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Abstract Our interest in the genetic basis of skin color variation between populations led us to 
seek a Native American population with genetically African admixture but low frequency of Euro-
pean light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago Territory 
of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 
12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean 
populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three 
albino individuals were determined to be homozygous for a causative multi-nucleotide polymor-
phism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 
and single allele effect size was –8 melanin units. Derived allele frequencies of SLC24A5A111T and 
SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of –6 and –4, respectively. Native 
American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 
24–29). The responsible hypopigmenting genetic variants remain to be identified, since none of 
the published polymorphisms predicted in prior literature to affect skin color in Native Americans 
caused detectable hypopigmentation in the Kalinago.

Editor's evaluation
This pigmentation study focuses on a community from Kalinago Territory from the Caribbean islands 
that on average possess high percentages of Indigenous American ancestry, and broadens the effort 
of quantifying the genetic effects on skin pigmentation in humans. This paper describes an analysis 
of the genetic structure of the Kalinago population in the Commonwealth of Dominica, and the 
relationship between ancestry and skin pigmentation in that population. They provide valuable new 
insights into the skin-lightening effect of Native American alleles, which likely have been obscured 
by the effect of European alleles in previous studies of admixed Native American populations. Addi-
tionally, this paper provides an interesting analysis of previously reported albinism alleles, which 
paints a more complex picture of the genetic architecture of pigmentation.
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Introduction
Human skin pigmentation is a polygenic trait that is influenced by health and environment (Barsh, 
2003). Lighter skin is most common in populations adapted to northern latitudes characterized by 
lower UV incidence than equatorial latitudes (Jablonski and Chaplin, 2000). Selection for lighter 
skin, biochemically driven by a solar UV-dependent photoactivation step in the formation of vitamin 
D (Engelsen, 2010; Hanel and Carlberg, 2020; Holick, 1981; Loomis, 1967) is regarded as the 
most likely basis for a convergent evolution of lighter skin color in European and East Asian/Native 
American populations (Lamason et al., 2005; Norton et al., 2007). The hypopigmentation polymor-
phisms of greatest significance in Europeans have two key characteristics: large effect size and near 
fixation. For example, the A111T allele in SLC24A5 (Lamason et al., 2005) explains at least 25% of 
the difference in skin color between people of African vs. European genetic ancestry, and is nearly 
fixed in European populations. No equivalent polymorphism in Native Americans or East Asians has 
been found to date.

Native Americans share common genetic ancestry with East Asians (Derenko et al., 2010; Tamm 
et  al., 2007), diverging before ~15  kya (Gravel et  al., 2013; Moreno-Mayar et  al., 2018; Reich 
et al., 2012), but the extent to which these populations share pigmentation variants remains to be 
determined. The derived alleles of rs2333857 and rs6917661 near OPRM1, and rs12668421 and 

eLife digest The variation in skin colour of modern humans is a product of thousands of years 
of natural selection. All human ancestry can be traced back to African populations, which were dark-
skinned to protect them from the intense UV rays of the sun.

Over time, humans spread to other parts of the world, and people in the northern latitudes with 
lower UV developed lighter skin through natural selection. This was likely driven by a need for vitamin 
D, which requires UV rays for production.

Separate genetic mechanisms were involved in the evolution of lighter skin in each of the two main 
branches of human migration: the European branch (which includes peoples on the Indian subconti-
nent and Europe) and the East Asian branch (which includes East Asia and the Americas).

A variant of the gene SLC24A5 is the primary contributor to lighter skin colour in the European 
branch, but a corresponding variant driving light skin colour evolution in the East Asian branch remains 
to be identified.

One obstacle to finding such variants is the high prevalence of European ancestry in most people 
groups, which makes it difficult to separate the influence of European genes from those of other 
populations. To overcome this issue, Ang et al. studied a population that had a high proportion of 
Native American and African ancestors, but a relatively small proportion of European ancestors, the 
Kalinago people. The Kalinago live on the island of Dominica, one of the last Caribbean islands to be 
colonised by Europeans.

Ang et al. were able to collect hundreds of skin pigmentation measurements and DNA samples 
of the Kalinago, to trace the effect of Native American ancestry on skin colour. Genetic analysis 
confirmed their oral history records of primarily Native American (55%) – one of the highest of any 
Caribbean population studied to date – compared with African (32%) and European (12%) ancestries.

Native American ancestry had the highest effect on pigmentation and reduced it by more than 
20 melanin units, while the European mutations in the genes SLC24A5 and SLC45A2 and an African 
gene variant for albinism only contributed 5, 4 and 8 melanin units, respectively. However, none of 
the so far published gene candidates responsible for skin lightening in Native Americans caused a 
detectable effect. Therefore, the gene responsible for lighter skin in Native Americans/East Asians 
has yet to be identified.

The work of Ang et al. represents an important step in deciphering the genetic basis of lighter skin 
colour in Native Americans or East Asians. A better understanding of the genetics of skin pigmenta-
tion may help to identify why, for example, East Asians are less susceptible to melanoma than Euro-
peans, despite both having a lighter skin colour. It may also further acceptance of how variations in 
human skin tones are the result of human migration, random genetic variation, and natural selection 
for pigmentation in different solar environments.

https://doi.org/10.7554/eLife.77514
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rs11238349 in EGFR are near fixation in some Native American populations, but all also have a high 
frequency in Europeans (Quillen et al., 2012), and none reach genome-wide significance in Adhikari 
et al., 2019. However, the latter found a significant association for the Y182H variant of MSFD12 with 
skin color, but its frequencies were only 0.27 and 0.17 in Native Americans and East Asians, respec-
tively, suggesting that it can explain only a small portion of the difference between Native American 
and/or East Asians and African skin color. Thus, the genetic basis for lighter skin pigmentation specific 
to Native American and East Asian populations, whose African alleles would be expected to be ances-
tral, remains to be found.

The shared genetic ancestry of East Asians and Native Americans suggests the likelihood that 
some light skin color alleles are shared between these populations. This is particularly the case for any 
variants that achieved fixation in their common ancestors. For Native American populations migrating 
from Beringia to the Tropics, selection for darker skin color also appears likely (Jablonski and Chaplin, 
2000; Quillen et al., 2019). This would have increased the frequency of novel dark skin variants, if 
any, and would have decreased the frequency of light skin variants that had not achieved fixation. 
Hypopigmenting alleles are associated with the European admixture characteristic of many current 
Native American populations (Brown et al., 2017; Gravel et al., 2013; Keith et al., 2021; Klimen-
tidis et  al., 2009; Reich et  al., 2012). Since the European hypopigmenting alleles may mask the 
effects of East Asian and Native American alleles, we searched for an admixed Native American popu-
lation with high African, but low European admixture.

Prior to European contact, the Caribbean islands were inhabited by populations who migrated 
from the northern coast of South America (Benn-Torres et al., 2008; Harvey et al., 1969; Hony-
church, 2012; Island Caribs, 2016; Benn Torres et  al., 2015). During the Colonial period, large 
numbers of Africans were introduced into the Caribbean as slave labor (Honychurch, 2012; Benn 
Torres et al., 2013). As a consequence of African and European admixture and high mortality among 
the indigenous populations, Native American genetic ancestry now contributes only a minor portion 
(<15%) of the genetic ancestry of most Caribbean islanders (Auton et al., 2015; Benn Torres et al., 
2015). The islands of Dominica and St. Vincent were the last colonized by Europeans in the late 
1700s (Honychurch, 2012; Honychurch, 1998; Rogoziński, 2000). In 1903, the British granted 15 km2 
(3700 acres) on the eastern coast of Dominica as a reservation for the Kalinago, who were then called 
‘Carib.’ When Dominica gained Independence in 1978, legal rights and a degree of protection from 
assimilation were gained by the inhabitants of the Carib Reserve (Honychurch, 2012) (redesignated 
Kalinago Territory in 2015). Oral history and beliefs among the Kalinago, numbering about 3000 living 
within the Territory, 2021; Figure 1—figure supplement 2 are consistent with the primarily Native 
American and African genetic ancestry, assessed and confirmed genetically here.

Early in our genetic and phenotypic survey of the Kalinago, we noted an albino individual, and 
upon further investigation, we learned of two others residing in the Territory. We set out to identify 
the mutant albinism allele to avoid single albino allele effects that would potentially mask Native 
American hypopigmentation alleles. Oculocutaneous albinism (OCA) is a recessive trait characterized 
by visual system abnormalities and hypopigmentation of skin, hair, and eyes (Gargiulo et al., 2011; 
Grønskov et al., 2007; Grønskov et al., 2014; Hong et al., 2006; Vogel et al., 2008) that is caused 
by mutations in any of a number of autosomal pigmentation genes (Carrasco et al., 2009; Edwards 
et al., 2010; Gao et al., 2017; Grønskov et al., 2013; Kausar et al., 2013; King et al., 2003; Spritz 
et al., 1995; Stevens et al., 1997; Stevens et al., 1995; Vogel et al., 2008; Woolf, 2005; Yi et al., 
2003). The incidence of albinism is ~1:20,000 in populations of European descent, but much higher in 
some populations, including many in sub-Saharan Africa (1:5000)(Greaves, 2014). Here, we report on 
the genetic ancestry of a population sample representing 15% of the Kalinago population of Domi-
nica, the identification of the new albinism allele in that population, and measurement of the hypopig-
menting effects of the responsible albinism allele, the European SLC24A5A111T and SLC45A2L374 alleles. 
Native American genetic ancestry alone caused a measurable effect on pigmentation. In contrast, 
alleles identified in past studies of Native American skin color caused no significant effect on skin 
color.

Results and discussion
Our search for a population admixed for Native American/African ancestries with minimal European 
admixture led us to the ‘Carib’ population in the Commonwealth of Dominica. Observations from 

https://doi.org/10.7554/eLife.77514
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an initial trip to Dominica suggested wide variation in Kalinago skin color. Pursuit of the genetic 
studies described here required learning about oral and written histories, detailed discussion with 
community leadership, IRB approval from Ross University (until Hurricane Maria in 2017, the largest 
medical school in Dominica) and the Department of Health of the Commonwealth of Dominica, and 
relationship-building with three administrations of the Kalinago Council over 15 years.

Population sample
Our DNA and skin color sampling program encompassed 458 individuals, representing 15% of 
the population of the territory and all three known albino individuals. Ages ranged from 6 to 93 
(Appendix 1—table 1 and Figure 1—figure supplement 3). We were able to obtain genealogical 
information for about half of the parents (243 mothers and 194 fathers). Community-defined ancestry 
(described as ‘Black,’ ‘Kalinago,’ or ‘Mixed’) for both parents was obtained for 426 individuals (92% of 
sample), including 108 parents from whom DNA samples were obtained (72 Kalinago, 36 Mixed, and 
0 Black). They described themselves as Black, Kalinago, or Mixed from their perceived understanding 
of their parents or grandparents skin color.

Kalinago genetic ancestry
The earliest western mention of the Kalinago (originally as ‘Caribs’) was in Christopher Columbus’s 
journal dated November 26, 1492 (Honychurch, 2012). Little is known about the detailed cultural 
and genetic similarities and differences between them and other Caribbean pre-contact groups such 
as the Taino. African admixture in the present Kalinago population derived from the African slave 
trade; despite inquiry across community, governmental, and historical sources, we were unable to find 
documentation of specific regions of origin in Africa or well-defined contributions from other groups. 
The population’s linguistics are uninformative, as they speak, in addition to English, the same French-
based Antillean Creole spoken on the neighboring islands of Guadeloupe and Martinique.

To study Kalinago population structure, we analyzed an aggregate of our Kalinago SNP genotype 
data and HGDP data (Li et al., 2008) using ADMIXTURE (Figure 1 and Figure 1—figure supplement 
1) as described in Materials and methods. At K=3, the ADMIXTURE result confirmed the three major 
clusters, corresponding roughly to Africans (black cluster), European/Middle Easterners/Central and 
South Asians (yellow cluster), and East Asians/Native Americans (green cluster). At K=4 and higher, 
the red component that predominates Native Americans separates the Kalinago from the East Asians 
(green cluster). Consistent with prior work (Li et al., 2008), a purple cluster (Oceanians) appears at 
K=5 and a brown cluster (Central and South Asians) appears at K=6; both are minor sources of genetic 
ancestry in our Kalinago sample (average <1%) (Appendix 1—table 2).

At K=4 to K=6, the Kalinago show on average 55% Native American, 32% African, and 11–12% Euro-
pean genetic ancestry. Estimates from a two-stage admixture analysis are similar, as are results from 
local genetic ancestry analysis (see Materials and methods) (Appendix 1—table 3), leading to esti-
mates of 54–56% Native American, 31–33% African, and 11–13% European genetic ancestry. The 
individual with the least admixture has approximately 94% Native American and 6% African genetic 
ancestry. The results of the principal component (PC) analysis (PCA) (Figure 2—figure supplement 1) 
were consistent with ADMIXTURE analysis. The first two PCs suggest that most Kalinago individuals 
show admixture between Native American and African genetic ancestry, with a smaller but highly vari-
able European contribution apparent in the displacement in PC2 (Figure 2—figure supplement 1). A 
smaller number of Kalinago individuals with substantial East Asian genetic ancestry exhibit displace-
ment in PC3 (Figure 2—figure supplement 1).

Our analysis of Kalinago genetic ancestry revealed considerably more Native American and less 
European genetic ancestry than the Caribbean samples of Benn Torres et al., 2013, and the admixed 
populations from the 1000 Genomes Project (1KGP) (Auton et al., 2015; Figure 2). Some Western 
Hemisphere Native Americans reported in Reich et al., 2012, have varying proportions of European 
but very little African admixture (Figure 2B). Overall, the Kalinago have more Native American and 
less European genetic ancestry than any other Caribbean population.

The 55% Native American genetic ancestry calculated from autosomal genotype in the Kalinago 
is greater than the reported 13% in Puerto Rico (Gravel et al., 2013), 10–15% for Tainos across the 
Caribbean (Schroeder et al., 2018), and 8% for Cubans (Marcheco-Teruel et al., 2014). This is also 
considerably higher than the reported 6% Native American genetic ancestry found in Bwa Mawego, a 

https://doi.org/10.7554/eLife.77514
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horticultural population that resides south of the Kalinago Territory (Keith et al., 2021). However, this 
result is lower than the 67% Native American genetic ancestry reported by Crawford et al., 2021, for 
an independently collected Kalinago samples based on the mtDNA haplotype analysis. This difference 
suggests a paternal bias in combined European and/or African admixture. Since our Illumina SNP-chip 

Figure 1. Admixture analysis of Kalinago compared with Human Genome Diversity Project populations. Results are depicted using stacked bar plots, 
with one column per individual. At K=3, the Kalinago, Native Americans, Oceanians, and East Asians fall into the same green cluster. At K=4, the Native 
Americans (red cluster) are separated from the East Asians (green cluster). Figure 1—figure supplement 1 shows the expanded admixture plot for K=6 
with each populations labeled. Figure 1—figure supplement 2 shows the location of Kalinago Territory where fieldwork was performed.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. The source data contains results from Admixture analysis.

Figure supplement 1. Admixture plot of Kalinago compared to Human Genome Diversity Project data from K=3 to K=6.

Figure supplement 2. Map showing the location of Kalinago Territory in the Commonwealth of Dominica.

Figure supplement 3. Age distribution of sampled Kalinago individuals.

https://doi.org/10.7554/eLife.77514
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genotyping does not yield reliable identification of mtDNA haplotypes, we are currently unable to 
compare maternal to autosomal genetic ancestry proportions for our sample. Samples genotyped 
using 105 genetic ancestry informative markers from Jamaica and the Lesser Antilles (Benn Torres 
et al., 2015) yielded an average of 7.7% Native American genetic ancestry (range 5.6%–16.2%), with 
the highest value from a population in Dominica sampled outside the Kalinago reservation. Relevant 
to the potential mapping of Native American light skin color alleles, the Kalinago population has 
among the lowest European genetic ancestry (12%) compared to other reported Caribbean Native 
Americans in St. Kitts (8.2%), Barbados (11.5%), and Puerto Rico (71%) (Benn Torres et al., 2013). 
Contributing to the high percentage of Native American genetic ancestry in the Kalinago is their 
segregation within the 3700 acre Kalinago Territory in Dominica granted by the British in 1903, and 
the Kalinago tradition that women marrying non-Kalinago are required to leave the Territory; non-
Kalinago spouses of Kalinago men are allowed to move to the Territory (KCA, KCC, Personal Commu-
nication with Kalinago Council, 2014). These factors help to explain why samples collected outside the 
Kalinago Territory (Benn Torres et al., 2013) show lower fractional Native American genetic ancestry.

During our fieldwork, it was noted that members of the Kalinago community characterized them-
selves and others in terms of perceived genealogical ancestry as ‘Black,’ ‘Kalinago,’ or ‘Mixed.’ 
Compared to individuals self-identified as ‘Mixed,’ those self-identified as ‘Kalinago’ have on average 
more Native American genetic ancestry (67% vs 51%), less European genetic ancestry (10% vs 14%), 
and less African genetic ancestry (23% vs 34%) (Figure 2—figure supplement 2). Thus, these folk 
categories based on phenotype are reflected in some underlying differences in genetic ancestry.

Figure 2. Comparison of Kalinago genetic ancestry with that of other populations in the Western Hemisphere. Ternary plots of genetic ancestry from 
our work and the literature show estimated proportions of African (AFR), European (EUR), and Native American (NAM) genetic ancestry. (A) Comparison 
of individuals (n=452, omitting 6 individuals with EAS >0.1) genotyped in this study to individuals (n=38) from southern Dominica sampled by Benn 
Torres et al., 2013. (B) Comparison of the Kalinago average genetic ancestry with other Native American populations. Kalinago, this study (n=458); 
Islands (BT) indicates Caribbean islanders reported in Benn Torres et al., 2013, with Dominica labeled; admixed (adm) AFR (1000 Genomes Project 
[1KGP]) and admixed NAM (1KGP) represent admixed populations from Auton et al., 2015, with Caribbean samples PUR (Puerto Rico) and ACB 
(Barbados) labeled; and AMR (Reich) indicates mainland Native American samples reported in Reich et al., 2012. Inset (top left) shows ancestries at 
vertices.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data contains result from PCA analysis for Kalinago versus other Native American populations in the Western Hemisphere.

Figure supplement 1. Principal components (PCs) analysis (PCA) of Kalinago and comparison populations.

Figure supplement 2. Genetic ancestry distribution as function of community-defined ancestry.

https://doi.org/10.7554/eLife.77514
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Kalinago skin color variation
Melanin index unit (MI) calculated from skin reflectance measured at the inner upper arm (see Mate-
rials and methods) was used as a quantitative measure of melanin pigmentation (Ang et al., 2012; 
Diffey et al., 1984). MI determined in this way is commonly used as a measure of constitutive skin 
pigmentation (Choe et al., 2006; Park and Lee, 2005). The MI in the Kalinago ranged from 20.7 to 
79.7 (Figure 4—figure supplement 1), averaging 45.7. The three Kalinago albino individuals sampled 
had the lowest values (20.7, 22.4, and 23.8). Excluding these, the MI ranged between 28.7 and 79.7 
and averaged 45.9. For comparison, the MI averaged 25 and 21 for people of East Asian and Euro-
pean genetic ancestry, respectively, as measured with the same equipment in our laboratory (Ang 
et al., 2012; Tsetskhladze et al., 2012). This range is similar to that of another indigenous population, 
the Senoi of Peninsular Malaysia (MI 24–78; mean = 45.7) (Ang et al., 2012). The Senoi are believed 
to include admixture from Malaysian Negritos whose pigmentation is darker (mean = 55) (Ang et al., 
2012) than that of the average Kalinago. In comparison, the average MI was 53.4 for Africans in 
Cape Verde (Beleza et al., 2012) and 59 for African-Americans (Shriver et al., 2003). Individuals self-
described as ‘Kalinago’ were slightly lighter and had a narrower MI distribution (42.5± 5.6, mean ± SD) 
compared to ‘Mixed’ (45.8± 9.6) (Figure 4—figure supplement 2).

An OCA2 albinism allele in the Kalinago
OCA is a genetically determined condition characterized by nystagmus, reduced visual acuity, foveal 
hypoplasia, and strabismus as well as hypopigmentation of the skin, hair, and eye (Dessinioti et al., 
2009; van Geel et al., 2013). The three sampled albino individuals had pale skin (MI 20.7, 22.4, and 
23.8 vs. 29–80 for non-albino individuals), showed nystagmus, and reported photophobia and high 
susceptibility to sunburn. In contrast to the brown irides and black hair of most Kalinago, including 
their parents, the albino individuals had blonde hair and gray irides with varying amounts of green 
and blue.

To identify the albinism variant in the Kalinago, we first determined that none of the albino indi-
viduals carried any of 28 mutations previously found in African or Native American albino individ-
uals (Carrasco et al., 2009; King et al., 2003; Stevens et al., 1997; Yi et al., 2003), including a 
2.7 kb exon 7 deletion in OCA2 found at high frequency in some African populations. Whole exome 
sequencing of one albino individual and one parent (obligate carrier) revealed polymorphisms homo-
zygous in the albino individuals and heterozygous in the parent, an initial approach that assumes that 
the albino individual was not a compound heterozygote. We identified 12 variant alleles in 7 OCA 
genes (or genomic regions) that met these criteria (summarized in Appendix 1—table 4). None were 
nonsense or splice site variants. Five of the twelve variants were intronic, one was synonymous, one 
was located in 5’UTR, and three were in the 3’UTR (Appendix 1—table 4). Two missense variants were 
found in OCA2: SNP rs1800401 (c.913C>T or p.Arg305Trp in exon 9), R305W, and multi-nucleotide 
polymorphism rs797044784 in exon 8 (c.819_822delCTGGinsGGTC; p.Asn273_Trp274delinsLysVal), 
NW273KV.

Among 458 Kalinago OCA2 genotypes, 26 carried NW273KV and 60 carried R305W (Table 1). 
Only NW273KV homozygotes were albino individual. We know that the allele responsible for albinism 
was NW273KV because neither of the two individuals, homozygous for R305W but not NW273KV, was 
albino individual. In further support of this conclusion is that one individual who was homozygous for 

Table 1. Albinism among NW273KV and R305W genotypes.

Allele/genotype

NW273KV genotype

Homozygous 
ancestral* Heterozygous

Homozygous 
derived Total

R305W genotype

Homozygous ancestral 398 0 0 398

Heterozygous 33 22 0 55

Homozygous derived 1 1 3† 5

Total 432 23 3† 458

*Ancestral = reference allele and derived = alternate allele for both variants.
†Albino phenotype. Notably, none of the other genotypic categories are albino individuals.

https://doi.org/10.7554/eLife.77514
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R305W and homozygous ancestral for NW273 had an MI of 72, among the darkest in the entire popu-
lation. R305W is notably present with frequency >0.10 in some African, South Asian, and European 
populations (Auton et  al., 2015), predicting a Hardy-Weinberg frequency of homozygotes above 
1%. This is far greater than the observed frequency of individuals with albinism and therefore incon-
sistent with the idea that this is not a variant responsible for albinism. The fact that R305W scores 
incorrectly as pathogenic using SIFT, Polyphen 2.0, and PANTHER that R305W (Kamaraj and Purohit, 
2014) suggests a need for refinement of these methods. The universal association of R305W with the 
NW273KV haplotype indicates that the founder haplotype of the NW273KV albinism mutation carried 
the silent R305W variant.

To identify the origin of the albino allele, albino individuals and carriers were analyzed for regions 
exhibiting homozygosity, and identity-by-descent and local genetic ancestry was estimated (see 
Materials and methods). All three albino individuals share a homozygous segment of ~1.7 Mb that 
encompasses several genes in addition to OCA2 (Figure 3). The albino haplotype defined by homo-
zygosity in individuals 2 and 3 extends ~11 Mb; comparison to local genetic ancestry shows that this 
haplotype is clearly of African origin.

The Kalinago albino individuals are the only reported individuals where the albinism was caused by 
homozygosity for the NW273KV allele of OCA2. Two reported albino individuals of African-American/
Dutch descent were compound heterozygotes for the OCA2 mutation, with one allele being the 
NW273KV variant chromosome (Garrison et al., 2004; Lee et al., 1994). Conservation of the NW 
sequence among vertebrates and its inclusion in a potential N-linked glycosylation site (Rinchik 
et al., 1993) that is eliminated by the mutation supports the variant’s pathogenicity. The NW273KV 
frequency in our sample (0.03) translates into a Hardy-Weinberg albinism frequency (p2=0.0009) of ~1 
per 1000, as observed (3 in a population of about 3000). Examination of publicly available data reveals 
three OCA2NW273KV heterozygotes in the 1000 Genome Project, a pair of siblings from Barbados (ACB) 
and one individual from Sierra Leone (MSL). The three 1KGP individuals share a haplotype of ~1.5 Mb, 

Figure 3. Haplotype analysis for three albino individuals. The inner two lines indicate NAM (red) or AFR (dark blue) genetic ancestry; no EUR genetic 
ancestry was found in this genomic region. For this local genetic ancestry analysis, the region shown here consisted of 110 non-overlapping segments 
with 7–346 SNPs each (mean 65). The deduced extent of shared albino haplotype (dotted light blue lines) is indicated on each chromosome. The 
common region of overlap indicated by the minimum homozygous region (determined by albino individual 1) shared by all three albino individuals is 
shown at expanded scale below. Genes in this region are labeled, and the position of the NW273KV polymorphism in OCA2 is indicated by the red 
arrowhead.

https://doi.org/10.7554/eLife.77514
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of which ~1.0 Mb matches the albino haplotype in the Kalinago. The phasing for the OCA2NW273KV 
variant in the public data is inconsistent, with the variant assigned to the wrong chromosome for the 
ACB siblings.

Genetic contributions to Kalinago skin color variation
One motivation for undertaking this work was to characterize genetic contributions to skin pigmen-
tation in a population with primarily Native American and African genetic ancestry, so that we 
could focus on the effect of Native American hypopigmenting alleles without interference from 
European alleles. The Kalinago population described here comprises the only population we are 
aware of that fits this genetic ancestry profile. To control for the effects of the major European 
pigmentation loci, all Kalinago samples were genotyped for SLC24A5A111T and SLC45A2L374F. The 
phenotypic effects of these variants and OCA2NW273KV are shown in Figure 4. Each variant decreases 
melanin pigmentation, with homozygotes being lighter than heterozygotes. The greatest effect is 
seen in the OCA2NW273KV homozygotes (the albino individuals), as previously noted. The frequencies 
of the derived alleles of SLC24A5A111T and SLC45A2L374F in the Kalinago sample are 0.14 and 0.06, 
respectively.

The markedly higher frequency of SLC24A5A111T compared to SLC45A2L374F is not explained solely 
by European admixture, given that most Europeans are nearly fixed for both alleles (Soejima and 
Koda, 2007). This deviation can be explained by the involvement of source populations that carry 
the SLC24A5A111T variant but not SLC45A2L374F. Although some sub-Saharan West African populations 
(the likeliest source of AFR genetic ancestry in the Kalinago) have negligible SLC24A5A111T frequen-
cies, moderate frequencies are found in the Mende of Sierra Leone (MSL, allele frequency = 0.08) 
(Micheletti et al., 2020; Auton et al., 2015), while some West African populations such as Hausa and 
Mandinka who have allele frequencies of 0.11 and 0.15, respectively (Cheung et al., 2000; Rajeevan 
et al., 2012). Such African individuals carrying the SLC24A5A111T allele could potentially cause the 
observed frequencies by founder effect. In addition, the region of chromosome 5 containing SLC45A2 
exhibits low European genetic ancestry (6.5%) that is consistent with low observed SLC45A2L374F 
frequency.

In order to investigate the potential effect of the SLC25A5A111T allele on the albinism phenotype, we 
also compared other pigmentation phenotypes such as the hair and eye colors for all albino individ-
uals and carriers. One of the three Kalinago albino individuals was also heterozygous for SLC24A5A111T, 
but neither skin nor hair color for this individual was lighter than that of the other two albino individ-
uals, who were homozygous for the ancestral allele at SLC24A5A111; this observation is consistent with 
epistasis of OCA2 hypopigmentation over that of SLC24A5A111T. Nine sampled non-albino individuals 
had combinations of hair that was reddish, yellowish, or blonde (n=6), skin with MI <30 (n=3), and 
gray, blue, green, or hazel irides (n=2); among these, six were heterozygous and one homozygous 
for SLC24A5A111T, and three were heterozygous for the albino variant. A precise understanding of the 
phenotypic effects of the combinations of these and other hypopigmenting alleles will require further 
study.

The strong dependence of pigmentation on Native American genetic ancestry is clarified 
by focusing on individuals lacking the hypopigmenting alleles SLC24A5A111T, SLC45A2L374F, and 
OCA2NW273KV (Figure 5). Although positive deviations from the best fit are apparent at both high and 
low Native American genetic ancestry, the trend toward lighter pigmentation as Native American 
genetic ancestry increases is clear. The net difference between African and Native American contribu-
tions to pigmentation appears likely to be bounded by the magnitudes of the slope vs NAM genetic 
ancestry (24 units) and the slope vs AFR genetic ancestry (29 units, not shown). The difference in 
melanin index value is expected to be explained by genetic variants that are highly differentiated 
between African and Native American populations.

To further investigate the contributions of genetic variation to skin color, we performed associa-
tion analyses using an additive model for melanin index, conditioning on sex, genetic ancestry (using 
10 PCs), and genotypes for SLC24A5A111T, SLC45A2L374F, and OCA2NW273KV. Assuming likely epistasis 
of albinism alleles over other hypopigmenting alleles, these analyses omitted the three albino indi-
viduals. Employing a linear regression model, we found that sex and all three genotyped polymor-
phisms were statistically significant (Table  2 and Figure  2—figure supplement 2). However, only 
SLC24A5A111T reaches genome-wide significance. PC1, which strongly correlated with Native American 

https://doi.org/10.7554/eLife.77514
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Figure 4. Skin color distribution of Kalinago samples according to genotype. The ‘triple ancestral’ plot is individuals ancestral for three pigmentation 
loci (SLC24A5111A, SLC45A2374L, and OCA2273NW). In the other plots, heterozygosity or homozygosity is indicated for the variants: OCA2NW273KV; 
SLC24A5A111T; and SLC45A2L374F. Individuals depicted in the second through fourth panels are repeated if they carry variants at more than one locus. M-

Figure 4 continued on next page

https://doi.org/10.7554/eLife.77514
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vs African genetic ancestry, exhibits the lowest p-value. Effect sizes were about –6 units (per allele) for 
SLC24A5A111T, –4 units for SLC45A2L374F, and –8 units for the first OCA2NW273KV allele.

Additional covariates were considered but not included in our standard model. Skin pigmentation 
exhibited a decreasing trend with age, but its contribution was not statistically significant (adjusted 
p-value = 0.08). Estimated effect sizes for significant covariates were little affected by the inclusion of 
age as a covariate (Appendix 1—table 5). Analysis of SNPs that were previously reported as relevant 
to pigmentation are shown in Appendix 2—table 1. The lowest (adjusted) p-value for this collection 

index of the Kalinago ranged from 20.7 to 79.7 (Figure 4—figure supplement 1) and the histogram of skin color based on community-defined ancestry 
are shown in Figure 4—figure supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The source file contain melanin index distribution as function of community-described ancestry.

Source data 2. The source data contains data of melanin indices according to genotype.

Figure supplement 1. Skin color distribution of the Kalinago from Commonwealth of Dominica.

Figure supplement 2. Melanin index distribution as function of community-described ancestry.

Figure 4 continued

Figure 5. Dependence of melanin unit on genetic ancestry for Kalinago. Only individuals who are ancestral for SLC24A5111A, SLC45A2374L, and OCA2273NW 
alleles are shown (n=279). The dotted red line represents the best fit (linear regression). Slope is –24.3 (melanin index unit [MI] = –24.3*NAM+61.9); 
r2=0.2722.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Estimated power for GWAS using Kalinago sample.

Figure supplement 2. Q-Q plots for association analyses to identify novel SNPs that may contribute towards skin pigmentation in the Kalinago 
samples.

https://doi.org/10.7554/eLife.77514
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of variants is about 0.001, considerably larger than the p-values for the variants included as covariates 
in our standard model. Inclusion of the SNP of lowest p-value from each of the five regions containing 
BCN2, TYR, OCA2, MC1R, and OPRM1 only modestly altered effect sizes for the other covariates 
(Appendix 1—table 5).

The effect size for SLC24A5A111T measured here is consistent with previously reported results of 
–5 melanin units calculated from an African-American sample (Lamason et al., 2005; Norton et al., 
2007) and –5.5 from admixed inhabitants of the Cape Verde islands (Beleza et al., 2013). Reported 
effect sizes for continental Africans are both higher and lower, –7.7 in Crawford et al., 2017, and 
–3.6 Martin et al., 2017b, while the estimated effect size in the CANDELA study (GWAS of combined 
admixed populations from Mexico, Brazil, Columbia, Chile, and Peru) (Adhikari et al., 2019) yielded 
an effect size about –3 melanin units.

A significant effect of SLC45A2L374F on skin pigmentation reported for the African-American sample 
by Norton et al., 2007, and in the CANDELA study by Adhikari et al., 2019, but not for the African 
Caribbean sample by Norton et al., 2007. The 4 unit effect size of this allele in the Kalinago reported 
here is similar to the 5 unit effect reported by Norton et al., 2007. Beleza et al., 2013 reported signif-
icance for an SNP in strong linkage disequilibrium with SLC45A2L374F, which was itself not genotyped.

Our estimate that a single OCA2NW273KV allele causes about –8 melanin units of skin lightening is 
the first reported population-based effect size measurement for any albinism allele. Although albi-
nism is generally considered recessive, our population sample offered an opportunity to compare 
the effect size for the first and second alleles quantitatively. We applied the estimated parameters to 
the three albino individuals and found that they were lighter by an average of 10 uni nm, 05W homo-
zygotes, when controlling for OCA2NW273KV status, OCA2R305W had no detectable effect on skin color 
(Appendix 2—table 1).

To identify novel SNPs that may contribute toward skin pigmentation in the Kalinago samples, 
we performed GWAS using linear regression and linear mixed models (LMMs). Estimated power for 
these analyses is shown in Figure 5—figure supplement 1, and Q-Q plots are depicted in Figure 5—
figure supplement 2. The LMM approaches exhibited less statistic inflation than linear regression, 
likely because they better accounted for closely related individuals. Although the lowest p-values 
from the LMM-based methods meet the conventional criterion of 5e-08 for genome-wide significance 
(Appendix 3—table 1), our interpretation is that none of these variants warrant further investigation. 
Low observed minor allele frequencies (<2%) are inconsistent with those expected for variants respon-
sible for pigmentation differences between the African and Native American populations because the 
frequencies of alleles responsible for population differences are expected to be highly differentiated 
between these source populations.

Additional Native American hypopigmenting alleles of significant effect size remain to be iden-
tified. Previously characterized variants do not explain this difference. It is possible that multiple 
hypopigmenting variants of small effect sizes are together required to reach Native American and/or 
East Asian levels of hypopigmentation, individually having insufficient effect to detect in the Kalinago, 
given our power limitations. If this is the case, multiple variants are required to explain the observed 
net difference in pigmentation. Alternatively, if there are variants with large effect sizes, it appears 
likely that they were not genotyped and are poorly tagged by the genotyped SNPs. Additional work 
will be required to find hypopigmentation alleles of significant effect size that are responsible for the 
lighter color of Native Americans.

Table 2. Effect sizes for covariates in linear regression model with 10 principal components.

Covariate Effect size (MI) p-Value

rs1426654 (SLC24A5A111T) –5.8 1.5E-12

rs16891982 (SLC45A2L374F)  –4.4 6.7E-05

Albino allele (OCA2NW273KV)  –7.7 2.2E-05

Sex (female vs male) –2.4 5.0E-04

aPer allele effect size, in melanin units, for A111T and L374F; effect of first allele for albino variant.

https://doi.org/10.7554/eLife.77514
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Materials and methods
Recruitment
Participants from among the Kalinago populations were recruited with the help of nurses from the 
Kalinago Territory in 2014. Recruitment took place throughout the territory’s eight hamlets. Place and 
date of birth, reported genealogical ancestry of parents and grandparents, number of siblings, and 
response to sun exposure (tanning ability, burning susceptibility) were obtained by interview. Hair 
color and texture and eye color (characterized as black, brown, gray, blue, green, hazel, no pigment) 
were noted visually but not measured quantitatively.

Skin reflectometry
Skin reflectance was measured using a Datacolor CHECKPLUS spectrophotometer and converted to 
melanin unit as we have previously described (Ang et al., 2012; Diffey et al., 1984). To minimize the 
confounding effects of sun exposure and body hair, skin color measurements were measured on each 
participant’s inner arm, and the average of triplicate measurements was generated. Before skin color 
measurements were taken, alcohol wipes were used to minimize the effect of dirt and/or oil. In order 
to minimize blanching due to occlusion of blood from the region being measured, care was taken not 
to apply only sufficient pressure to the skin to prevent ambient light from entering the scanned area 
(Fullerton et al., 1996).

DNA collection
Saliva samples were collected using the Oragene Saliva kit, and DNA was extracted using the prepIT.
L2P kit, both from DNA Genotek (Ottawa, Canada). DNA integrity was checked by agarose gel 
electrophoresis and quantitated using a NanoDrop spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). Further quantification was done using Qubit Fluorometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) as needed, following the manufacturer’s instructions.

Genotyping
OCA variants previously identified in African and Native Americans (Carrasco et  al., 2009; King 
et al., 2003; Stevens et al., 1997; Yi et al., 2003) were amplified by PCR in all albino individuals as 
well as control samples using published conditions. Selected alleles of SLC24A5, SLC45A2, OCA2, 
and MFSD12 were amplified in all sampled individuals as described in Appendix 1—table 6. Ampl-
icons generated by 30 cycles of PCR using an Eppendorf thermocycler were sequenced (GeneWiz, 
South Plainfield, NJ, USA) and the chromatograms viewed using Geneious software.

Illumina SNP genotyping using the Infinium Omni2.5–8 BeadChip was performed for all the individ-
uals sampled. This was performed in three cohorts, using slightly different versions of the array, and 
the results combined. Due to ascertainment differences between the cohorts, analysis is presented 
here only for the combined sample. After quality control to eliminate duplicates and monomorphic 
variants, and to remove variants and individuals with genotype failure rates >0.05, 358 Kalinago indi-
viduals and 1,638,140 unique autosomal SNPs remained.

Whole exome sequencing of albino individual and obligate carrier
In order to identify the causative variant for albinism in the Kalinago, two samples (one albino indi-
vidual and one parent) were selected for whole exome sequencing. Following shearing of input DNA 
(1 µg) using a Covaris E220 Focused-ultrasonicator (Woburn, MA, USA), exome enrichment and 
library preparation was done using the Agilent SureSelect V5+UTR kit (Santa Clara, CA, USA). The 
samples were sequenced at 50× coverage using a HiSeq 2500 sequencer (Illumina, San Diego, CA, 
USA).

The fastq files were aligned back to Human Reference Genome GRCh37 (HG19) using BWA (Li and 
Durbin, 2009) and bowtie (Langmead et al., 2009). Candidate SNP polymorphisms were identified 
using GATK’s UnifiedGenotyper (McKenna et al., 2010), while the IGV browser was used to examine 
the exons of interest for indels (Thorvaldsdóttir et al., 2013). Variants with low sequence depth (<10) 
in either sample were excluded from further consideration.

https://doi.org/10.7554/eLife.77514
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Computational analysis
Basic statistics, merges with other datasets, and association analysis by linear regression were 
performed using plink 1.9 (Chang et  al., 2015; Purcell et  al., 2007). Phasing and imputation, as 
well as analysis of regions of homozygosity by descent and identity by descent were performed with 
Beagle 4.1 (Browning and Browning, 2013; Browning and Browning, 2007), using 1KGP phased 
data (Auton et al., 2015) as reference.

The genotyped individuals were randomly partitioned into nine subsets of 50 or 51 individuals 
(n=50 subsets) in which no pair exhibited greater than second-order relationship (PI_HAT >0.25 using 
the --genome command in plink). Using the same criteria, a maximal subset of 184 individuals was 
also generated (n=184 subset).

PCA was performed using the smartpca program (version 13050) in the eigensoft package (Price 
et al., 2006). For comparison to HGDP populations, Kalinago samples were projected onto PCs calcu-
lated for the HGDP samples alone. For use as covariates in association analyses, the n=184 subset was 
used to generate the PCA, and the remaining individuals were projected onto the same axes.

Admixture analysis was performed using the ADMIXTURE program (Alexander et al., 2009; Zhou 
et al., 2011). Each of the nine n=50 Kalinago subsets was merged with the N=940 subset of HGDP 
data (Li et al., 2008; Rosenberg, 2006) for analysis (349,923 SNPs) and the outputs combined, aver-
aging genetic ancestry proportions for the common HGDP individuals across runs. These results were 
used in figures. Separately, two-stage admixture analysis started with the averaged estimated allele 
frequencies and then employed the projection (--P) matrix outputs to estimate individual genetic 
ancestry for the combined Kalinago sample. Individual ancestries estimated using both methods, as 
well as those estimated from a thinned subset of 50,074 SNPs were in good agreement, consistent 
with standard errors estimated by bootstrap analysis, although sample-wide averages differed slightly. 
Cross-validation is enabled by adding the --cv to the ADMIXTURE command.

For association analyses we removed the three-albino individuals and excluded SNPs with minor 
allele frequency <0.01. For conventional association analysis by linear regression, the standard addi-
tive genetic model included sex, the first 10 PCs, and genotypes of rs1426654 (SLC24A5), rs16891982 
(SLC45A2), and the albino variant rs797044784 (OCA2) as covariates (Supplementary file 4). LMM 
analysis was performed using the mlma module of GCTA (Yang et al., 2011) with the --mlma-no-
preadj-covar flag to suppress calculation using residuals. Two genetic relatedness matrices (GRM) 
were used: a standard GRM calculated using GCTA’s --make-grm command and an ancestry-aware 
GRM calculated using relationships deduced by REAP (Thornton et al., 2012) that utilized the output 
of the two-stage admixture analysis. For linear regression only, p-values were adjusted for statistic 
inflation by genomic control using the lambda calculated from the median chi-square statistic.

Statistical power was estimated by simulation, using a subset of genotyped SNPs. Starting with 
the 349,923 SNPs used for genetic ancestry analysis, the averaged P matrix from ADMIXTURE anal-
ysis at K=4 provided an initial estimate of allele frequencies in AFR and NAM ancestral populations; 
10,233 SNPs exhibited differentiation of 0.7 or greater between these populations, a value chosen 
as a reasonable minimum population differentiation for causative variants. After removal of SNPs for 
which predicted Kalinago sample frequencies deviated by more than 0.1 from observed values and 
those with adjusted p<0.1, 8766 SNPs remained. Phenotypes were simulated by randomly selecting 
one of these SNPs and adding a defined effect size to the observed phenotype. Simulated datasets 
were then analyzed with plink using the standard genetic model.

Statistical analysis of pigmentary effect of albinism involved fitting parameters to an additive model 
for the sample containing carriers but lacking albino individuals, applying the same model to the 
albino individuals, and comparing residuals for the albinos and the other individuals.

Local genetic ancestry analysis of the region containing the albinism allele was performed using 
the PopPhased version of rfmix (v1.5.4) with the default window size of 0.2 cM (Maples et al., 2013). 
A subset of 1KGP data served as reference haplotypes for European, African, and East Asian popula-
tions, and the Native American genetic ancestry segments of the admixed samples as determined by 
Martin et al., 2017a, were combined to generate synthetic Native American reference haplotypes. 
For estimates of individual genetic ancestry, Viterbi outputs for each window were averaged across 
all autosomes.
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Appendix 1

Supplementary Tables

Appendix 1—table 1. Sample Demographics.

Category Entire sample (N=461)

Sex

 � male 244

 � female 217

Age

 � range 6–93

 � mean (SD) 39 (21.5)

 � median 39

Paternal ancestry

 � reported* 432

 � named 193

 � sampled† 49

Maternal ancestry

 � reported* 437

 � named 244

 � sampled† 128

*community-described ancestry collected.
†values from reported genealogy; 75 fathers and 146 
mothers as determined by genotyping.

Appendix 1—table 2. Summary of Kalinago ancestry from admixture analysis (n=458).
NAM = Native American, AFR = African, EUR = European, CSA = Central & South Asian, EAS = East 
Asian, OCE = Oceanian. At K=3, NAM, EAS, and OCE are not distinguishable.

K-value AFR NAM EAS OCE EUR CSA

3 0.304 0.552 0.144

4 0.318 0.549 0.011 0.122

5 0.318 0.548 0.011 0.002 0.121

6 0.318 0.548 0.012 0.002 0.110 0.010

Appendix 1—table 3. Ancestry proportions estimated using different approaches.

estimation approach AMR AFR EUR EAS

Admixture (subsets, K=4) 0.549 0.318 0.122 0.011

Admixture (two stage, K=4) 0.541 0.316 0.126 0.016

rfmix (4 clusters) 0.553 0.313 0.125 0.009

rfmix (3 clusters) 0.557 0.326 0.117 ---

Appendix 1—table 4. Summary by locus of albinism candidates identified through exome 
sequencing.
Candidates are homozygous derived in one albino and heterozygous in one obligate carrier. No 
nonsense, frameshift, or splice variants was detected. Our initial attempt to identify the albinism 
variant in the Kalinago involved targeted genotyping of the albino individuals for 28 mutations 
previously observed (Honychurch, 2012; Honychurch, 1998; Li et al., 2008; Loomis, 1967) in 

https://doi.org/10.7554/eLife.77514
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African or Native American albinos; these included the 2.7 kb exon 7 deletion in OCA2 found at 
high frequency in some African populations. No mutation was detected using this approach.

A.

OCA gene Chromosome Variants Missense

OCA1 (TYR) 11 0

OCA2 15 5 2

OCA3 (TYRP1) 9 0

OCA4 (SLC45A2) 5 0

OCA5 4 6 0

OCA6 (SLC24A5) 15 0

OCA7 (LRMDA) 10 1 0

B. Characteristics of individual candidates identified through exome sequencing

Chr rsID Ref Alt f(AFR)* Gene Location/ Effect

4 rs3733437 T C 0.126 EMCN intron

4 rs6826912 T G 0.327 PPP3CA 3'UTR

4 rs463373 T C 0.986 SLC39A8 3'UTR

4 rs439757 C A 0.986 SLC39A8 3'UTR

4 rs223495 A G 0.399 MANBA intron

4 rs3733632 A G 0.819 TACR3 5'UTR

10 rs7911113 A G 0.476 LRMDA intron

15 rs1800419 A G 0.629 OCA2 synonymous

15 rs1800401 G A 0.126 OCA2 R305W

15 rs797044784† CCAG GACC 0.002 OCA2 NW273KV

15 rs73375883 G A 0.203 OCA2 intron

15 rs972334 G A 0.217 OCA2 intron

*Overall frequency for non-reference allele in seven 1KGP African populations.
†1KGP describes this variant as four consecutive SNPs rs549973474, rs569395077, rs538385900 and rs558126113.

Appendix 1—table 5 Continued on next page

Appendix 1—table 5. Effect sizes for covariates in linear regression model with 10 Principal Components.
Effect sizes are per allele for genomic variants (first allele only for albino variant). PC1 variance for included individuals (n=452) is 
0.0045. P values adjusted using genomic control (applied to GWAS on the full variant set) are omitted if raw P value is above 0.05.

variable Gene standard BETA P_raw Q (-log P) alt1 BETA P_raw Q Beta-ratio-std

rs7118677 GRM5/Tyr test -2.419 0.0001392 3.86 <omitted>

rs1800404 OCA2 test -1.497 0.001446 2.84 <omitted>

rs885479 MC1R test -1.31 0.008565 2.07 <omitted>

rs6917661 OPRM1 test -1.084 0.0117 1.93 <omitted>

rs2153271 BNC2 test -2.27 0.0002337 3.63 <omitted>

NW273KV OCA2 covariate -7.744 9.00E-07 6.05 covariate -7.613 1.28E-06 5.89 0.98

A111T SLC24A5 covariate -5.757 2.45E-16 15.61 covariate -5.695 4.17E-16 15.38 0.99

L374F SLC45A2 covariate -4.415 3.90E-06 5.41 covariate -4.392 4.06E-06 5.39 0.99

PC1 covariate -62.14 5.73E-32 31.24 covariate -59.46 3.58E-28 27.45 0.96

PC2 covariate -0.0571 0.9904 0.00 covariate 0.7866 0.869

https://doi.org/10.7554/eLife.77514
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variable Gene standard BETA P_raw Q (-log P) alt1 BETA P_raw Q Beta-ratio-std

PC3 covariate 7.231 0.1208 0.92 covariate 7.891 0.09021

PC4 covariate -2.677 0.6025 0.22 covariate -2.242 0.6618

PC5 covariate -6.993 0.1447 0.84 covariate -6.714 0.1602

PC6 covariate 1.642 0.7392 0.13 covariate 1.309 0.79

PC7 covariate 7.277 0.1385 0.86 covariate 6.716 0.1707

PC8 covariate 3.267 0.5061 0.30 covariate 2.667 0.5867

PC9 covariate -17.27 0.001093 2.96 covariate -16.19 0.002222

PC10 covariate 8.599 0.116 0.94 covariate 8.423 0.1224

SEX covariate 2.547 5.49E-05 4.26 covariate 2.515 6.45E-05 4.19 0.99

AGE <omitted> covariate -0.02985 0.04596

This table compares three versions of analysis (linear regression only).
P values reported here (and Q = – log P) are not corrected for statistic inflation.
The last column for each non-standard case shows ratio of the effect size to that for the standard model, omitting PCs other than.
alt1 model adds age to standard analysis.
alt2 model adds five additional SNPs to standard analysis.

Appendix 1—table 5 Continued

Appendix 1—table 6. Amplification conditions used for genotyping Kalinago samples for the selected alleles.

Gene & Variant Primer Sequence
PCR Annealing 
Temperature (°C)

SLC24A5A111T rs1426654 Fwd- ​CTCA​​CCTA​​CAAG​​CCCT​​CTGC​ Rev- ​AATT​​GCAG​​ATCC​​AAGG​​ATGG​ 55

SLC45A2L374F rs16891982 Fwd- ​CCTG​​CTGG​​GACT​​CATC​​CATC​ Rev- ​AGCA​​GAGT​​GCAT​​GAGA​​AGGG​ 55

OCA2NW273KV rs797044784 Fwd- ​AGAG​​TCCC​​AGAT​​GGTG​​TCTC​A Rev- ​AGGT​​CAGA​​CTCC​​TTTA​​AACG​ 53

OCA2R305W rs1800401 Fwd- ​AGAG​​GGAG​​GTCC​​CCTA​​ACTG​ Rev- ​ATCT​​CAAG​​CCTC​​CCTG​​ACTG​ 53

MFSD12Y182H rs2240751 Fwd- ​CCCA​​GGTG​​GAAT​​AGCA​​GTGA​G Rev- ​AGTG​​GTTG​​GAAT​​CACC​​TGTC​A 61

https://doi.org/10.7554/eLife.77514
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