of

log 𝑝(𝑦1,...,𝑛 | 𝜃, 𝜔) =
𝑛∑︁

𝑘=1
log𝐶𝑘 (𝜃)

subject to ¤𝛼(𝑥, 𝑡) =
∑︁
𝑖

𝜃𝑖

∑︁
𝑥′

𝑅𝑖 (𝑥 ′, 𝑥)𝛼(𝑥 ′, 𝑡) ,

𝑝(𝑥, 𝑡𝑘 ) = 1
𝐶𝑘

𝑝(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥) ,

𝐶𝑘 =
∑︁
𝑥

𝛼(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥) ,
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where we have used the parameter form of the transition function (S7) in the master equation within the constraint. To compute
the gradient of such a constrained function, one can use variational calculus. First, the constrained problem is transformed to an
augmented unconstrained functional known as the Lagrangian

𝐽 [𝛼, 𝜃, 𝛽, 𝜂] =
𝑛∑︁

𝑘=1
log(𝐶𝑘 ) +

∑︁
𝑥

∫ 𝑇

0
𝛽(𝑡, 𝑥)

(∑︁
𝑖

𝜃𝑖

∑︁
𝑥′

𝑅𝑖 (𝑥 ′, 𝑥)𝛼(𝑥 ′, 𝑡) − ¤𝛼(𝑥, 𝑡)
)

d𝑡

+
𝑛∑︁

𝑘=1

∑︁
𝑥

𝜂𝑘 (𝑥)
(

1
𝐶𝑘

𝛼(𝑥, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥) − 𝛼(𝑥, 𝑡𝑘 )
)
.

(S23)

The gradient of the original function can be computed from the stationary conditions of the Lagrangian. In particular

d
d𝜃𝑖

log 𝑝(𝑦 | 𝜃) = 𝜕

𝜕𝜃𝑖
𝐽 [𝛼, 𝜃, 𝛽, 𝜂] =

∑︁
𝑥,𝑥′

∫ 𝑇

0
𝛽∗ (𝑡, 𝑥)𝑅𝑖 (𝑥 ′, 𝑥)𝑝∗ (𝑥 ′, 𝑡)d𝑡

where 𝛼 is the solution of (S20) for given 𝜃 and 𝛽, 𝜂 satisfy the stationarity condition

𝛿𝐽

𝛿𝛼
= 0 . (S24)

To calculate the functional derivative, we choose a suitable perturbation 𝛿𝛼 and linearize (S23) around 𝛼. After reorganizing
terms, we get

𝛿𝐽 =
∑︁
𝑥

𝛿𝛼(𝑥, 𝑡)
(
¤𝛽(𝑥, 𝑡) +

∑︁
𝑥′

∑︁
𝑖

𝜃𝑖𝑅𝑖 (𝑥, 𝑥 ′)
)

+
∑︁
𝑘

∑︁
𝑥

𝛿𝛼(𝑥, 𝑡−𝑘 )
(
𝑝(𝑦𝑘 | 𝑥)

𝐶𝑘
+ 𝜂𝑘 (𝑥)𝑝(𝑦𝑘 | 𝑥)

𝐶𝑘
− 𝑝(𝑦𝑘 | 𝑥)

𝐶2
𝑘

∑︁
𝑥′

𝜂𝑘 (𝑥 ′)𝛼(𝑥 ′, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥 ′) − 𝛽(𝑥, 𝑡−𝑘 )
)

+
∑︁
𝑥

𝛿𝛼(𝑥, 𝑡−𝑘 ) (𝛽(𝑥, 𝑡𝑘 ) − 𝜂𝑘 (𝑥)) .

Since 𝛿𝛼 is arbitrary, the terms in brackets must vanish to satisfy (S24). This leads to the adjoint state equation

¤𝛽(𝑥, 𝑡) = −
∑︁
𝑥′

∑︁
𝑖

𝜃𝑖𝑅𝑖 (𝑥, 𝑥 ′)𝛽(𝑥, 𝑥 ′)

along with the jump conditions

𝛽(𝑥, 𝑡−𝑘1) =
𝑝(𝑦𝑘 | 𝑥)

𝐶𝑘

(
𝛽(𝑥, 𝑡𝑘 ) −

∑︁
𝑥′

𝛽(𝑥 ′, 𝑡𝑘 )𝑝(𝑥 ′, 𝑡−𝑘 )𝑝(𝑦𝑘 | 𝑥 ′) + 1

)
.

For applying HMC, we also require the gradient ∇𝜔 𝑝(𝑦 | 𝜃, 𝜔). This gradient is straightforward to compute since 𝜔 only
affects the observation likelihood

∇𝜔 𝑝(𝑦 | 𝜃, 𝜔) =
∑︁
𝑘

∇𝜔 log𝐶𝑘 (𝜔)

=
∑︁
𝑘

𝐶−1
𝑘 (𝜔)∇𝜔𝐶𝑘 (𝜔)

=
∑︁
𝑘

𝐶−1
𝑘 (𝜔)

∑︁
𝑥

𝛼(𝑥, 𝑡−𝑘 )∇𝜔 𝑝(𝑦𝑘 | 𝑥, 𝜔)

which corresponds to a weighted average of the gradients of the observation likelihood.

S10.4 Hierarchical modelling
Consider a collection of traces D = {𝑦 (1)1,...,𝑛, . . . , 𝑦

(𝑚)
1,...,𝑛}. As discussed in Methods — Bayesian inference, we can consider the

discretely observed trace 𝑦1,...,𝑛 as a single random variable generated from a distribution 𝑝(𝑦1,...,𝑛 | 𝜃, 𝜔). This allows to apply
the usual rules for probabilistic graphical models and Bayesian inference to construct hierarchical models. For convenience, we
provide a few more explicit examples in this section.
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Pooling of multiple traces The simples model for a collection of traces D is that of identical and independently distributed
samples. This means that two parameter vectors 𝜃, 𝜔 are shared by all the traces. We are interested in the posterior

𝑝(𝜃, 𝜔 | D) ∝ 𝑝(𝜃)𝑝(𝜔)
𝑚∏
𝑘=1

𝑝(𝑦 (𝑘)1,...,𝑛 | 𝜃, 𝜔)

where 𝑝(𝜃) and 𝑝(𝜔) are appropriate priors for transcription and observation parameters, respectively, and each term in the
product is a marginal likelihood for a single trajectory as in (S19). This model uses identical parameters for all time windows
meaning that it allows no cycle dependence and is considered as a baseline. More complex models will be scored against the
fully pooled model.

Per-window pooling Consider now traces D =
{
𝑦
(𝑖, 𝑗)
1,...,𝑛 : 𝑖 ∈ {1, . . . , 𝑛𝑤 }, 𝑗 ∈ {1, . . . , 𝑛𝑦,𝑖}

}
where 𝑛𝑤 is the number of

windows and 𝑚𝑖 is the number of traces in window 𝑖. For every window, we assume independent parameters 𝜃 (𝑖) , 𝜔 (𝑖) . In this
case, the inference problem decomposes into individual posteriors for every window

𝑝(𝜃 (𝑖) , 𝜔 (𝑖) | D) ∝ 𝑝(𝜃 (𝑖) )𝑝(𝜔 (𝑖) )
𝑚𝑖∏
𝑘=1

𝑝(𝑦 (𝑖,𝑘)1,...,𝑛 | 𝜃 (𝑖) , 𝜔 (𝑖) ) .

This corresponds to repeating the simple pooling independently for each window. While straightforward to apply, this approach
does not exploit shared information between traces of different windows, which can lead to poor accuracy if the number of
traces per window is small.

Mixed approach In practice, some of the parameters may depend on the cycle while others are shared between all traces.
Throughout, we assume a global observation parameter 𝜔. The kinetic transcription parameters 𝜃 are split into global parameters
𝜃𝑔 and local parameters 𝜃 (𝑖)𝑙 that are allowed to vary for different windows. The corresponding posterior is of the form

𝑝(𝜃𝑔, 𝜔, 𝜃 (𝑖)𝑙 , . . . , 𝜃
(𝑛𝑤 )
𝑙 | D) ∝ 𝑝(𝜃𝑔)𝑝(𝜔)

𝑛𝑤∏
𝑖=1

𝑝(𝜃 (𝑖)𝑙 )
𝑚𝑖∏
𝑘=1

𝑝(𝑦 (𝑖,𝑘)1,...,𝑛 | 𝜃𝑔, 𝜃 (𝑖)𝑙 , 𝜔) .

By performing inference with different partitions into local and global parameters and comparing the different models, this
provides some insight into which parameters are affected by the cycle.

S10.5 Parameter identifiability
The presented model contains 5 kinetic parameters and additional 7 observation parameters. In addition, the latent stochastic
process 𝑋 (𝑡) is a fairly high-dimensional lattice model (≈ 2 × 105 states in the configuration used for most experiments) that
is observed by fluorescence intensity, which is a one-dimensional quantity. This setting raises the question of parameter
identifiability, which we investigated based on simulated data. Preliminary numerical experiments indicated that in particular
the GFP intensity calibration factor 𝛾 has a major impact on inference quality. If an uninformative prior is used for 𝛾, the system
is not practically identifiable with a realistic number of traces. We therefore used calibration measurements to construct a tight
prior for 𝛾 (see Sec. S9.1). However, even with good prior knowledge of 𝛾, a single trace is not very informative. Pooling of
multiple traces can increase accuracy significantly. This was demonstrated in the main paper using the example of the initiation
rate (cf. Fig. 1f). The full results with posteriors for all parameters are given in Fig. S19.

S10.6 Computing infrastructure
Numerical experiments using the real data were run on the Hessian High Performance Computer (HHLR) located at TU
Darmstadt. A typical run of the variational inference was performed on a single compute node consisting of 96 Intel Xeon
Platinum 9242 processors for 24 hours which allowed for roughly 2000 gradient steps. The experiments based on simulated
used fewer traces and were thus run on the local cluster of Self-Organizing Systems Lab on a 22 core machine with Intel Core
Haswell architecture.

S10.7 Custom Software
The core of the code consists of the following parts: A model builder that allows to straightforwardly implement arbitrary CTMC
models, a simulation module for data generation, an integrator for solving the master equation based on the Krylov subspace
approximation of the matrix exponential41,42, programs for evaluating the data likelihood and the corresponding gradient with
respect to the parameters and a simulator for the state posterior. The backend of the code is implemented in C++ and was
compiled into a native Python extension using the Pybind11. Matrix operations are implemented using the Eigen library. The
code has been parallelized using OpenMP such that it can process multiple traces simultaneously. For inference, our python
extension has also been interfaced with the PyTorch package and the probabilistic programming language Pyro45. This gives
access to state of the art inference algorithms and simplifies implementing hierarchical models. The code is available at XXX.
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Figure S19. Joint posterior inference with different numbers of pooled traces (cf. Sec. S10.4) based on simulated data. The rows show
histogram approximations of the prior distribution (blue) and the posterior distribution (red) for the model parameters. Black lines indicate the
parameter value used to generate the data. The columns show realizations of the experiment with different numbers of trajectories. Some of
the observation parameters are not shown, as results look similar.
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Figure S20. Posterior of the model with local initiation rate and remaining parameters global. This is an extended version of Fig. 4e,f of the
main paper. a Local initiation rate per time window since induction. b Global kinetic and observation model parameters.
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S11 Model selection
In Bayesian inference there are two major approaches to model evaluation and comparison35. The first approach is based on the
idea that we can perform posterior inference not only over parameters but also over models. Assuming there are a number
of hypothesis 𝐻1, . . . , 𝐻𝑚 corresponding to 𝑚 models, some prior probabilities over the models 𝑝(𝐻) and data D, we can
compute 𝑝(𝐻 | D) to find the most probable model given the data. Typically, a uniform prior over the models is chosen which
leads to 𝑝(𝐻 | D) ∝ 𝑝(D|𝐻). In particular, if we are interested in comparing the odds of two models, we get

𝑝(𝐻1 | D)
𝑝(𝐻2 | D) =

𝑝(D|𝐻1)
𝑝(D|𝐻2) .

The fraction on the r.h.s. is called the Bayes factor, the term 𝑝(D|𝐻) is called the marginal likelihood or evidence. In a
parametric model the marginal likelihood is given by

𝑝(D|𝐻) =
∫

𝑝(D | 𝜃, 𝐻)𝑝(𝜃 | 𝐻)d𝜃 .

Therefore, the marginal likelihood can be used to score the performance of different models for a given dataset. The main
advantage of the marginal likelihood as a model evaluation criterion is that it automatically penalizes model complexity. If
two models explain data equally well, the one with fewer parameters will show a higher score. Unfortunately, the marginal
likelihood is difficult and costly to evaluate, so typically approximations have to be used. A comprehensive review of such
approximation techniques can be found in?. If inference is performed using a variational approach, an approximation to the
marginal likelihood is obtained for free in form of the evidence lower bounds (ELBO). Classical variational inference is based
on the idea to approximate the posterior by a distribution 𝑞 in a tractable family Q. The optimal approximation 𝑞∗ is obtained by
minimizing the Kullback-Leibler divergence

𝑞∗ = arg min
𝑞∈Q

𝐷KL [𝑞 | | 𝑝(· | D, 𝐻)] , 𝐷KL [𝑞 | | 𝑝] =
∫

𝑞(𝜃) log
(
𝑞(𝜃)
𝑝(𝜃)

)
d𝜃

It can be shown that the above objective function decomposes as

𝐷KL [𝑞 | | 𝑝(· | D)] = log 𝑝(D | 𝐻) − 𝐹 (D, 𝐻) , 𝐹 (D, 𝐻) =
∫

𝑞(𝜃) (log 𝑝(𝜃 | 𝐻) + log 𝑝(𝐷 | 𝜃, 𝐻) − log 𝑞(𝜃)) d𝜃

The quantity 𝐹 (D, 𝐻) is the ELBO and the maximization of the ELBO is equivalent to minimizing the KL divergence to the
posterior. Furthermore, if the variational family 𝑄 is sufficiently expressive, 𝐷KL [𝑞∗ | | 𝑝(· | D)] is close to zero and we get

log 𝑝(𝜃 | 𝐻) ≈ 𝐹 (D, 𝐻) .

This immediately suggest an approximation of the Bayes factor as

log
(
𝑝(D|𝐻1)
𝑝(D|𝐻2)

)
≈ 𝐹 (D, 𝐻1) − 𝐹 (D, 𝐻2) ≡ ΔELBO

A conceptual drawback of evidence-based model selection is that it is only a relative measure of performance. If all models
are bad and one model is slightly less bad, the latter one can still appear as a clear winner by evidence score. It is therefore
advisable to combine evidence-based model selection with goodness of fit checks. In a Bayesian framework, the natural way to
do this is by the posterior predictive distribution

𝑝(D̃ | D, 𝐻) =
∫

𝑝(D̃ | 𝜃, 𝐻)𝑝(𝜃 | D, 𝐻)d𝜃 . (S25)

Intuitively, 𝑝(D̃ | D, 𝐻) is the distribution of data simulated from the fitted model. Goodness of fit in this framework is
assessed by comparing the similarity of certain summary statistics 𝑇 (D) of the true data with the same summary statistics of
the posterior predictive distribution. More explicitly, for a discrepancy measure 𝐷 (𝑇 (D), 𝑇 (D̃)) for two realization of the
summary statistic, the predictive score is given by

𝑆 =
∫

𝐷 (𝑇 (D), 𝑇 (D̃))𝑝(D̃ | D, 𝐻)dD̃
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In practice, the integral with respect to the predictive distribution is performed by sampling from the parameter posterior
𝑝(𝜃 | D, 𝐻) and simulating a dataset D̃ using the model 𝑝(D̃ | 𝜃, 𝐻). The choice of these summary statistics depends on
the problem and should reflect features that are deemed important. In many applications, low order moments such as the
mean or quantiles of the empirical distribution are chosen and the discrepancy measure 𝐷 is, e.g. the 𝐿2-norm. Here, we are
interested in the evolution of the intensity distribution over time. Consider a collection of traces D = {𝑦 (1)1,...,𝑛, . . . , 𝑦

(𝑚)
1,...,𝑛}. Let

𝑝𝑘 (𝐼,D) = 1
𝑚

∑𝑚
𝑖=1 𝛿(𝑦 (𝑖)𝑘 ) be the empirical intensity distribution at time 𝑡𝑘 . In this case, we are interested in the distribution

of fluorescence intensity over time. As summary statistic we choose the collection of empirical distributions at the different
time points, i.e. 𝑇 = (𝑝𝑘 )𝑘=1𝑛 . The same collection of distributions is computed for a simulated dataset D̃. To compare
individual distributions, we use the Wasserstein metric 𝑊1 (𝑝𝑖 , 𝑝′𝑖). The Wasserstein metric is rooted in optimal transport
theory. Intuitively, it describes the minimal amount of work required to transform one distribution into another one by moving
infinitesimal pieces of mass at a time50. Averaging over individual time points leads to

𝑆 =
∫ (

1
𝑚

𝑚∑︁
𝑖=1

𝑊1 (𝑝𝑖 (·,D), 𝑝𝑖 (·, D̃))
)
𝑝(D̃ | D, 𝐻)dD̃

This statistic is computed separately for all windows and then averages over the windows. We do not provide the explicit formula
is the notation becomes quite cumbersome. Finally, after computing 𝑆 for all models of interest we can rank the models by how
well the average predicted intensity distribution agrees with the empirical distribution.

Table S15 shows ΔELBO and the discussed posterior predictive score for various model configurations evaluated on both
datasets. The relative ELBO is always provided for the simplest model, which can be considered as a baseline, for every dataset.
A look at ΔELBO reveals that in both datasets there is a significant preference of the bursting models over the constitutive
models. In addition, the time-dependent models score higher than the fully global model. Most of this gain is explained by a
time-varying initiation rate. If other dynamic parameters are allows to vary, there is an additional but smaller gain in evidence.
Interestingly, the fully local model shows a predictive performance close to other well fitting models but with lower evidence.
This indicates that the additional degrees of freedom are not very useful for explaining the experimental data. In conclusion, S15
supports a bursting model with time-dependent parameters with most of the time dependence explained by the initiation rate.

3s dataset 3s dataset 12s dataset 12s dataset
ΔELBO 𝑆 ΔELBO 𝑆

𝑘on 𝑘off 𝑘i 𝑘e 𝑘t

- - g g g 0 - 0 -
- - l g g 9.78 × 102 21.968281 1.55 × 103 22.716701
- - l l l 1.29 × 103 20.916601 1.73 × 103 21.943819
g g g g g 2.03 × 103 - 5.25 × 103 -
l g g g g 1.95 × 103 19.038088 6.06 × 103 22.791160
g g g l g 1.64 × 103 26.032090 5.43 × 103 45.164126
g g l g g 2.93 × 103 14.482935 6.07 × 103 22.861368
l l g g g 2.39 × 103 16.207827 4.98 × 103 19.721966
l l l g g 2.37 × 103 16.148590 6.13 × 103 20.363244
l l l l l 2.62 × 103 15.607396 6.17 × 103 20.185700

Table S15. Bayesian model selection by approximate evidence and predictive scores based on Wasserstein metric. The index column on the
right indicate which parameters are shared for all cells (g) and which are local for every time window (l). The dash indicated missing values,
meaning that the corresponding model is not bursting. The quantity ΔELBO is shown with respect to the simplest model (shared parameter,
no bursting) for every dataset. Therefore, higher values are better. 𝑆 quantifies the average deviation of the intensity distribution between
simulated and real dataset. Thus, lower values are better.

S12 Tracking algorithm
Transcription site tracking in live cell fluorescence microscope imagery has to overcome three problems. First, fluorescent
spots vary in intensity and may disappear altogether due to the underlying dynamics of the transcription process. Second, the
background is non-homogenous and varies over time due to cellular clutter. Third, accumulations of fluorescent protein may
cause spurious spots. Standard spot extraction algorithms typically run a detection step on each time frame and than combine
possible spot candidates to a trajectory using a scoring scheme. We follow a joint approach combining detection and tracking
within a stochastic filtering framework.
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S12.1 Sequential Filtering Framework
The central idea is that the current position of the spot and the current intensity will provide information on the likely places to
find the spot in the next frame. We denote the position of the spot in frame 𝑘 as 𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 )⊤. In addition, we define 𝐼𝑘
and 𝑏𝑘 as the spot and local background intensity, respectively. This leads to a full state x𝑘 = (𝑟𝑘 , 𝑏𝑘 , 𝐼𝑘 ). We assume the
evolution of these quantities between two consecutive images as given by

𝑝(x𝑘 | x𝑘−1) = N(x𝑘 | x𝑘−1,Q) . (S26)

Eq. (S26) corresponds to a diffusive motion of the TS and and encourages the intensity variables at different times to be close.
To deal with sudden vanishing and re-appearance of spots, we introduce a binary switching variable 𝑠𝑘 representing the visibility.
The observation 𝐼𝑘 corresponds to the 3D image stack at step 𝑘 . We connect the latent state x𝑘 to the observed image 𝐼𝑘 by a
point spread function model as described in Sec. S9.3

ℎ𝑖 (x𝑘 ) = 𝑏𝑘 + 𝐼𝑘 exp
(
−1

2
(𝑟 𝑖 − 𝑟𝑘 )⊤Σ−1

PSF (𝑟 𝑖 − 𝑟𝑘 )
)
, (S27)

where 𝑟 𝑖 corresponds to the center of pixel 𝑖. In contrast to Sec. S9.3, we use a three-dimensional PSF model with
ΣPSF = diag(𝜎2

PSF, 𝜎
2
PSF, 𝜎

2
z ). We also refrain from integrating over the pixel area and use the center of the pixel directly with

the Gaussian profile. Together with a multiplicative noise as in (S14) we obtain

𝑝(log 𝐼𝑘 | 𝑠𝑘 = 1, x𝑘 ) = N(log ℎ(x𝑘 ), 𝜎2
img)

𝑝(log 𝐼𝑘 | 𝑠𝑘 = 1, x𝑘 ) = N(log 𝑏𝑘 , 𝜎
2
img)

where the second equation indicates that only noisy background is observed when visibility is zero. This leads to a hidden
Markov model with spot position and intensity as latent state and image stacks as observations (cf. Fig. S21). Computing

Figure S21. Probabilistic graphical model representation of the spot tracking problem with visibility variables 𝑠𝑘 , spot state x𝑘 and noise
observed image stack 𝐼𝑘 .

𝑝(𝑠𝑘 , x𝑘 | 𝐼1, . . . , 𝐼𝑘 ), the distribution of the latent state given all observations up to step 𝑘 , is known as the filtering problem
and can be reduced to sequential prediction and update steps43.

S12.2 Prediction Step
Assume that at step 𝑘 − 1 we have access to the filtering distribution

𝑝(𝑠𝑘−1, x𝑘−1 | 𝐼1, . . . , 𝐼𝑘−1) = 𝑝(𝑠𝑘−1 | 𝐼1, . . . , 𝐼𝑘−1)𝑝(x𝑘−1 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1)

where 𝑝(𝑠𝑘−1 | 𝐼1, . . . , 𝐼𝑘−1) is a Bernoulli distribution and we assume that 𝑝(x𝑘−1 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1) follows a Gaussian
distribution. In this case, the prediction step can be computed explicitly as

𝑝(𝑠𝑘 , x𝑘 | 𝐼1, . . . , 𝐼𝑘−1) =
∑︁
𝑠𝑘−1

𝑝(𝑠𝑘 | 𝑠𝑘−1)𝑝(𝑠𝑘−1 | 𝐼1, . . . , 𝐼𝑘−1)︸                                       ︷︷                                       ︸
weight

𝑝(x𝑘 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1)︸                           ︷︷                           ︸
Gaussian mode

. (S28)

The last term on the r.h.s. can be computed analytically under the Gaussian assumption. Thus, (S28) becomes a Gaussian
mixture with modes at the previous filter estimates for visible and invisible state and weights determined by the activity estimate.
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S12.3 Approximate Update Step
Given the prediction step, the update step is given by

𝑝(𝑠𝑘 , x𝑘 | 𝐼1, . . . , 𝐼𝑘 ) = 1
𝑝(y𝑘 | 𝐼1, . . . , 𝐼𝑘−1)

𝑝(𝐼𝑘 | 𝑠𝑘 , 𝑥𝑘 )𝑝(𝑠𝑘 , x𝑘 | 𝐼1, . . . , 𝐼𝑘−1) .

The normalizer is given by

𝑝(y𝑘 | 𝐼1, . . . , 𝐼𝑘−1) =
∑︁
𝑠𝑘

∫
dx𝑘 𝑝(𝐼𝑘 | 𝑠𝑘 , 𝑥𝑘 )𝑝(𝑠𝑘 , x𝑘 | 𝐼1, . . . , 𝐼𝑘−1)

=
∑︁

𝑠𝑘 ,𝑠𝑘−1

𝑝(𝑠𝑘 | 𝑠𝑘−1)𝑝(𝑠𝑘−1 | 𝐼1, . . . , 𝐼𝑘−1)
∫

dx𝑘 𝑝(𝐼𝑘 | 𝑠𝑘 , 𝑥𝑘 )𝑝(x𝑘 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1) .

For the model discussed here, the update step cannot be solved in closed form due to the non-linear observation model (S27). In
addition, the binary state 𝑠𝑘 causes the filtering distribution to become a mixture with 2𝑘 components. To obtain a tractable
approximation, we combine two approximations. First, we observe that the non-linear observation likelihood is strongly peaked.
Thus it is reasonable to use a Laplace approximation

𝑝(𝐼𝑘 | 𝑠𝑘 , 𝑥𝑘 )𝑝(x𝑘 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1) = exp(− 𝑓 (𝑥))

≈ exp(− 𝑓 (𝑥0)) exp
(

1
2
(𝑥 − 𝑥∗)⊤𝐻 𝑓 (𝑥∗) (𝑥 − 𝑥∗)

)
where

𝑓 (𝑥) = − log 𝑝(𝐼𝑘 | 𝑠𝑘 , 𝑥𝑘 ) − log 𝑝(x𝑘 | 𝑠𝑘−1, 𝐼1, . . . , 𝐼𝑘−1)

and 𝑥∗ = arg min𝑥 𝑓 (𝑥). This leads to a representation of the filter in form of a Gaussian mixture distribution at every time. In
order to keep the mixture from growing, we perform a mixture reduction via moment matching after every step.
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