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Abstract 

While neurological and psychiatric disorders have historically been considered to reflect 

distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. 

However, the extent to which these heritable disorders share genetic influences remains unclear. 

Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases 

across ten neurological diseases and ten psychiatric disorders, to compare their common genetic 

risk and biological underpinnings. Using complementary statistical tools, we demonstrate 

widespread genetic overlap across the disorders, even in the absence of genetic correlations. 

This indicates that a large set of common variants impact risk of multiple neurological and 

psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation 

revealed a range of biological processes associated with neurological diseases, while 

psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates 

that neurological and psychiatric disorders share key etiological aspects, which has important 

implications for disease classification, precision medicine, and clinical practice.  
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Introduction 

Neurological and psychiatric disorders rank among the leading causes of disability and 

mortality worldwide1. Despite their shared link to the nervous system, the disorders have 

generally been considered to reflect distinct pathogenic entities, as emphasized by their separate 

classification in the International Classification of Diseases2. The clinical division was driven 

by progress in brain research during the 19th and 20th century3,4. While neurology laid claim on 

the disorders with demonstrable neuropathology, such as Alzheimer’s disease (ALZ), 

psychiatry focused on the mental disorders without recognizable pathology, such as 

schizophrenia (SCZ). However, findings in neuroscience over the past decades, combined with 

clinical and epidemiological observations, have challenged the validity of this clinical 

distinction3-8. Various therapeutic interventions are effective in both groups of disorders, for 

example transcranial magnetic stimulation in Parkinson’s disease (PD) and depression9 and 

anticonvulsants in epilepsy and bipolar disorder (BD)10. Neurological and psychiatric disorders 

also share clinical features, notably cognitive impairment, a key functional determinant2,11. 

Additionally, debilitating psychiatric symptoms such as hallucinations, delusions and mood 

disturbances are prominent across neurological diseases12-14, while classical neurological 

symptoms such as movement abnormalities are observed in psychiatric disorders15. Moreover, 

environmental risk factors such as pollutants increase risk of both neurological and psychiatric 

illnesses8, and epidemiological studies demonstrate high comorbidity between several 

neurological and psychiatric disorders14,16-18, including a higher incidence of dementia among 

individuals with psychotic disorders18. Furthermore, in vivo neuroimaging19 and postmortem20 

investigations report systematic brain abnormalities in psychiatric disorders, indicating that 

mental disorders have a neural basis akin to neurological disease. Altogether, the existing 

clinical dichotomy inadequately reflects the interconnected nature of neurological and 
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psychiatric disorders, emphasizing the need for a more unified clinical approach3-8. However, 

the extent to which these conditions share an etiological basis still remains largely unclear. 

The significant heritability of neurological and psychiatric disorders indicates that 

genomic research could provide new insights into their etiology21. This could bridge the 

nosological gap by forming the basis for an etiology-driven approach to disease classification, 

reveal novel treatment targets, and inform the development of precision medicine approaches. 

In recent years, genome-wide association studies (GWAS) have identified multiple common 

genetic variants for neurological and psychiatric disorders. Two key findings have emerged: 

the conditions are polygenic and genetic overlap is ubiquitous22,23. Genetic overlap has mainly 

been assessed by estimating pairwise genetic correlations using tools such as linkage 

disequilibrium (LD) score regression (LDSC)24, demonstrating that the genetic risk of 

psychiatric disorders is highly intercorrelated25-28. On the contrary, there are fewer pairwise 

genetic correlations among neurological diseases25,29,30 and between neurological and 

psychiatric disorders25,31. Accordingly, neurological diseases have been considered to be 

genetically disparate from psychiatric disorders25, in line with their clinical distinction2. 

However, estimates of genetic correlation are sensitive to low GWAS power and do not provide 

a complete picture of the genetic relationship between complex human phenotypes22,32. 

Importantly, they may conceal genetic overlap involving a mixture of concordant and 

discordant effect directions33,34, and they do not account for differences in polygenicity33, which 

governs the extent to which phenotypes may share genetic variants. Moreover, recent analyses 

using LAVA34 and MiXeR33 have demonstrated extensive genetic overlap across complex 

human phenotypes irrespective of the genetic correlations, along with differences in their 

polygenic architetures22,27,33-35. Additionally, genetic analyses have identified overlapping 

common variants, rare variants and expression profiles between psychiatric and neurological 

disorders8,31,32,36-41, indicative of a partially shared pathobiological basis. 
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In the present study, we aimed to provide a novel genetic perspective on the clinical 

distinction between neurological and psychiatric disorders. To this end, we conducted a 

comprehensive cross-disorder analysis of recent large-scale GWAS datasets to characterize 

their shared genetic architecture. We applied novel statistical tools that capture distinct forms 

of genetic overlap and extensive follow up analyses to link the genomic findings to biological 

pathways and relevant tissue and cell types. 
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Results 

 

Study design (Fig.1). We curated a collection of well-powered GWAS summary statistics, 

resulting in data on ten psychiatric disorders (attention-deficit/hyperactivity disorder 

(ADHD)42, anorexia nervosa (AN)43, autism spectrum disorder (ASD)44, anxiety disorders 

(ANX)45, BD46, major depressive disorder (MDD)47, obsessive-compulsive disorder (OCD)48, 

post-traumatic stress disorder (PTSD)49, SCZ50 and Tourette Syndrome (TS)51), and ten 

neurological diseases (ALZ52, amyotrophic lateral sclerosis (ALS)53, essential tremor (ET)54, 

Lewy body dementia (LBD)55, migraine (MIG)56, multiple sclerosis (MS)57, PD58-60, stroke61 

and the epilepsy subtypes focal epilepsy (FE)62 and genetic generalized epilepsy (GGE)62). 

Additionally, we included GWAS data on brain-related traits (general cognitive ability (COG)63 

and cortical surface area (CRT-SA) and thickness (CRT-TH)64), four somatic diseases (chronic 

kidney disease (CKD)65, coronary artery disease (CAD)66, inflammatory bowel disease (IBD)67 

and Type 2 Diabetes (T2D)68) and height69 as comparators. All GWAS data were limited to 

participants of European ancestry to avoid bias due to differences in LD structure across 

ancestries. Ascertainment and diagnostic criteria are described in the Supplementary Note.  

After data harmonization and pre-processing of the GWAS summary data, we 

conducted systematic cross-trait analyses and biological interrogation (Fig. 1). We first provide 

information on the characteristics of the genetic architecture distinguishing each phenotype. 

Next, we provide an overview of the overlapping genome-wide significant loci and implicated 

genes. Third, we present the patterns of global genetic correlations across the phenotypes, and 

clusters of inter-related brain disorders. Fourth, we provide estimates of genetic overlap beyond 

genetic correlation. Finally, we interrogate the implicated biological pathways, tissues and cell 

types across the included GWAS. 
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Individual genetic architecture characteristics. The genetic architecture of complex human 

phenotypes differs in terms of the heritability accounted for by single-nucleotide 

polymorphisms (SNP-heritability), the estimated number of SNPs influencing the phenotype 

(the polygenicity), and the variance of effect sizes across the associated SNPs (the 

discoverability)22,32. For each phenotype (trait or disorder), we estimated the SNP-heritability 

using LDSC70 (Table 1, Fig. 2a). On average, the estimated SNP-heritability on the liability 

scale was almost twice as large for psychiatric disorders (14.6%, range 5.3-29.3%) compared 

to neurological diseases (8.2%, range 1.4-23.8%). Regardless of disease category, however, 

illnesses with typical onset during childhood or adolescence had the highest estimated SNP-

heritability, specifically OCD, GGE, SCZ and TS, all of putative neurodevelopmental origin. 

The average estimated SNP-heritability for non-brain related diseases was 9.8% (range 1.6-

17.9%). 

Using MiXeR71, we estimated the polygenicity and discoverability for each phenotype 

(Fig. 2b; Supplementary Table 1), except for seven GWAS displaying poor model fit due to 

insufficient statistical power (ANX, PTSD, TS, OCD, FE, ET and LBD). The polygenicity 

estimates for all psychiatric disorders (7,725 (SD=349) – 13,582 (SD=387)) and COG (11,195 

(SD=369)) exceeded those of neurological diseases (464 (SD=43) – 2,898 (SD=220)), somatic 

disorders (423 (SD=55) – 1,358 (SD=85)), height (4,894 (SD=90)) and cortical imaging 

measures (1,361 (SD=100) – 1,666 (SD=125)). For example, the least polygenic psychiatric 

disorder ADHD (7,725 (SD=349)) was estimated to be influenced by ~2.7 times more genetic 

variants than the most polygenic neurological disease GGE (2,898 (SD=220)). In line with prior 

work22,71, the most polygenic phenotypes were characterized by relatively low discoverability, 

indicating a larger fraction of trait-influencing variants with smaller effect sizes. In 

Supplementary Fig. 1, we present GWAS power plots displaying the estimated fraction of SNP-

heritability explained by genome-wide significant SNPs as a function of sample size, 
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demonstrating that the discovery trajectories for most of the GWAS are still in the early stages, 

except for height.  

 

Overlapping genome-wide significant loci and genes. We estimated the number and fraction 

of significantly associated loci and genes shared across the phenotype categories (Table 2) with 

results for each phenotypic pair provided in Supplementary Tables 2-3. For each GWAS, we 

identified genome-wide significant loci according to the FUMA protocol72. We subsequently 

grouped physically overlapping loci, resulting in a total number of 1,988 distinct loci. Of these, 

441 loci were linked to psychiatric disorders and 227 loci to neurological diseases. In total, 41 

loci were overlapping between psychiatric and neurological disorders, constituting 9.3% and 

18.1% of the total number of loci linked to these categories, respectively. Additionally, we 

mapped GWAS associations to protein-coding genes using MAGMA73, yielding a total number 

of 7,829 distinct genes. Of these, 796 genes were linked to psychiatric disorders and 497 to 

neurological diseases. A total of 51 genes were shared between psychiatric and neurological 

disorders, constituting 6.4% and 10.3% of the total number of genes linked to these categories, 

respectively. As expected, the pleiotropy across genome-wide significant loci and genes were 

largely driven by GWAS power, warranting cautious interpretation of these results. Most of the 

pleiotropy for psychiatric disorders were observed for SCZ and MDD, while the neurological 

GWAS were more evenly powered. 

 

Global genetic correlations. Using bivariate LDSC24, we estimated the global pairwise genetic 

correlations across all phenotypes (Supplementary Fig. 2; Supplementary Table 4). Our results 

corroborate prior findings of highly intercorrelated genetic risk among psychiatric disorders25-

28,31. In total, 40 out of 45 genetic correlations among psychiatric disorders reached significance 

(FDR < 0.05). In comparison, 12 out of 45 correlations among neurological diseases reached 
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significance (FDR < 0.05). As recently demonstrated29,30, the neurodegenerative disorders ALS, 

LBD, ALZ and PD formed a cluster of correlated disorders. Additionally, ET was correlated 

with both PD (rg=0.31, p=1.80x10-7) and MIG (rg=0.17, p=3.90x10-3), FE was correlated with 

stroke (rg=0.30, p=1.40x10-3), ALS (rg=0.32, p=7.10x10-3) and the other epilepsy subtype GGE 

(rg=0.61, p=8.04x10-17), while PD was negatively correlated with both MIG (rg=-0.08, 

p=1.40x10-2) and stroke (rg=-0.10, p=1.57x10-2).  

In total, 30 out of 100 genetic correlations between neurological and psychiatric 

disorders reached significance at FDR < 0.05 (rg range: -0.19 – 0.40; Fig. 3), adding further 

evidence that genetic risk transcends the categorical boundary between these disorders. We 

found that MIG, ET and stroke were positively correlated with several psychiatric disorders, in 

particular MDD, ADHD, ANX and PTSD. The same psychiatric disorders were also correlated 

with CAD, consistent with a connection between mental disorders and cardiovascular illness74. 

However, neither MIG or ET were significantly correlated with any somatic comparator or 

stroke, suggesting that their shared genetic effects with psychiatric disorders relate to other 

aspects. Furthermore, MS was significantly correlated with ANX (rg=0.17, p=6.00x10-4), MDD 

(rg=0.11, p=1.16x10-5) and SCZ (rg=0.07, p=1.02x10-2). All of these disorders were positively 

correlated with the immune-mediated disease IBD, indicating a common link to immunity. We 

also observed significant correlations between ALZ and both BD (rg=0.14, p=1.81x10-2) and 

SCZ (rg=0.11, p=1.14x10-2), in line with the comorbidity between dementia and 

psychosis12,18,31. Finally, we observed significant correlations between several comparators and 

psychiatric and neurological disorders, indicating body-wide effects of the involved genetic 

variants (Supplementary Note). 

 

Genetic covariance structure. Applying genomic SEM75, we modeled the genetic covariance 

structure of neurological and psychiatric disorders. The model did not successfully converge 
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for neurological diseases, likely due to insufficient correlation structure. We then leveraged a 

recently established factor model for psychiatric disorders28, which specified four latent factors 

that fit the data well (Supplementary Table 5). The first factor consisted of compulsive disorders 

(AN, OCD and TS), the second factor of psychotic disorders (SCZ and BD), the third factor 

was characterized by neurodevelopmental disorders (ASD and ADHD) as well as PTSD, MDD 

and TS, while the fourth factor consisted of internalizing disorders (MDD, ANX and PTSD). 

We then conducted confirmatory factor analyses (CFAs) and estimated whether any of the 

neurological diseases correlated with the psychiatric factors. After Bonferroni-correction 

(0.05/40 = 1.25x10-3), four neurological diseases (MIG, stroke, MS and ET) were found to 

significantly correlate with a psychiatric factor, indicating shared genetic covariance structure 

with psychiatric disorders. Specifically, MIG was positively correlated with the 

neurodevelopmental (rg=0.23, p=7.24x10-11) and internalizing (rg=0.31, p=2.98x10-31) factors, 

stroke was negatively correlated with the compulsive factor (rg=-0.20, p=6.95x10-4), but 

positively correlated with the neurodevelopmental (rg=0.28, p=5.66x10-11) and internalizing 

(rg=0.16, p=2.43x10-5) factors, while both MS (rg=0.15, p=2.12x10-6) and ET (rg=0.30, 

p=1.62x10-7) were positively correlated with the internalizing factor. No neurologic disease was 

significantly correlated with the psychotic factor. 

 

Genetic overlap beyond global genetic correlations. Using bivariate MiXeR33, we estimated 

the unique and overlapping genetic architectures between pairs of phenotypes (Supplementary 

Table 6). Unlike LDSC24, MiXeR can detect genetic overlap regardless of the global genetic 

correlations33. Corroborating recent work35, we found extensive genetic overlap across all 

psychiatric disorders, with a minor proportion of disorder-specific variants (Supplementary Fig. 

3). MiXeR indicated varying degrees of genetic overlap between neurological diseases, with 

smaller proportions of shared risk compared to that observed among psychiatric disorders, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.07.21.23292993doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.21.23292993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

suggesting that neurological diseases are more genetically distinct from each other. Despite 

disparate polygenicity estimates, we observed widespread genetic overlap between 

neurological and psychiatric disorders. This constituted a larger proportion of the genetic 

architectures of neurological diseases given their smaller polygenicity estimates relative to 

psychiatric disorders. As an example, MiXeR estimated pronounced genetic overlap between 

SCZ and neurological diseases PD, GGE and MIG, despite absent genetic correlations, 

indicative of a balanced mix of concordant and discordant effects among the shared variants 

(Fig. 4). Almost all genetic variants linked to PD and GGE and 70% of those linked to MIG 

were estimated to also influence risk of SCZ, while the overlap represented less than 30% of 

the SCZ variants.  

Applying LAVA34, we calculated the local genetic correlations across 2,495 genomic 

regions between all pairs of phenotypes. We performed local genetic correlation tests at loci 

where both phenotypes had heritability estimates significantly different from zero, and 

corrected for multiple testing using FDR. Corroborating the MiXeR findings, LAVA estimated 

multiple significantly correlated loci across most pairs of phenotypes, including between 

neurological and psychiatric disorders (Supplementary Table 7). As observed for locus and 

gene pleiotropy at the genome-wide significance level (Supplementary Tables 2 and 3), the 

number of LAVA local correlations largely reflected GWAS power. Consistent with the MiXeR 

findings, LAVA estimated correlated loci between SCZ and PD (14 positively correlated and 

13 negatively correlated loci), GGE (six positively correlated and six negatively correlated 

loci), and MIG (10 positively correlated and 15 negatively correlated loci), adding further 

support for a shared genetic basis (Fig. 4).  

 

Tissue, cell-type and gene-set enrichment analyses. Finally, we compared GWAS 

enrichment with specific tissues, cell types and gene sets (Table 4), leveraging RNA sequencing 
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data from the Genotype-Tissue Expression (GTEx) project76, single-cell RNA sequencing 

datasets from the developing and adult human brain77, and predefined Gene Ontology gene sets 

implemented in FUMA72. We performed Bonferroni correction for the number of tested items 

in each analysis.  

The analyses revealed a range of neural and somatic biological associations associated 

with neurological diseases. As previously shown52,57,77, ALZ and MS were both significantly 

associated with immune-enriched tissues, microglia and immunological pathways, implying a 

key role of the immune system. Additionally, ALZ was associated with amyloid-beta related 

processes. Risk genes for PD were significantly associated with various neurobiological 

processes, particularly concerning synaptic vesicles, and were specifically upregulated in the 

substantia nigra58, central to PD pathogenesis. Risk genes for GGE were significantly 

associated with both GABAergic and excitatory neurons62, in line with hyperexcitability being 

the main pathophysiological feature of epilepsy, but were not associated with any tissue or gene 

set. Stroke was significantly associated with one gene set only, ‘fibrinogen’, an established 

stroke risk factor involved in clot formation78. Risk genes for LBD were linked to lipid 

metabolism.  

Corroborating previous work26,28,32,42,46,47,50, GWAS on psychiatric disorders 

consistently implicated neuronal biology. Risk genes for ADHD, MDD and SCZ were all 

upregulated in brain tissue, implicated neurobiological processes and neuronal cell types. MDD 

was also associated with oligodendrocyte progenitor cells. BD risk genes were significantly 

associated with both GABAergic and excitatory neurons, but not with any tissue or gene set. 

ANX was significantly associated with several neurobiological pathways, while risk genes for 

AN were significantly downregulated in specific brain tissues.  

Apart from COG, no comparator was significantly associated with neurons. COG and 

CRT-TH were the only comparators whose genes were significantly upregulated in brain tissue. 
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Further results are described in the Supplementary Note. Full results are provided in 

Supplementary Tables 8 and 9 and Supplementary Figs. 4 and 5. 
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Discussion 

 

In the present study, we elucidate the shared genetic architecture of neurological and psychiatric 

disorders, indicating that they partly share a genetic basis. Overall, the results represent a major 

advance in our understanding of the common genetic variation underlying brain-related 

disorders, suggesting that a large set of genetic variants influence a range of pathogenic 

processes, wherein disorder specificity is determined by the distribution of effect sizes. While 

the shared genomic components suggest that neurological and psychiatric disorders partially 

share molecular genetic mechanisms, a more central role of neuronal biology was implicated 

in psychiatric disorders, while neurological diseases implicated a larger variety of biological 

processes. Altogether, the findings are consistent with accumulating evidence indicating that 

neurological and psychiatric disorders share key etiological aspects, contrasting their clinical 

distinction. 

To compare the genetic basis of neurological and psychiatric disorders, we analyzed 

GWAS summary data from 20 major disorders, representing the largest cross-disorder analysis 

on this subject to date (Table 1). Moreover, the application of statistical methods with different 

modelling assumptions and different techniques for measuring genetic overlap allowed us to 

interrogate their genetic relationship in a more comprehensive manner than previous work25. In 

the univariate analysis, psychiatric disorders were more polygenic than neurological diseases. 

Polygenicity indicates the number of additive genetic effects that may combine to yield 

increased trait susceptibility, providing a measure of genetic architecture complexity and 

possibly heterogeneity22,79. While both neurological and psychiatric disorders are multifactorial 

and clinically heterogenous, the higher levels of polygenicity of psychiatric disorders is 

consistent with a hypothesis that multiple causal pathways may converge on the same mental 

illness, while fewer causal pathways may underlie neurological diseases. Despite similar twin-
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based heritability estimates across neurological and psychiatric disorders21, the SNP-based 

heritability estimates appeared to negatively correlate with typical onset of illness, regardless 

of disease category. This contrasts the theoretical expectation that common genetic variants 

might explain more variance in late-onset disorders, given their weaker impact on reproductive 

fitness, thereby reducing selective pressure80. However, current methodology may 

inappropriately account for the effect of age and large-effect variants such as APOE variants, 

warranting cautious interpretation of SNP-heritability estimates for late-onset disorders81. 

Expanding upon previous work based on less powerful GWAS25,31,36-40, we demonstrate 

widespread genetic correlations between neurological and psychiatric disorders, most of which 

were positive (Fig. 3). The results indicate that neurological and psychiatric disorders partly 

exist on genetic continua, providing new insights into their genetic relationship. Importantly, 

the shared genetic components may map onto overlapping biological aspects that could be 

targeted therapeutically. The pattern of correlations was not uniform across disorders, with 

clusters of disorders being more correlated with each other. Notably, both MIG and ET were 

positively correlated with several psychiatric disorders, in particular the internalizing disorders 

ANX, MDD and PTSD, consistent with their extensive psychiatric comorbidities16,17. On a 

cautious note, however, the GWAS on both MIG and ET were largely based on self-reports54,56. 

Although self-reported and clinically ascertained cases are shown to strongly correlate47,56,58, 

we cannot exclude the possibility that some self-reports were based on underlying mental illness 

with somatoform symptomatology. The findings nevertheless emphasize the interconnected 

nature of these disorders, and may motivate further trialing of psychotherapy or antidepressants, 

which show beneficial effects for MIG prevention82.  

Beyond genetic correlations, we observed a more pervasive degree of genetic overlap 

across neurological and psychiatric disorders, involving a mixture of concordant and discordant 

effect sizes (Supplementary Fig. 3). As an example, MiXeR33 indicated that a pronounced 
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fraction of the genetic risk underlying PD, GGE and MIG overlaps with SCZ, despite absence 

of global genetic correlations (Fig. 4). The findings align with the discovery of multiple 

correlated genomic regions between these disorders using LAVA34 (Fig. 4), and shared loci 

detected below the genome-wide significance level36,37,40. The emerging results indicate a 

substantial genetic basis shared across neurological and psychiatric disorders, in which multiple 

common genetic variants impact risk of several disorders, but with divergent effect sizes. 

Accordingly, a given genetic variant may influence numerous biological pathways, each of 

which may be differently involved in the pathogenesis underlying distinct brain disorders. This 

is consistent with recent findings of highly distributed genetic effects across brain 

morphological, cognitive and personality traits83-86, indicating that multiple genetic variants 

with small effects affect the fine-tuning and dynamic interplay across a range of neural and 

behavioral systems. From a clinical perspective, the findings are highly relevant to the potential 

implementation of genomic precision medicine in psychiatry and neurology. Integrating 

genomic data across multiple disorders in a multivariate prediction framework may aid in 

identifying individuals who are more likely to experience comorbid symptoms, either 

endogenously or due to adverse treatment effects, which is currently an unmet clinical need.  

The study has some limitations. The analysis was restricted to individuals of European 

ancestry, given the lack of well-powered GWAS on other ancestries. Trans-ancestral follow-up 

studies are required to assess the generalizability of these results. The present analysis was 

based on common genetic variants, but rare variants likely impact the comorbidity between 

neurological and psychiatric disorders as well. For example, rare variants are jointly associated 

with epilepsy, SCZ and ASD32. Our study was limited by bias inherent to the original GWAS, 

including population stratification and ascertainment procedures. As noted above, misdiagnosis 

could affect the results, in particular with more common disorders like anxiety or depression. 

However, prior extensive simulations did not find that misdiagnosis could explain the 
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magnitude of correlated risk across psychiatric disorders25,26. Comorbid illness may also bias 

the assessment of genetic overlap, warranting more deeply phenotyped cohorts to assess 

differential genetic overlap among clinical subtypes. The results may be affected by LD, 

whereby a causal variant may be correlated with multiple nearby variants, leading to spurious 

pleiotropy. To address this, statistical fine-mapping follow-up studies are needed. Finally, there 

was uneven power among the included GWAS, which limit the value of cross-disorder 

comparison at the present stage. This particularly affects the biological interpretation of the 

mapped genes, which only represent a minor fraction of the genetic risk architectures 

underlying these disorders. As GWAS samples get larger, cross-trait analyses based on more 

diverse datasets, additional disorders, and specific subtypes, should be conducted. 

In conclusion, by leveraging recent large-scale GWAS datasets and novel statistical 

tools, we demonstrate that neurological and psychiatric disorders partly share genetic etiology 

and biological associations related to the brain. Incorporating these complex and interconnected 

illnesses into a more unified framework may help accelerate progress in these fields, lead to a 

more coherent and productive clinical approach3-8, and promote precision medicine 

implementation. 
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Fig. 1 | Study design. Overview of the GWAS summary statistics and analyses performed in 

the study. Abbreviations psychiatric disorders: Attention-deficit/hyperactivity disorder 

(ADHD), anorexia nervosa (AN), autism spectrum disorder (ASD), anxiety disorders (ANX), 

bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder 

(OCD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), Tourette syndrome (TS); 
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neurological diseases: Alzheimer’s disease (ALZ), amyotrophic lateral sclerosis (ALS), 

Essential Tremor (ET), Lewy body dementia (LBD), migraine (MIG), multiple sclerosis (MS), 

Parkinson disease (PD), focal epilepsy (FE), genetic generalized epilepsy (GGE); comparators: 

general cognitive ability (COG), total cortical surface area (CRT-SA) and average cortical 

thickness (CRT-TH), coronary artery disease (CAD), chronic kidney disease (CKD), 

inflammatory bowel disease (IBD) and Type 2 Diabetes (T2D); methods: linkage 

disequilibrium score regression (LDSC), genomic structural equation modeling (genomic 

SEM).
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a

 

 

b

 

Fig. 2 | Individual genetic architecture characteristics. a, SNP-based heritability on the 

liability scale for all disorders estimated using LD score regression70. b, Polygenicity and 
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discoverability of all phenotypes estimated using MiXeR71, excluding GWAS with poor model 

fit. For full univariate MiXeR results, see Supplementary Table 1. 
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Fig. 3 | Genetic correlations. Global pairwise genetic correlations across neurological and 

psychiatric disorders estimated using linkage disequilibrium score regression24. One asterisk 

denotes statistical significance at FDR < 0.05, two asterisks denote statistical significance after 

Bonferroni correction. The color denotes the magnitude and direction of correlation.  
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Fig. 4 | Genetic overlap beyond global genetic correlations. LAVA local correlations and 

MiXeR-modeled genome-wide genetic overlap for selected disorders schizophrenia (SCZ), 

Parkinson’s disease (PD), migraine (MIG) and genetic generalized epilepsy (GGE). To the left, 

volcano plots of local genetic correlation coefficients (rho) against -log10 p-values for each 

pairwise analysis per locus estimated using LAVA34 (See Supplementary Table 7 for full 

results). Dots encircled in black represent significantly correlated loci after false discovery rate 

correction. To the right, Venn diagrams showing the number (in thousands) of shared and 

disorder-specific variants and the global genetic correlation (rg) estimated using MiXeR33 (See 

Supplementary Fig. 3 and Supplementary Table 6 for full results). The total polygenicity for 

each disorder represents the estimated number of variants required to explain 90% the SNP-

based heritability. 
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Table 1 | Overview of the GWAS contributing to the study 

Phenotypes Abbreviation Population 
prevalence 

SNP-heritability 
(se.) 

GWAS 
loci 

Cases/controls SNPs in  
dataset 

PubMed ID 

Psychiatric disorders        

Anorexia nervosa AN 0.009 0.135 (0.01) 7 16,992/55,525  6,173,547 3130854543 

Anxiety disorders ANX 0.20 0.101 (0.007) 2 31,977/82,114 4,757,986 3174869045 

Attention deficit hyperactivity disorder ADHD 0.05 0.139 (0.006) 25 38,691/186,843  5,746,721 3670299742 

Autism spectrum disorder ASD 0.012 0.122 (0.009) 2 18,381/27,969  6,783,844 3080455844 

Bipolar disorder BD 0.02 0.129 (0.005) 57 41,917/371,549 6,449,398 3400209646 

Major depressive disorder MDD 0.15 0.068 (0.002) 263 412,305/1,588,397 10,933,226 3404574447 

Obsessive-compulsive disorder OCD 0.025 0.293 (0.041) 0 2,699/7,037 7,101,923 2876108348 

Post-traumatic stress disorder PTSD 0.30 0.053 (0.009) 2 20,329/124,440  7,281,726 3159494949 

Schizophrenia  SCZ 0.01 0.211 (0.007) 173 53,386/77,258  6,493,147 3539658050 

Tourette syndrome TS 0.008 0.208 (0.024) 1 4,819/9488 6,988,485 3081899051 

Neurological diseases        

Alzheimer’s disease ALZ 0.05 0.014 (0.008) 33 86,531/676,386 10 670 851 3449387052 

Amyotrophic lateral sclerosis ALS 0.0000625 0.016 (0.002) 10 27,205/110,881  8 872 927 3487333553 

Essential tremor ET 0.01 0.158 (0.022) 1 3,408/65,772 5 194 059  3498211354 

Focal epilepsy FE 0.003 0.029 (0.006) 0 14,939/42,436 4 121 250 medRxiv62 

Genetic generalized epilepsy GGE 0.002  0.238 (0.020) 22 6,952/42,436 4 123 711 medRxiv62 

Lewy body dementia LBD 0.001 0.061 (0.030) 5 2,591/4,027 6 119 431 3358984155 

Migraine MIG 0.16 0.115 (0.007) 35 48,975/540,381  8 484 427 3511568756 

Multiple sclerosis MS 0.002 0.126 (0.012) 75 14,802/26,703  6 979 613 3160424457 

Parkinson’s disease PD 0.005 0.044 (0.004) 52 53,858/846,380  8 955 805 2506400960, 
2889205959,  
3170189258 

Stroke Stroke 0.01 0.016 (0.001) 24 73,652/1,234,808 6 372 181 3618079561 

Comparators        

Cognitive ability COG - 0.183 (0.006) 201 269,867 8,002,023 2994208663 

Cortical surface area CRT-SA - 0.383 (0.034) 28 32,877 12,322,316 3387589164 

Cortical thickness CRT-TH - 0.310 (0.025) 26 32,877 12,322,316 3387589164 

Chronic kidney disease CKD 0.15 0.016 (0.002) 21 41,395/439,303 7,767,542 3115216365 

Coronary artery disease CAD 0.082 0.044 (0.003) 48 71,602/260,875 7,161,097 2871497566 

Inflammatory Bowel Disease IBD 0.0054 0.155 (0.015) 117 25,042/34,915 7,969,489 2806790867 

Type 2 Diabetes T2D 0.10 0.179 (0.013) 145 74,124/824,006 18,317,551 3029796968 

Height Height - 0.371 (0.017) 1405 4,080,687 1,265,438 3622439669 
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Overview of included GWAS summary datasets on psychiatric disorders, neurological diseases 

and comparators contributing to the study. The table displays the abbreviations used in Tables 

and Figures, the reported population prevalence used to estimate SNP-heritability on the 

liability scale for disorders, the estimated SNP-heritability calculated using LD score 

regression70 (observed scale for continuous traits), the total number of genome-wide significant 

loci after merging any physically overlapping lead SNPs (LD blocks <250 kb apart), the number 

of cases and controls or participants, the number of SNPs in the GWAS summary statistics and 

the associated PubMed IDs. Note that for PTSD, the prevalence estimate is based on the 

reported prevalence after trauma exposure, rather than the prevalence estimate in the whole 

population49. 
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Table 2 | Overview of pleiotropic loci and genes linked to psychiatric or neurological 
diseases at the genome-wide significant level 

 Loci 
 

Genes 

Psychiatric disorders Count Fraction (%) 
 

Count Fraction (%) 

Total 441   
796  

Pleiotropic with   
  

  

Psychiatric disorders 60 13.6% 
 

148 18.6% 

Neurological diseases 41 9.3% 
 

51 6.4% 

Cognitive ability 64 14.5% 
 

136 17.1% 

Cortical thickness and surface 
area 16 3.6% 

 
23 2.9% 

Somatic disorders 46 10.4% 
 

72 9.0% 

Height 162 36.7% 
 

463 58.2% 

Neurological diseases      

Total 227   
497  

Pleiotropic with   
 

  

Psychiatric disorders 41 18.1% 
 

51 10.3% 

Neurological diseases 16 7.0% 
 

16 3.2% 

Cognitive ability 19 8.4% 
 

35 7.0% 

Cortical thickness and surface 
area 10 4.4% 

 
19 3.8% 

Somatic disorders 53 23.3% 
 

58 11.7% 

Height 109 48.0% 
 

256 51.5% 

Count and fraction of pleiotropic genome-wide significant loci and genes linked to psychiatric and 

neurological disorders across the phenotype categories. After identifying genome-wide significant loci, 

physically overlapping loci were merged into grouped loci. Protein-coding genes were identified using 

MAGMA73. Across all phenotypes, 1,988 grouped loci and 7,829 genes were identified. The extended 

MHC-region (chr6: 25–37 Mb) was excluded from these analyses. Supplementary Tables 2-3 present 

the number of overlapping loci and genes for each pair of phenotypes.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.07.21.23292993doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.21.23292993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Table 3 | Summary of tissue and cell type specificity analyses 

Summary of tissue and cell type specific analyses using FUMA72,77, only significant associations after 
Bonferroni correction are described. Tissue analysis was based on GTEx data76, while cell type analysis 
was based on 24 single-cell RNA sequencing data sets from the developing and adult human brain77. 
For full results, see Supplementary Results, Supplementary Figures 4-5, Supplementary Tables 8-9. 

 Tissue specific associations Human brain cell type associations 

Neurological 
diseases 

  

ALZ Upregulated in the spleen, terminal ileum of 
the small intestine and whole blood 

Microglia 

GGE - GABAergic and excitatory neurons 

MS Upregulated in EBV-transformed lymphocytes, 
the spleen, whole blood and the terminal ileum 
of the small intestine 

Microglia and endothelial cells 

PD Upregulated in the substantia nigra - 

Psychiatric 
disorders 

  

ADHD Upregulated in the cerebral cortex GABAergic and excitatory neurons 

AN Downregulated in the putamen and 
hippocampus 

- 

BD - GABAergic and excitatory neurons 

MDD Upregulated in multiple brain tissues 
 

GABAergic neurons and 
oligodendrocyte progenitor cells 

SCZ Upregulated in multiple brain tissues GABAergic and excitatory neurons 

Comparators   

COG Upregulated in multiple brain tissues 
Downregulated in the renal cortex 

GABAergic and excitatory neurons 

CAD - Vascular cells 

CRT-SA - Oligodendrocytes, astrocytes, stem cells, 
and microglia 

CRT-TH Upregulated in the cerebellar hemisphere - 

IBD Upregulated in the spleen and whole blood 
Downregulated in multiple central nervous 
tissues 

Microglia and endothelial cells 

Height Up- and downregulated in multiple tissues 
body-wide 

Vascular cells, endothelial cells, 
astrocytes, oligodendrocytes, and 
microglia 

T2D Downregulated in multiple central nervous 
tissues 

Vascular cells, endothelial cells, 
astrocytes, oligodendrocytes, and 
microglia 
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Methods 

 

GWAS summary statistics. We collated large-scale GWAS summary statistics based on 

available sample sizes and the quality of the phenotyping procedures (Table 1; See 

Supplementary Note for description of each GWAS dataset). All individuals included in the 

analysis were of European ancestry. Informed consent was obtained from all participants in the 

respective GWAS. The Regional Committee for Medical Research Ethics – Southeast Norway 

evaluated the current protocol and found that no additional institutional review board approval 

was necessary as no individual data were used. All GWAS datasets were derived from existing 

GWAS except the two datasets on total cortical surface area and average cortical thickness, 

which were generated from the UK Biobank under accession number 27412, after excluding all 

individuals with neurological and psychiatric disorders (Supplementary Note). For epilepsy, we 

chose to include its two main subtypes, focal epilepsy and genetic generalized epilepsy (GGE), 

rather than including the phenotype ‘all epilepsies combined’, due to the substantial differences 

in the genetic risk architectures underlying these two subtypes62, as emphasized by their 

differences in estimated SNP-heritability (2.9% vs 23.8%, respectively; Table 1). Before 

commencing analysis, all GWAS summary statistics underwent uniform quality control and 

were harmonized and preprocessed into a consistent file structure with a common reference for 

positions, rsIDs and effect alleles using the v1.6.0 cleansumstats pipeline87. 

 

Genome-wide significant loci. For each GWAS, we defined independently associated genomic 

loci using FUMA72. First, we identified independent significant SNPs with a genome-wide 

significant p-value (5x10-8) that were independent from each other at r2<0.60. LD r2 values 

were obtained from the 1000 Genomes Project European-ancestry haplotype reference panel88. 
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The borders of the loci were defined by identifying all candidate SNPs in LD (r2≥0.6) with one 

of the independent significant SNPs in the locus. All loci less than 250kb apart were merged.  

To evaluate locus pleiotropy, we used the procedure previously applied by Watanabe et 

al. (2019)22. After identifying genome-wide significant loci for each phenotype, we grouped 

any physically overlapping loci across all phenotypes. A grouped locus could therefore contain 

more than one independent locus for a given phenotype if several loci were combined (i.e., loci 

A and C could both overlap with locus B but not with each other, but they would be grouped 

into one locus resulting in a continuous genomic region). Each grouped locus was then assigned 

to their specific phenotypes and the following categories: psychiatric disorders, neurological 

diseases, COG, cortical MRI measures (CRT-SA and CRT-TH), somatic diseases and height. 

We then determined the number and fraction of grouped loci shared across categories and 

between all pairs of phenotypes. The extended MHC-region (chr6: 25–37 Mb) was excluded 

from this analysis due to its complex LD structure. 

 

MAGMA gene, gene-property and gene-set analysis. For each GWAS dataset, we identified 

significantly associated protein-coding genes and gene-sets using MAGMA (v1.08)73 as 

implemented in FUMA72 with default settings, using the SNP-wise mean model and the 

European 1000 Genomes reference cohort phase 3 as reference panel. The input SNPs were 

mapped to 20,260 protein-coding genes, excluding the extended MHC-region (chr6: 25–37 

Mb). Gene boundaries were expanded to 35 kb upstream and 10 kb downstream to include 

probable regulatory regions outside the transcribed region89. Genes were considered significant 

if the p-value was less than 0.05 after Bonferroni correction for the number of tested genes 

(0.05/20,260 = 2.47x10-6). MAGMA calculates an association p-value for each gene based on 

the aggregate of all SNPs mapped to each gene, accounting for gene-size, number of SNPs in a 

gene and LD between markers. We then carried out competitive gene-set analysis based on the 
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identified genes in each phenotype. Specifically, we focused on the Gene Ontology gene set 

terms: biological processes (7,350 gene sets), cellular components (1,001 gene sets) and 

molecular functions (1,645 gene sets) obtained from MsigDB version 7.090. Gene sets were 

considered significant if the p-value was <0.05 after Bonferroni correction for the number of 

tested gene sets in each category (0.05/7,350 = 6,80x10-6, 0.05/1,001 = 5,00x10-5, 0.05/1,645 = 

3.04x10-5, respectively). 

Based on the gene-based results above, we carried out tissue specific expression analysis 

in 54 adult tissue types based on RNA sequencing data GTEx v.876 implemented in FUMA72. 

Tissues were considered significant if the P value was less than 0.05 after Bonferroni correction 

for 54 tissues. For cell type specificity analysis, we tested for enrichment in 24 single-cell RNA 

sequencing data sets from the developing and adult human brain available in FUMA using 

MAGMA gene-property analysis77.  The specific datasets were: Allen_Human_LGN_level191, 

Allen_Human_LGN_level291, Allen_Human_MTG_level191, Allen_Human_MTG_level291, 

DroNc_Human_Hippocampus92, GSE104276_Human_Prefrontal_cortex_all_ages93, 

GSE104276_Human_Prefrontal_cortex_per_ages93, GSE67835_Human_Cortex94, 

Linnarsson_GSE101601_Human_Temporal_cortex95, 

Linnarsson_GSE76381_Human_Midbrain96, PsychENCODE_Developmental97 

PsychENCODE_Adult97, and GSE168408_Human_Prefrontal_Cortex datasets from level 1 to 

2, spanning six developmental stages: fetal, neonatal, infancy, childhood, adolescence and 

adult98. In the cell type specific analysis, systematic stepwise conditional analysis was 

performed within datasets to ensure that complex batch effects did not lead to false positives, 

as well as Bonferroni correction for multiple testing of 379 cell types (0.05/379 = 1.30x10-4). 

All statistical tests conducted using MAGMA were one sided. We did not perform 

additional correction for multiple testing across the 28 phenotypes, since the aim of analysis 

was not to determine which of the phenotypes a specific gene, gene-set, tissue or cell type was 
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associated with, but to explore group level patterns of shared associations across the 

phenotypes. 

 

SNP-heritability and global genetic correlations. Using LDSC70, we estimated the SNP-

based heritability in the liability scale for each disorder, using reported population prevalence 

estimates (Table 1), and the SNP-based heritability on the observed scale for the continuous 

traits. LDSC distinguishes confounding from polygenicity by regressing the association 

statistics of SNPs on their LD scores70. All analyses were based on HapMap 3 SNPs only, with 

the MHC region (chr6: 25–34 Mb) excluded. Precalculated LD scores from the European 1000 

Genomes reference cohort were used 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). Additionally, 

we used the bivariate extension of LDSC24 to estimate the global genetic correlations, i.e.  the 

covariance in the SNP-heritability, between all pairs of phenotypes. Adjusting for the number 

of traits tested, we applied both the FDR method of Benjamini-Yekutieli99 given the 

dependence between the tests and Bonferroni-correction. 

 

Genomic SEM. Genomic SEM75 models the multivariate genetic architecture across traits and 

may uncover broad latent factors underlying genetic correlations, reveal clusters of correlated 

traits, and determine how latent factors correlate with each other. Genomic SEM analysis 

typically involves two steps, exploratory factor analysis (EFA) and CFA. While EFA identifies 

the most appropriate number of latent factors, assigning factors to specific traits given 

sufficiently high loadings to those factors, the resulting model is validated using CFA. In the 

present study, we first aimed to conduct a joint genomic SEM model of psychiatric and 

neurological disorders. However, the model did not successfully converge for neurological 

diseases, likely due to insufficient correlation structure across the neurological diseases. 
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Instead, we applied a recently established factor model for psychiatric disorders28, and 

conducted separate CFAs for each individual neurological disease and the group of psychiatric 

disorders and estimated whether any of the neurological diseases significantly correlated with 

the psychiatric factors. We performed Bonferroni correction for the number of tested items 

(N=10*4, testing loadings for 10 neurological diseases onto 4 psychiatric factors). The CFA 

was conducted using all available variants, without partitioning genetic variants into even and 

odd chromosomes, as the analysis only included the CFA stage using a set of predefined 

models. The goodness of fit was evaluated through standard metric (AIC, CFI, SRMR, 

presented in Supplementary Table 5), showing appropriate model fit. 

 

Univariate and bivariate MiXeR analysis. We first applied univariate MiXeR71 analysis to 

each GWAS summary dataset to estimate the proportion of causally associated genetic variants 

from a reference panel (the polygenicity) and the variance of effect size per causal variant (the 

discoverability) using maximum likelihood estimation, and the GWAS sample size necessary 

to discover genetic variants that explain 90% of SNP-heritability of each phenotype. We applied 

a threshold of 90% SNP-heritability to avoid extrapolating model parameters into variants with 

infinitesimally small effects. MiXeR is based on a Gaussian mixture model, assuming that a 

given GWAS summary dataset can be modeled as a “mixture” of pre-defined components with 

causal and non-causal variants, each with its own Gaussian (normal) distribution. MiXeR 

incorporates the effects of LD structure, minor allele frequency, GWAS sample size, genomic 

inflation due to cryptic relatedness, and sample overlap (in the bivariate extension). Before 

analysis, the MHC region was excluded from all GWAS, while the chromosome 19 was in 

addition excluded from ALZ due to the strong effects of the APOE region52 and complicated 

LD that biases the estimates of polygenicity.  
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Informed by the model parameters from univariate MiXeR for each phenotype, MiXeR 

constructs a bivariate mixture model for pairs of phenotypes, in which a mixture of four 

bivariate Gaussian components is modeled: variants influencing one phenotype only, variants 

influencing both phenotypes, and variants that are not associated with either phenotype. 

Bivariate MiXeR estimates the polygenicity of the shared component irrespective of effect 

directions and correlation of effect sizes. Additionally, MiXeR estimates the genetic correlation 

of shared variants, and the global genetic correlation. Model fit is evaluated by calculating the 

difference between the Akaike information criterion (AIC) for best-fitting MiXeR estimates 

and reference models. Positive AIC differences are interpreted as evidence that the best-fitting 

MiXeR estimates are distinguishable from the reference model. For univariate MiXeR, an 

“infinitesimal model” in which all variants are assumed to be ‘causal’ is used as the reference. 

For bivariate MiXeR, AIC differences are calculated by comparing the best-fitting model to 

minimum possible overlap, constrained by rg, and maximum possible overlap, constrained by 

the polygenicity of the least polygenic trait. We provide conditional Q-Q plots and log-

likelihood plots to visualize the stability of the fitness procedure. 

 

Estimating local genetic correlations using LAVA. For all pairs of phenotypes, we applied 

LAVA (v1.3.8) to estimate local genetic correlations across 2,495 semi-independent genetic 

loci of approximately equal size (~1 Mb). LAVA accounts for potential sample overlap using 

LDSC70. After computing local SNP-heritability estimates for each phenotype, we conducted 

pairwise local genetic correlation analysis for all loci with local SNP-heritability significantly 

different from zero. We applied FDR correction to account for multiple comparisons. The 

statistical tests conducted were all two sided.  

 

Code availability 
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Cleansumstats pipeline (https://github.com/BioPsyk/cleansumstats) 

FUMA (https://fuma.ctglab.nl/) 

Genomic SEM (https://github.com/MichelNivard/GenomicSEM) 

LAVA (https://github.com/josefin-werme/LAVA) 

LDSC (https://github.com/bulik/ldsc) 

MAGMA (https://ctg.cncr.nl/software/magma) 

MiXeR (https://github.com/precimed/mixer) 

PLINK (https://www.cog-genomics.org/plink/2.0/) 

Regenie (https://rgcgithub.github.io/regenie) 

 

Data availability 

All data are publicly available or available on request. 
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