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Key Points
c Two genetic variants in the DISP1-TLR5 gene locus were associated with risk of AKI.
c DISP1 and TLR5 were differentially regulated in kidney biopsy tissue from patients with AKI compared with no AKI.

Abstract
BackgroundAlthough common genetic risks for CKD are well established, genetic factors influencing risk for AKI
in hospitalized patients are poorly understood.

Methods We conducted a genome-wide association study in 1369 participants in the Assessment, Serial Evaluation,
and Subsequent Sequelae of AKI Study; a multiethnic population of hospitalized participants with and without AKI
matched on demographics, comorbidities, and kidney function before hospitalization. We then completed functional
annotation of top-performing variants for AKI using single-cell RNA sequencing data from kidney biopsies in 12
patients with AKI and 18 healthy living donors from the Kidney Precision Medicine Project.

ResultsNo genome-wide significant associations with AKI risk were found in Assessment, Serial Evaluation, and
Subsequent Sequelae of AKI (P, 531028). The top two variants with the strongest association with AKI mapped
to the dispatched resistance-nodulation-division (RND) transporter family member 1 (DISP1) gene and toll-like receptor 5
(TLR5) gene locus, rs17538288 (odds ratio, 1.55; 95% confidence interval, 1.32 to 182; P5 9.4731028) and rs7546189
(odds ratio, 1.53; 95% confidence interval, 1.30 to 1.81; P5 4.6031027). In comparisonwith kidney tissue from healthy
living donors, kidney biopsies in patientswithAKI showeddifferentialDISP1 expression in proximal tubular epithelial
cells (adjusted P5 3.931022) and thick ascending limb of the loop of Henle (adjusted P5 8.731023) and differential
TLR5 gene expression in thick ascending limb of the loop of Henle (adjusted P 5 4.9310230).

ConclusionsAKI is a heterogeneous clinical syndromewithvariousunderlying risk factors, etiologies, andpathophysiology
that may limit the identification of genetic variants. Although no variants reached genome-wide significance, we report two
variants in the intergenic region between DISP1 and TLR5, suggesting this region as a novel risk for AKI susceptibility.
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Introduction
AKI affects approximately 20% of hospitalized patients,1

and 40% of patients admitted to the intensive care unit2 and
contributes significantly to poor long-term outcomes.3–5

Despite this public health effect, no effective pharmacother-
apy exists for AKI.6 An approach identifying genetic risk
factors for AKI could enhance efforts to develop novel
preventive and therapeutic strategies. A genetic predispo-
sition for AKI has been suggested by previous candidate
gene studies and two prior genome-wide association studies
(GWAS).7,8 However, limitations in power due to sample
size and analyses completed in predominantly European
ancestry (EA) populations may have restricted identification
of genetic variants for the development of AKI.9,10 Another
limitation of conducting genetic association studies for AKI
in hospitalized cohorts is the issue of competing risk.11

Genetic cohorts of hospitalized patients, particularly criti-
cally ill patients, can experience in-hospital mortality of
20%–60%8,12 which could prevent the occurrence of organ
failure outcomes, such as the development of AKI, that re-
quire some period of observation to ascertain. A final limi-
tation is the difficulties in obtaining an outpatient baseline
serum creatinine for accurate diagnosis of AKI.13,14 The Kid-
ney Disease Improving Global Outcomes (KDIGO) consen-
sus group defines AKI as an increase in serum creatinine of
$0.3 mg/dl from the baseline within a 48-hour period or an
increase in serum creatinine of$50% from the baselinewithin
7 days.15 This definition relies on an adequate baseline or
outpatient measure of kidney function before hospitalization,
which is often lacking in hospitalized populations.
To account for issues of timing, severity of AKI, and

competing risks, we prospectively enrolled a multiethnic
population for genotyping in the Assessment, Serial Eval-
uation, and Subsequent Sequelae of AKI (ASSESS-AKI)
Study.16–18 All ASSESS-AKI participants had a baseline
outpatient serum creatinine before hospitalization, and
AKI cases were matched to non-AKI controls on the basis
of baseline demographics and comorbidities. In addition, all
participants enrolled in ASSESS-AKI had to survive the
index hospitalization. Thus, ASSESS-AKI improves the pre-
cision in the AKI phenotype and minimizes the competing
risk of early death making it a unique cohort to study
genetic risk factors for the development of AKI. Given
that multiethnic cohorts with genomic data similar to
ASSESS-AKI currently do not exist we sought other ways
to functionally validate our findings. We identified the pre-
cise cell types that express candidate genes associated with
AKI in ASSESS-AKI and the degree to which these genes
were differentially expressed in AKI using a single-cell
Ribonucleic acid sequencing (RNAseq) dataset from AKI
biopsy tissue obtained through the Kidney Precision Med-
icine Project (KPMP).19 Some of the results of these studies
have been previously reported in abstract form.20

Methods
Study Populations
We performed a GWAS of AKI in 1369 adults in ASSESS-

AKI who consented to genetic analyses and for whom
genotyping passed quality measures. The full ASSESS-
AKI cohort included 1538 hospitalized adults who did or
did not experience an episode of AKI and survived to

complete a study visit 90 days after discharge.16,21 Adults
with AKI were matched to hospitalized adults without AKI
on the basis of site, preadmission CKD status, age, prior
cardiovascular disease, diabetes mellitus, and preadmission
eGFR using the Chronic Kidney Disease Epidemiology Col-
laboration equation. This cohort is racially/ethnically di-
verse, with representation from non-Hispanic White, His-
panic/Latino, East Asian, and African American race/
ethnicity groups. All study procedures were approved by
the local Institutional Review Boards.

AKI Definition
In ASSESS-AKI, AKI cases were defined using modified

KDIGO criteria on the basis of an increase of $50% or
$0.3 mg/dl in serum creatinine above a baseline serum
creatinine value obtained at an outpatient, nonemergency
department measurement between 7 and 365 days before
the index admission.21 Urine output was not used to define
AKI.

Genotyping and Imputation
In ASSESS-AKI, genotyping was performed in one batch,

using the Illumina Multiethnic Global Array platform. Sam-
ples with a call rate$97%were included in the analyses. No
participants were removed for genotyping quality. Two
participants were removed for discordance between genetic
sex and self-reported sex. Another participant from a pair of
participants identified with cryptic relatedness was re-
moved. Genome-wide variant imputation was conducted
with EAGLE v2.322 phasing on the Michigan Imputation
Server23 using the Haplotype Reference Consortium r1.1
2016.24 We included genetic variants or single-nucleotide
polymorphisms (variants) with an imputation quality
r2 .0.3, Hardy–Weinberg Equilibrium P . 1026 in the
EA participants, and a minor allele frequency .1% for a
final variant count of 8,669,569.
Two variants with the strongest associations were then

selected for direct genotyping using RT-PCR methods. Di-
rect genotyping of rs17538288 and rs7546189was performed
with TaqMan assays using the QuantStudio 7 Real-time
PCR System (Thermo Fisher). Lymphoblastoid cell lines
derived from participants in the 1000 Genomes Project were
used as controls. We achieved a genotype call rate of 98.7%
(1471/1490) for rs17538288 and 100% (1456/1456) for
rs7546189, with complete agreement between duplicates,
and expected genotypes for the 1000 genomes samples. The
results did not deviate significantly from Hardy–Weinberg
Equilibrium.

Statistical Analysis
Patient demographic variables are reported as either

mean and standard deviation or median and quartiles.
The primary end point for our GWAS was the development
of AKI. Odds ratios (ORs) are reported with 95% confidence
intervals (CIs). We tested in logistic regression models for
AKI using an additive genetic model with the imputed
variants while conditioning on the following covariates:
participant’s age, sex, diabetes, hypertension, study site
enrollment, and ten principal components (PCs) of ancestry.
In a sensitivity analysis, we tested whether the top variants
were associated with severity of kidney injury modeling
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AKI status as an ordinal variable (05no AKI, 15KDIGO
Stage 1 AKI, 25KDIGO Stage 2, and 35KDIGO Stage 3).
Additional post hoc regressions were performed with
R statistical software to evaluate the extent to which asso-
ciations between variants and AKI at a particular locus were
independent. We also performed compound heterozygosity
analysis.25 In the post hoc tests, the RT-PCR genotype results
of the two most associated variants were used to improve
genotype accuracy over the imputation-based genotype
GWAS of AKI. We additionally rephased these directly
genotyped variants using EAGLE (v2.4.1).23 GWAS associ-
ation tests were completed using PLINK 1.90.26 We per-
formed both an all ancestry GWAS and an analysis limited
to participants of EA. Ten PCs of ancestry were generated
with the SNPRelate R package v3.7 at an LD pruning
threshold of 0.3.27 These PCs were adjusted to control for
population stratification. EA was identified on visual in-
spection of the plotted clusters and selection of the Euro-
peans in the region PC1 ,0 and PC2 ,0.012.

In Silico Analysis
We sought evidence for differential expression of dis-

patched RND transporter family member 1 (DISP1) and toll-
like receptor 5 (TLR5) using single-cell RNAseq data from the
KPMP.28 Single-cell RNAseq was performed in kidney bi-
opsy tissue from 12 patients with AKI and living donor
biopsy tissue from 18 healthy donors. Living donor biopsies
were obtained before perfusion and before placement in the
recipient. The characteristics of the living donor cohort have
been described previously.29 Methods for tissue processing
and RNAseq analyses have been previously published.30

We comparedDISP1 and TLR5 expression betweenAKI and
no AKI biopsy tissue on the basis of a Bonferroni-corrected
P value adjusted for all the features in the analysis. We also
tested whether the variants identified in the intergenic re-
gion between DISP1 and TLR5were expression quantitative
trait loci (eQTL) in the genotype-tissue Expression (GTEx)
Portal.31 In GTEx, we queried data from 73 participants for

whom the results from kidney tissue existed. We also que-
ried the NephQTL database, which includes 187 human
kidney samples from patients with nephrotic syndrome in
the Nephrotic Syndrome Study Network cohort.32 We
looked for overlap between the variants with the strongest
associations and epigenetic regulatory annotations in
the University of California Santa Cruz (UCSC) Genome
Browser.33

Results
Characteristics of Patient Populations
Figure 1 presents the selection of the analytic cohort. We

identified 637 cases and 732 controls from the ASSESS-AKI
population that consented to genome-wide genotyping.
Table 1 summarizes the characteristics of the AKI and
non-AKI participants. The participants with AKI had higher
rates of inpatient incident dialysis (3.6% versus 0%) and
lower eGFR at 3 months (66.7 versus 73.9 ml/min per
1.73 m2). Principal Components Analysis (PCA) analysis
identified 500 cases and 612 controls as EA and 137 cases
and 120 controls who did not cluster with EA participants.
See Supplemental Figure 1 for a plot of the PCA and self-
reported ancestry.

GWAS Analysis in ASSESS-AKI
Association testing revealed no variants that satis-

fied the Bonferroni-corrected genome-wide threshold of
P, 531028. The lambda genomic inflation factor on the basis
of a median chi-square was estimated at approximately 1.01
in the all ancestry and the EA-stratified analyses, indicating
negligible variation in population structure between cases
and controls. The quantile–quantile plot showed overall
adherence to expected P values (Supplemental Figure 2).
Association testing demonstrated 45 variants at nine loci for
AKI with P , 531026 in the full cohort with all ancestries
(Figure 2A for Manhattan Plot and Supplemental Excel File 1).
Our P value threshold for suggestive association was

Figure 1. Patient flow.One thousand three hundred and sixty-nine participants were included in ASSESS-AKI genetic cohort with 637 AKI cases
and 732 non-AKI controls. ASSESS-AKI, Assessment, Serial Evaluation, and Subsequent Sequelae of AKI.
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selected based on prior research that a threshold in this
range might allow discovery of disease causing variants in
smaller sample sizes, while limiting the number of false
positive results.34,35 Representative variants from each loci
were selected based on lowest P value and independence
of linkage disequilibrium (LD) (r2,0.3). Of note, there were
two variants selected in the intergenic region between
DISP1 and TLR5 genes that showed strong association
with AKI and low LD (r250.24 and D950.68 in all ancestry
and r250.22 and D950.59 in EA). Of the nine top variants at
nine different loci, five of the variants were associated with
an increased risk of AKI, while four of the nine variants
were associated with a decreased risk (Table 2). All nine of
the variants were also associated with the severity of AKI
(Supplemental Table 1). We also evaluated the association
of the top two variants with Stage 1 AKI to no AKI and
severe AKI (Stages 2 and 3) compared with no AKI. We
found that both the top two variants were nominally
associated with severity of AKI (Supplemental Table 2).
The variant demonstrating the strongest association with

AKIwas rs17538288which is a noncoding intergenic variant
between DISP1 and TLR5 genes. The minor allele of this

variant is associated with an increased risk of AKI (OR, 1.54;
95% CI, 1.30 to 1.81; P 5 1.4731027). The next strongest
association was observed with rs7546189, which is also in
the intergenic region between DISP1 and TLR5 and is 33
kilobases from rs17538288. Variant rs7546189 is associated
with an increased risk of AKI (OR, 1.54; 95% CI, 1.3 to 1.82;
P5 4.8531027). When we restricted participants to EA only
(500 cases and 612 controls), rs17538288 (OR, 1.50; 95% CI,
1.25 to 1.79; P 5 8.4831026) and rs7546189 (OR, 1.62; 95%
CI, 1.35 to 1.96; P 5 3.3931027) remained strongly associ-
ated with AKI. In the non-EA participants (137 cases, 120
controls), rs17538288 remained nominally significant (OR,
2.06; 95% CI, 1.34 to 3.22; P5 0.0012) and rs7546189 did not
(OR, 1.29; 95% CI, 0.81 to 1.87; P 5 0.33).

DISP1-TLR5 Variants Direct Genotyping Concordance with
Imputation
Both top variants were imputed on theMultiethnic Global

Array chip, and we directly genotyped rs17538288 and
rs7546189 via Taqman-based RT-PCR to validate the impu-
tation results. Direct genotypes of rs17538288 were highly
concordant with the imputed results (1314/1353; approxi-
mately 97.12% concordance). Direct genotypes of rs7546189
were also highly concordant with the imputed genotypes
(1289/1334; approximately 96.62% concordance). We upda-
ted the discordant imputed genotypes with the RT-PCR
results for post hoc analyses. The resulting association sta-
tistics improved slightly for rs17538288 (OR, 1.55; 95% CI,
1.32 to 1.82; P 5 9.4731028) and remained similar for
rs7546189 (OR, 1.53; 95% CI, 1.30 to 1.81; P 5 4.6031027).

Compound Heterozygosity and Variant Association
Independence Analysis for Haplotypes Near the
DISP1-TLR5 Genes
To identify the allele burden association of these two

variants (rs17538288 and rs7546189), phased haplotype
analysis showed that all four possible two-variant allele
haplotype combinations are commonly present (Supple-
mental Tables 3 and 4). Owing to this, we tested whether
the combination of these two variants in a compound
heterozygosity association analysis strengthens estimates
for AKI. Considering the directly genotyped data, we
found that logistic regression tests modeling the com-
bined burden of minor alleles for each variant showed
stronger associations for AKI (P value 5 1.7731029) than
each variant independently (Table 3). In addition, testing
the residuals of one variant’s association with AKI with
the other variant led both variants to remain significant (P
values 5 0.001 and 0.0002) (Supplemental Figure 3 and
Supplemental Table 5). We also evaluated the association
of these two variants with the risk of AKI stratified by
whether patients had surgery as their primary risk factor
for AKI. We found that both variants maintained nominal
significance for the outcome of AKI stratified by surgery
(Supplemental Table 6).

Functional Annotation of Top-Performing Variants from
ASSESS
Demographics and kidney function for the cohort of

healthy living donor (n518) and AKI (n512) participants
can be found in the supplement (Supplemental Table 7).

Table 1. Patient characteristics in Assessment, Serial
Evaluation, and Subsequent Sequelae of AKI cohort

Characteristics AKI
(n5637)

Non-AKI
(n5732)

Center, n (%)
Vanderbilt University 173 (27) 199 (27)
Kaiser permanente, California 133 (21) 181 (25)
Yale 133 (21) 139 (19)
University of Washington,

Seattle
198 (31) 213 (29)

Female, n (%) 209 (33) 308 (42)
Age, yr, mean (SD) 68.5 (13.1) 70.0 (13.2)
Race, n (%)
White 512 (80) 619 (84)
Black 87 (14) 71 (10)
Other 38 (6) 42 (6)

Comorbidities, n (%)
Hypertension 499 (78) 501 (68)
CKD 245 (39) 275 (38)
Diabetes 301 (49) 228 (33)

AKI Risk Factor, n (%)
Major surgical procedure 255 (40) 380 (52)
Acute heart failure 52 (8.2) 14 (1.9)
Acute myocardial infarction 26 (4.1) 19 (2.6)
Sepsis 107 (17) 26 (4)

Treated in ICU during index
admission, n (%)

466 (73) 442 (60)

Baseline eGFR, ml/min per
1.73 m2, mean (SD)

67.9 (25.7) 71.7 (24.4)

KDIGO AKI Stage, n (%)
Stage 1 461 (72.3) —

Stage 2 95 (14.9) —

Stage 3 81 (12.7) —

Outcomes
Acute dialysis, n (%) 23 (3.6) 0 (0)
3-mo eGFR, ml/min per

1.73 m2, mean (SD)
66.7 (26.9) 73.9 (24.4)

ICU, intensive care unit; KDIGO, Kidney Disease Improving
Global Outcomes.
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Examination of single-cell RNA sequencing analyses from
kidney biopsies completed in hospitalized patients with
AKI through the KPMP19 initiative demonstrated that
DISP1 and TLR5 were expressed in multiple kidney cell
types, including proximal tubular epithelial cells and thick
ascending limb of the loop of Henle (TAL) (Figure 3). In
comparison with kidney tissue from healthy living donor,
AKI biopsies showed increased DISP1 expression in prox-
imal tubular epithelial cells, the primary site of injury in AKI
(adjusted P 5 3.931022) and TAL (adjusted P 5 8.731023)
(Supplemental Table 7). In addition, AKI biopsies showed
decreased expression of TLR5 in TAL (adjusted P5 4.9310230)
(Supplemental Table 8).
Examination of the GTEx and NephQTL also revealed

that the two variants, rs17538288 and rs7546189, were
eQTLs for DISP1 gene expression in cardiac tissue (GTEx,
P , 0.0001, normalized effect size50.15 and 0.16, respec-
tively) and decreased HHIPL2 expression in tubulointer-
stitium kidney tissue (NephQTL, rs17538288, P 5 0.048,
b520.24). The minor allele of each variant was associated
with increased DISP1 expression. Increased DISP1 ex-
pression was associated with AKI in the KPMP single-
cell RNAseq data. By contrast, we found that the minor
allele of both variants was associated (P , 331028, nor-
malized effect size520.24 and 20.29, respectively) with

decreased TLR5 expression in GTEx in cardiac tissue.
NephQTL did not show eQTL evidence for either variant
with DISP1 or TLR5 in N5166 tubulointerstitium kidney
tissue participants. Decreased TLR5 expression was as-
sociated with AKI in the single-cell RNAseq KPMP anal-
yses (Supplemental Figures 4 and 5). Further inspection of
variants in the UCSC Genome Browser33 revealed epige-
netic regulatory functional annotations in multiple tissues
and cell lines. The results can be found in the Supple-
mental Online text (Supplemental Figure 6 and Supple-
mental Table 9).

Replication of Variants from Two Prior AKI GWAS Studies
Review of two previous reported GWAS of AKI7,8

failed to reveal any shared variants or genetic loci be-
tween the literature and the top-performing variants in
ASSESS-AKI. None of the previously reported 22 variants
were associated with the development of AKI in ASSESS-
AKI (nominal P , 0.05) with a similar direction of effect.
Because the prior two AKI GWAS studies restricted to
persons of EA, we tested the association of prior variants
with AKI in persons of EA in ASSESS-AKI and were again
unable to detect these previously reported associations
(Supplemental Table 10).

Figure 2. Manhattan plots generated from genome-wide association study analysis of the AKI cases and controls. Plots include (A) association
results for imputed single-nucleotide polymorphisms (variants) with AKI in the discovery cohort. (B) Genomic locus for theDISP1-TLR5 top hits,
rs17538288 and rs7546189 at higher magnification. LD, r2, is indicated relative to the variant with lowest P value (purple marker) by colored
scale. Notice that the top two DISP1-TLR5 hits are not in LD with each other (r250.24). Genes located near each locus are displayed in the
bottom panels. DISP1, dispatched resistance-nodulation-division (RND) transporter family member 1; LD, linkage disequilibrium; TLR5, toll-
like receptor 5.
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Table 2. Summary of suggestive imputed variant associations with AKI in Assessment, Serial Evaluation, and Subsequent Sequelae of AKI for joint all ancestry and stratified to European American
analysis

Variant Chr Position Gene MA MAF EA MAF Genotyped Imputation
Quality (r2)

All Ancestry
OR (95% CI)

All
AncestryPa

EAOR
(95% CI) EA Pa

rs17538288 1 223192017 DISP1-TLR5 A 0.439 0.429 Imputed 0.97 1.54 (1.31 to 1.81) 1.47E-07 1.50 (1.25 to 1.79) 8.49E-06
rs7546189 1 223224864 DISP1-TLR5 T 0.347 0.349 Imputed 0.96 1.54 (1.3 to 1.82) 4.85E-07 1.62 (1.35 to 1.96) 3.39E-07
rs80052123 1 89493224 GBP3 (59) A 0.143 0.152 Direct 1.0 1.71 (1.36 to 2.15) 3.41E-06 1.67 (1.31 to 2.13) 3.95E-05
rs6533107 4 104706914 TACR3 59 A 0.352 0.374 Imputed 0.97 0.66 (0.56 to 0.78) 1.09E-06 0.65 (0.54 to 0.78) 4.38E-06
rs9998646 4 188592759 LINC02492 C 0.441 0.447 Imputed 0.99 0.68 (0.59 to 0.80) 1.22E-06 0.67 (0.56 to 0.79) 4.10E-06
rs72607731 7 124916848 LOC101928283 T 0.237 0.259 Imputed 0.97 1.59 (1.32 to 1.92) 1.65E-06 1.53 (1.25 to 1.88) 3.12E-05
rs1368999 9 28879870 LINGO2 C 0.492 0.54 Imputed 0.98 0.67 (0.57 to 0.80) 3.32E-06 0.63 (0.53 to 0.76) 6.10E-07
rs4414368 13 83974202 Gene Desert T 0.178 0.123 Imputed 0.99 0.58 (0.46 to 0.72) 1.64E-06 0.62 (0.47 to 0.82) 0.0006643
rs9945894 18 9083721 NDUFV2 59 C 0.077 0.075 Imputed 0.98 2.03 (1.50 to 2.75) 4.83E-06 1.90 (1.36 to 2.65) 0.000163

variant, single-nucleotide polymorphism; Chr, chromosome;MA, minor allele; MAF, minor allele frequency; EA, European American; OR, odds ratio; CI, confidence interval;DISP1, dispatched
resistance-nodulation-division (RND) transporter family member 1; TLR5, toll-like receptor 5.
aP value and odds ratio after adjustment for patient’s age, sex, diabetes, hypertension, enrollment site, and first ten principal components of ancestry in cases and controls.
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Discussion
We identified nine variants with associations at a level

suggestive of being susceptibility loci for AKI risk. The two
variants most strongly associated with AKI mapped to the
DISP1-TLR5 locus. Both variants were associated with an
increased risk of AKI that reached genome-wide signifi-
cance in a post hoc compound heterozygous analysis. Of
note, the minor alleles of both variants were eQTLs for
DISP1, with the minor allele of each variant associated with
increased DISP1 expression in GTEx. Increased DISP1 gene
expression was present in kidney biopsies from patients
with AKI compared with healthy donors. The minor alleles
of both variants were also eQTLs for TLR5 and were asso-
ciated with reduced TLR5 expression in GTEx. Reduced
TLR5 gene expression was present in kidney biopsies from
patients with AKI compared with healthy donors. Thus, the
direction of variant-modulated gene expression and the
relationship to risk for AKI may be in opposite directions
for the two proximal genes with increasedDISP1 expression
and decreased TLR5 expression associatedwith risk for AKI.
The gene DISP1 is involved in sonic hedgehog signaling,

and microdeletions of this gene have been associated with
developmental delay and dysmorphic features.36 In

experimental models, sonic hedgehog signaling can accel-
erate fibrosis postkidney injury and contribute to the de-
velopment of CKD after AKI.37,38 The gene TLR5 plays a
fundamental role in pathogen recognition and activation of
innate immune responses, and TLR5 is highly expressed in
the kidneys. Investigators demonstrated that a TLR5 agonist
attenuated kidney injury in a murine model of radiation-
induced renal failure and ischemia/reperfusion-induced
renal failure through decreased accumulation of reactive
oxygen species.39,40 This background knowledge supports
that the variants, rs17538288 and rs7546189, may influence
the risk of AKI through DISP1 and/or TLR5 signaling.
Because these two variants have low correlation and be-
cause the minor allele frequency is approximately 10%
different, we completed compound heterozygosity analy-
ses. In these analyses, we demonstrated that the combina-
tion of variants strengthens the association with AKI. GTEx
data show increased expression of DISP1 in cardiac tissue
and decreased expression of TLR5 in cardiac tissue in as-
sociation with rs17538288 and rs7546189. The KPMP single-
cell RNAseq results additionally support a differential role
for DISP1 and TLR5 with risk for AKI. In kidney biopsies
from patients with AKI, DISP1 expression was significantly

Table 3. Total burden model of minor alleles for dispatched RND transporter family member 1 toll-like receptor 5 variants,
rs17538288 >A and rs7546189 >T.

Number of Minor
Alleles, (Number
of Patients)

0 (n5318) 1 (n5318) 2 (n5449) 3 (n5178) 4 (n5100) Risk of AKI
(OR, 95% CI) P Value

AKI, n (%) 119 (37%) 136 (43%) 213 (47%) 102 (57%) 67 (67%) 1.34 (1.22 to 1.48) 1.7731029

No AKI, n (%) 205 (63%) 182 (57%) 236 (53%) 76 (43%) 33 (33%) — —

Zero designates homozygous major allele for both variants, and four designates homozygous minor allele for both variant. RND,
resistance-nodulation-division; OR, odds ratio; CI, confidence interval.

Figure 3. Single-cell RNA sequencing in living donor (LD) (n518) and AKI (n512) kidney biopsy specimens demonstrates DISP1 and TLR5
gene expression in multiple cell lines. DISP1 gene expression is significantly upregulated in PT (adjusted P 5 3.931022) and TAL cell types
(adjusted P5 8.731023) in AKI compared with no AKI, while TLR5 expression is downregulated in TAL cell types (adjusted P5 4.9310230) in
AKI compared with no AKI. ATL, ascending thin limb of the loop of Henle; CNT, connecting tubule; DCT, distal convoluted tubule; DISP1,
dispatched RND transporter family member 1; DTL, descending thin limb of the loop of Henle; EC, endothelial cells; IC, intercalated cells; PC,
principal cells; POD, podocytes; PT, proximal tubular epithelial cells and 1–3 segments; TAL, thick ascending limb of the loop of Henle; TLR5,
toll-like receptor 5.
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upregulated, whereas TLR5 expression was reduced com-
pared with healthy donor biopsies. We hypothesize that
upregulation of DISP1 may lead to hedgehog-mediated
effects on kidney tubule regeneration and healing and that
downregulation of TLR5 leads to augmented kidney injury.
We also found that the variants identifiedwere distinct from
previously reported variants in the TLR5 gene that were
associated with pneumonia susceptibility.41–43

Participants in the ASSESS-AKI Study comprise a multi-
ethnic population, and our primary discovery analysis was
completed in all persons who agreed to genetic testing in
ASSESS-AKI. In sensitivity analyses, we evaluated differ-
ences in variant AKI risk on the basis of ancestry. Compared
with the all ancestry analysis, we found that rs17538288 had
an attenuated risk for AKI in the EA-only population, while
the risk of AKI was higher for rs7546189 in the EA-only
population. These findings suggest that genetic ancestry
may influence the risk of AKI, a complex polygenic trait.44

Further studies are necessary to determine whether ancestry
is a surrogate for unmeasured or unknown environmental
exposures that may influence the risk of AKI.45–47

Two prior AKI GWAS studies have been published that
have only included patients of EA and mostly postcardiac
surgery.7,8 We were unable to replicate prior published var-
iants associated with AKI, and this is a challenge in the
field.48,49 Potential reasons for the lack of replication may
be due to the heterogeneity in the AKI clinical syndrome and
lack of power due to small sample size.50,51 Combining
patients with different underlying risk, pathophysiology,
and outcomes may dilute the signal to identify individual
variants. For example, ASSESS-AKI included a general hos-
pitalized population with a distribution of various AKI risk
factors, such as sepsis, surgery, and medications.
Strengths of ASSESS-AKI include the enrollment across

multiple centers, the inclusion of participants with diverse
ancestry, and the prospective matched cohort study design
of the facilitated study of genomic risk of AKI independent
of several matching covariates. Second, ASSESS-AKI
included a general hospital population at risk for AKI
with a mandated baseline serum creatinine measurement
before hospitalization. Often in hospitalized patients, an
outpatient baseline serum creatinine value is lacking, and
thus, the severity and timing of AKI are unknown. Mis-
classification of AKI status due to a lack of a baseline serum
creatinine could dilute potential statistical signals. For ex-
ample, if a patient carrying a high-risk genetic variant
presents to the hospital with AKI but is unrecognized
due to a lack of an outpatient baseline, then this patient
may be classified as a control, attenuating any potential
association signal.
We acknowledge a number of limitations. The main lim-

itation is the sample size, limiting the power to detect
variants of small effect sizes or lower population frequen-
cies. Another limitation is that we lacked a second cohort
with similar inclusion criteria and genotyping to test rep-
lication of top variants.
In summary, we describe the results of a GWAS of AKI

with case–control matched participants designed to reduce
heterogeneity. No variants reached genome-wide signifi-
cance. We report two novel variants adjacent to the DISP1
and TLR5 genes suggestively associated with AKI suscep-
tibility. Both variants warrant further study on the basis of

post hoc independence tests, lack of LD, and the increased
strength of association when these two DISP1-TLR5 regu-
latory variants are considered as compound heterozygotes.
Independent evaluation of NephQTL, GTEx, and KPMP
single-cell RNAseq data of kidney biopsies supports the
interpretation of these variants as being involved in the
etiology of AKI. Other independent studies should aim to
validate our findings, including functional studies to eval-
uate the AKI loci reported.
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