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Abstract 
Purpose To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade 
(AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells.
Methods (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and 
(3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with 
AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR.
Results After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of 
AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and 
PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced 
EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG 
mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. 
After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression 
observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025).
Conclusion These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes 
of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with 
cumulus cells and preventing premature activation of the maturation cascade.
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Introduction

Oocyte maturation and cumulus cell differentiation 
occurs in a gradual and synchronous manner within the 
follicle [1]. Disruption of intrafollicular homeostasis 
by stimulatory hormonal treatments or removal of the 
cumulus-oocyte complex (COC) from the follicle for 
in vitro maturation (IVM) can accelerate oocyte chroma-
tin condensation, oocyte transcriptional silencing, loss of 
cumulus-oocyte communication, and meiotic resumption, 
threateaning oocyte developmental competence [2–5]. 
Understanding the mechanisms that promote nuclear-
cytoplasmic synchronicity may provide important tools 
to improve in vivo and in vitro strategies utilized to treat 
female subfertility that rely on oocyte quality.

Studies in mice and cattle have revealed that the oocyte 
is not a passive passenger in the developing follicle, but 
regulates cumulus metabolism, differentiation, and expan-
sion through oocyte-secreted factors (OSF) [6–11]. The 
participation of the oocyte in mechanisms regulating its 
communication with cumulus cells and the activation of 
the maturation cascade constitutes, however, a valid and 
interesting hypothesis not yet directly investigated.

Elegant studies in mice demonstrated that the deliv-
ery of cumulus-derived cyclic guanosine monophosphate 
(cGMP) through gap junctions communicating cumulus 
trans-zonal projections (TZPs) with the ooplasm prevents 
meiotic progression beyond prophase I before the LH ovu-
latory surge [12, 13]. cGMP is produced upon activation 
of the natriuretic peptide receptor 2 by natriuretic peptide 
C (NPPC) in mural (mice and cattle) and cumulus (cat-
tle) granulosa cells and flows into the oocyte to decrease 
the activity of phosphodiesterase 3 on cyclic adenosine 
monophosphate (cAMP), thus preventing its degradation 
and maintaining its inhibitory action on the maturation 
promoting factor [11–13]. Somehow paradoxically, while 
sustained relatively high levels of cAMP are required to 
maintain the meiotic arrest in the bovine oocyte, supra-
physiological cAMP levels induced by FSH can disrupt 
gap-junction-mediated communication between bovine 
cumulus cells, thus reducing cGMP delivery into the 
oocyte and precipitating oocyte chromatin compaction 
and transcription silencing [14–18].

Studies in mice, cattle, and primates converge to indi-
cate that in order to trigger the ovulatory cascade and 
final oocyte maturation, LH first stimulates the expres-
sion and release of epidermal growth factor (EGF)–like 
family members from mural granulosa cells, particularly 
amphiregulin (AREG) and epiregulin (EREG) [19–23], 
as well as ADAM17, a member of the disintegrin and 
metalloproteinase family that cleaves transmembrane 
precursors of EGF-like factors, releasing the active forms 

for autocrine and paracrine action [24]. Studies in mice 
demonstrated that, subsequently, EGF-like factors bind to 
EGF receptors in cumulus cells and, through the mitogen 
activated protein kinase 3 and 1 (MAPK3/1), stimulate 
the expression of prostaglandin synthase 2 (PTGS2), trig-
gering a positive feedback loop involving prostaglandin 
E2 (PGE2), ADAM17, and EGF-like factors [25–27]. 
Increased MAPK3/1 signaling then promotes meiotic 
resumption by interrupting the delivery of cumulus-
derived cGMP into the oocyte through gap junction clo-
sure and TZP retraction [17, 28].

FSH also strongly stimulates AREG and EREG expres-
sion in murine, swine, and bovine cumulus cells [22, 29, 
30] and because of the absence of functional LH receptors 
in cumulus cells, IVM is commonly induced with FSH in 
livestock ART and animal models reviewed by [31]. In 
cattle and mice, the activation of the ovulatory cascade 
by either FSH or EGF-like factors increases the expres-
sion of genes crucial for cumulus expansion, including 
hyaluronan synthase 2 (HAS2) that encodes a key enzyme 
for the conversion of glucose into hyaluronan, the major 
component of the extracellular matrix, and tumor necrosis 
factor-alpha-induced protein-6 (TNFAIP6) and pentraxin-3 
(PTX3), both encoding major structural proteins of the 
expanding [32–35].

Interestingly, studies in mice and cattle provided robust 
evidence that, apart from stimulating the EGF/ADAM17/
PGE2 feedback loop and decreasing gap-junction-medi-
ated transport [16, 27], increased FSH activity can also 
reduce TZP density between cumulus cells and the oocyte 
[2, 3]. We have recently integrated a large body of data 
from different animal models and women suggesting that 
TZP loss induced by excessive FSH signaling may com-
promise key processes for oocyte developmental compe-
tence such as energetic metabolism, oxidative stress con-
trol, DNA damage repair, and extra and intra-spindle actin 
dynamics [36]. Indeed, intrafollicular levels of FSH are 
negatively correlated with oocyte competence to achieve 
a live birth in women, while those of AMH, an intra-ovar-
ian inhibitor of FSH signaling, are positively correlated 
[37–39].

We have previously observed that OSFs stimulate 
NPPC expression in bovine cumulus cells, suggesting 
that the oocyte participates in the mechanisms sustain-
ing the meiotic arrest through cumulus cells [11]. Herein, 
we investigated whether the oocyte controls the expres-
sion of genes regulating FSH signaling and the maturation 
cascade in bovine cumulus cells. More specifically, we 
tested the hypothesis that OSFs modulate the expression of 
FSHR, AMH, and participants of the EGF-like cascade in 
cumulus cells, in a way that favors cumulus-oocyte com-
munication and oocyte nuclear-cytoplasmic synchronicity.
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Material and methods

Unless specified, all chemicals and reagents were purchased 
from Sigma-Aldrich (St. Louis, MO, USA).

Experimental design

The effects of the oocyte on cumulus cell gene expression 
and their mediation by OSFs were assessed through the 
comparison of three different groups of COCs subjected to 
IVM: (1) intact COCs; (2) oocytectomized COCs (COCs 
with ooplasm removed by micromanipulation; OOX); and 
(3) oocytectomized COCs cultured with denuded oocytes 
(OOX+DO; Fig. 1). In experiment 1, the above groups were 
subjected to IVM stimulated with FSH (1 μg/mL) for 22 h 
(n=4 independent replicates per group), a timepoint chosen 

in accordance with previous timecourse studies [22, 40]. 
Since higher AMH and lower FSHR expression levels were 
observed together with decreased expression of AREG, 
EREG, ADAM17, PGTS2, TNFAIP6, and PTX3 in COC and 
OOX+DO, in experiment 2, we tested the hypotheses (1) 
that the inhibitory effect of the oocyte on genes regulating 
the ovulatory cascade does not depend on decreased FSH 
signaling and involves a direct and acute inhibition of the 
EGF-like cascade, and (2) that the inhibitory effect of the 
oocyte on genes regulating FSH signaling also occurs dur-
ing EGF-like stimulated IVM. For this, we compared FSHR, 
AMH, AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, 
PTX3, and HAS2 mRNA abundance in cumulus cells from 
COC, OOX, and OOX+DO groups, subjected to IVM stimu-
lated with AREG (100 ng/mL) for 4 and 22 h (n=4 inde-
pendent replicates per group per culture duration). These two 
timepoints were chosen in order to allow a more accurate 

Fig. 1  Illustrative experimental design. Immature GV cumulus-
oocyte complexes (COCs) were recovered through the aspiration 
of follicles of bovine ovaries obtained at an abattoir. Intact COCs 
(COC), oocytectomized COCs (OOX), and oocytectomized COCs 

together with denuded oocytes (OOX+DO) were subjected to FSH-
stimulated IVM for 22h in experiment 1, and AREG-stimulated IVM 
for 4 and 22h in experiment 2
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assessment of mRNA levels of genes involved in the activa-
tion of the maturation cascade, as well as of downstream 
genes crucial to COC final maturation [22, 40].

In vitro maturation and oocytectomy

Ovaries of adult cows (predominantly Nellore, Bos indicus) 
were obtained from nearby slaughterhouses and transported 
to the laboratory in saline (0.9% NaCl) at 37 °C. Germinal 
vesicle stage/immature COCs were aspirated from 2- to 8-mm 
diameter follicles with an 18-gauge needle and then selected 
using a stereomicroscope (Nikon, SMZ800, Tokyo, Japan). 
Only COCs with a homogeneous ooplasm and a compact 
multilayer of cumulus cells were used (grades I and II) [41]. 
Selected COCs (20–25 COCs/group) were then washed and 
transferred to four-well plates containing TCM199 supple-
mented with 1 μg/mL porcine FSH (equivalent to 1.6 mU/
mL; Folltropin-V® Bioniche Animal Health, Belleville ON, 
Canada) or 100 ng/mL recombinant human AREG (R&D 
Systems), 22 μg/mL sodium pyruvate, 75 μg/mL amikacin, 
and 4 mg/mL fatty acid-free bovine serum albumin. COCs 
were incubated at 38.5 °C in 5%  CO2 in humidified air.

In order to remove the influence of the oocyte on cumulus 
differentiation during IVM, COCs were placed in 200 μL 
drops of TCM199 partially covered with mineral oil and the 
ooplasm was aspirated with a micromanipulator as previ-
ously described [42, 43] (Fig. 1). The resulting ooplasm-
free cumulus complexes (OOX) were cultured exactly as 
COCs in accordance with the experimental design and IVM 
description above. Denuded oocytes (DOs) were obtained 
from pools of 100 grade 1 and 2 immature COCs subjected 
to mechanical cell separation by repeated pipetting, and 
added to ooplasm-free cumulus complexes at the start of 
IVM at the ratio of 100 oocytes per 20–25 ooplasm-free 
COCs. This DO/OOX ratio had been previously demon-
strated to neutralize the effects of oocytectomy on mRNA 
abundance of KITL (kit ligand), NPPC, and FGF2 in bovine 
OOXs [10, 11].

Sham controls were performed by penetrating COCs with 
a micro-aspiration needle as far as the oolemma but without 
removing any cellular material. These COCs were subjected 
to FSH-stimulated IVM for 22 h alongside COC and OOX 
groups to measure PTGS2 mRNA abundance in cumulus 
cells (n=3 independent replicates per group). Abundance 
of PTGS2 mRNA was increased in OOX compared to intact 
COCs (COC), but did not differ between SHAM and COC 
groups (Supplementary Fig. 1).

Measurement of mRNA abundance

After IVM, cumulus cells were mechanically separated by 
repeated pipetting in PBS, transferred to 1.5-mL tubes, col-
lected by centrifugation for 5 min at 700g, and frozen at 

−80 °C in 350 μL of RNA extraction lysis buffer  (RNeasy® 
kit; Qiagen, Mississauga, ON, Canada). Total RNA was 
extracted using the  RNeasy® kit as recommended by the 
manufacturer, after which RNA samples were eluted in 30 
μL of RNAse-free water. Total RNA concentrations were 
measured by spectrophotometry using a NanoDrop  ND® 
1000 (Thermo Scientific, Wilmington, DE, USA). Total 
RNA (100 ng/reaction) was incubated with DNAse I (1 U/
μg; Invitrogen, São Paulo, Brazil) and then reverse tran-
scribed using random primers (High-Capacity kit, Applied 
Biosystems, Waltham, MA, USA). Relative mRNA abun-
dance of the selected target genes was assessed by RT-qPCR 
analysis using the StepOnePlus™ Real-Time PCR System 
(Applied Biosystems) and the Power Sybr Green PCR Mas-
ter Mix (Applied Biosystems). The final volume of the PCR 
reaction was 20 μL and thermocycling conditions were 95 
°C for 10 min (1 cycle), denaturing at 95 °C for 15 s followed 
by annealing at 60 °C for 1 min (40 cycles). Primers for the 
reference (CYCA  and RPL15) and target genes (FSHR, AMH, 
ADAM17, EGFR, AREG, EREG, PTGS2, HAS2, PTX3, and 
TNFAIP6; Table 1) were as previously used and validated 
[22, 40, 44––46]. Relative expression values for each gene 
were calculated using the  2ΔΔCt method [44].

Statistical analysis

The distribution of gene expression data was first assessed 
and, when not normally distributed, expression values were 
log-transformed. The effects of oocytectomy and of OSF 
replacement (addition of denuded oocytes to culture) on 
cumulus mRNA abundance were tested by analysis of vari-
ance, and in the face of a significant effect, gene expression 
values from the 3 experimental groups were compared with 
the Tukey-Kramer test. The statistical analysis was performed 
using the JMP software (SAS Institute, Cary, NC, USA) and 
differences were considered significant when p<0.05.

Results

Experiment 1

The removal of the ooplasm from the COC by oocytec-
tomy increased FSHR, AREG, EREG, ADAM17, PTGS2, 
TNFAIP6, and PTX3 mRNA abundance in cumulus cells 
after 22 h of FSH-stimulated IVM, which was entirely 
reverted by the addition of denuded oocytes to culture 
(Fig.  2). Oocytectomy caused 40 and 70% increases in 
ADAM17 and TNFAIP6 mRNA abundance, respectively, 
while approximately tripling the abundance of FSHR and 
EREG mRNA. The most drastic changes were observed, 
however, in AREG, PTX3 and PTGS2 mRNA levels, which 
increased between 7 to 10 times after oocytectomy. In 
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contrast, oocytectomy halved the abundance of AMH and 
HAS2 mRNA, which was again completely neutralized by 
supplementation with denuded oocytes. Oocytectomy also 
decreased mRNA levels of EGFR, but this 30% reduction 
was not reverted by the addition of denuded oocytes to IVM.

Experiment 2

Since in experiment 1, in FSH-stimulated IVM, oocytec-
tomy decreased the expression of genes participating in the 
EGF/ADAM17/PGE2 positive feedback loop in parallel with 
changes in FSHR and AMH mRNA levels suggestive of a 
reduction in FSH signaling, we then assessed whether these 
effects are dependent on reduced FSH signaling by repeat-
ing the same experimental design with AREG-stimulated 
IVM for 4 and 22 h (Fig. 3). Oocytectomy doubled AREG 
mRNA levels after 4 h, which was neutralized by the addi-
tion of denuded oocytes to culture. In contrast, oocytectomy 
decreased EREG, EGFR, and PTGS2 mRNA abundance, 
which was not reverted by the addition of denuded oocytes 
to culture. Furthermore, oocytectomy did not significantly 
alter FSHR and AMH mRNA abundance after 4 h of AREG-
stimulated IVM, but the addition of denuded oocytes to cul-
ture decreased AMH mRNA levels in relation to the intact/
control group.

After 22 h of AREG-stimulated IVM, consistently with exper-
iment 1, oocytectomy increased AREG (10-fold), EREG (5-fold), 
PTGS2 (10-fold), TNFAIP6 (2-fold), and PTX3 (2.5fold) mRNA 
levels. Also in agreement with experiment 1, oocytectomy aug-
mented FSHR mRNA abundance (2.5-fold), while approximately 
halving that of AMH, EGFR, and HAS2 mRNA. All effects of 
oocytectomy observed at 22 h of IVM were reverted by the addi-
tion of denuded oocytes to culture. In contrast to experiment 1, 
oocytectomy did not significantly alter ADAM17 mRNA abun-
dance after 22 h of AREG-stimulated IVM.

Discussion

Understanding the mechanisms that control oocyte develop-
mental competence is crucial for the improvement of female 
subfertility treatments. Data indicative of the participation 
of OSFs in mechanisms regulating cumulus cell metabolism 
and differentiation have accumulated for more than three 
decades [8, 9, 42, 45]. We have previously provided evi-
dence that OSFs may also control oocyte nuclear matura-
tion through cumulus cells [11]. Herein, we provide novel 
evidence that, through secreted factors, the oocyte controls 
cumulus cell gene expression in such a way that would pro-
tect its companion cells from excessive FSH signaling and 
prevent premature activation of the ovulatory cascade.

Table 1  Genes analyzed in CCs 
samples by RT-qPCR

F forward primer, R reverse primer

GENE SEQUENCE REFERENCE

CYCA F: 5′-GCC ATG GAG CGC TTT GG-3′
R: 5′-CCA CAG TCA GCA ATG GTG ATC T-3′

[40]

RPL15 F: 5′-CTC ATC GTT GGT GCC AAT GCA AGT-3′
R: 5′-TCA CAT CCA CCC TGG GAA ACA GAA-3′

[70]

FSHR F: 5′-AGC CCC TTG TCA CAA CTC TAT GTC-3′
R: 5′-GTT CCT CAC CGT GAG GTA GAT GT-3′

[71]

AMH F: 5′-AAG AAG TCT TCA GCA CCT CAG CCT-3′
R: 5′-AGT CCC AGG CTT GCT GAA AGA TGA-3′

NM_173890.1

EGFR F: 5′-AAA GTT TGC CAA GGG ACA AG-3′
R: 5′-AAA GCA CAT TTC CTC GGA TG-3′

[40]

PTX3 F: 5′-CCT CAG CTA TCG GTC CAT AA-3′
R: 5′-ATT GAA GCC TGT GAG GTC TGC-3′

[40]

PTGS2 F: 5′-AAG CCT AGC ACT TTC GGT GGA GAA-3′
R: 5′-TCC AGA GTG GGA AGA GCT TGC ATT-3′

[40]

HAS2 F: 5′-ACA CAG ACA GGC TGA GGA CAA CTT-3′
R: 5′-AAG CAG CTG TGA TTC CAA GGA GGA-3′

[40]

TNFAIP6 F: 5′-GCA AAG GAG TGT GGT GGT GTG TTT-3′
R: 5′-ACT GAG GTG AAT GCG CTG ACC ATA-3′

[40]

AREG F: 5′-CTT TCG TCT CTG CCA TGA CCT T-3′
R: 5′-CGT TCT TCA GCG ACA CCT TCA-3′

[40]

EREG F: 5′-ACT GCA CAG CAT TAG TTC AAA CTG A-3′
R: 5′-TGT CCA TGC AAA CAG TAG CCA TT-3′

[40]

ADAM17 F: 5′-TGG GAT GTG AAG ATG TTG CTA GA-3′
R: 5′-ATC CAA GTG TTC CCA TAT CAA AAT C-3′

[40]
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Fig. 2  Effects of oocyte removal 
with or without replacement of 
OSFs on FSHR, AMH, AREG, 
EREG, ADAM17, EGFR, 
PTGS2, TNFAIP6, PTX3, and 
HAS2 mRNA abundance in 
cumulus cells from COCs sub-
jected to FSH-stimulated IVM 
for 22 h. COCs were cultured 
intact (COC), oocytectomized 
(OOX), or oocytectomized 
with denuded oocytes (OOX 
+ DO). Data represent mRNA 
abundance of a given target 
gene relative to the reference 
genes (RPL15 and CYCA ). 
Bars with different letters are 
significantly different (p<0.05). 
Data derive from four independ-
ent replicates
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Early studies in mice utilizing oocytectomy to assess the 
participation of the oocyte in cumulus cell differentiation 
demonstrated that OSFs contribute to generate the cumu-
lus cell phenotype by suppressing the expression of the LH 

receptor [46]. In the present study, oocytectomy increased 
FSHR mRNA levels in cumulus cells, while decreasing 
those of AMH, both in FSH and in AREG-stimulated IVM. 
Since these effects were abrogated when oocytectomized 
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Fig. 3  Effects of oocyte removal with or without replacement of 
OSFs on FSHR, AMH, AREG, EREG, ADAM17, EGFR, PTGS2, 
TNFAIP6, PTX3, and HAS2 mRNA abundance in cumulus cells from 
COCs subjected to AREG-stimulated IVM for 4 and 22 h. COCs 
were cultured intact (COC), oocytectomized (OOX), or oocytec-

tomized with denuded oocytes (OOX + DO). Data represent mRNA 
abundance of a given target gene relative to the reference genes 
(RPL15 and CYCA ). Bars with different letters are significantly differ-
ent (p<0.05). Data derive from four independent replicates
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COCs were cultured together with denuded oocytes known 
to release peptides in culture [42, 45], it is logical to assume 
these changes were mediated by OSFs. The stimulatory 
effect of OSFs on AMH mRNA levels is in line with previous 
studies in sheep and women showing higher AMH expres-
sion in cumulus cells as compared with mural granulosa 
cells, as the first are closer to the oocyte and thus more sus-
ceptible to its paracrine influence [47, 48]. Since AMH was 
shown to inhibit FSH signaling, both at the level of FSHR 
expression and cAMP response, in human granulosa cells 
[37, 38], the present data suggest that the oocyte reduces 
FSH activity in surrounding cumulus cells. During antral 
follicle growth, FSH signaling in mural granulosa cells is 
crucial to stimulate steroidogenesis and final follicle growth 
in all mammalian species [49]. On the other hand, concomi-
tant intense FSH signaling in cumulus cells could prema-
turely activate the maturation cascade by stimulating EGF-
like expression while precipitating loss of TZP-mediated 
cumulus-oocyte communication [2, 3, 22, 36]. Therefore, 
through the modulation of FSHR and AMH expression in 
cumulus cells, while trying to assure synchronous matura-
tion of its cytoplasmic and nuclear compartments, the oocyte 
possibly makes an effort to preserve its communication with 
cumulus cells, thus maximizing the incorporation of cumu-
lus-derived metabolites and mRNA essential for its homeo-
stasis and developmental competence [36, 50].

The identity of the OSFs promoting these changes 
remains to be clarified, but previous studies point to bone 
morphogenetic protein 15 (BMP15), growth and differen-
tiation factor 9 (GDF9), and fibroblast growth factor 10 
(FGF10) as plausible candidates. Both BMP15 and GDF9 
decreased FSHR expression in rat granulosa cells [51, 
52], and together stimulated AMH expression in human 
and mouse cumulus cells [53, 54]. FGF10 has been more 
recently characterized as an important OSF in the bovine 
model, in which it was found to inhibit FSHR expression and 
estradiol production in cultured granulosa cells [40, 55, 56].

The present data indicate that the oocyte also inhib-
its the expression of major genes of the ovulatory cas-
cade. Oocytectomy increased mRNA levels of AREG, 
EREG, ADAM17, and PTGS2 in cumulus cells, genes 
known to compose a positive feedback loop triggered 
by EGF signaling that is required for final COC matura-
tion [27], during FSH-stimulated IVM. Once again, the 
effects of oocytectomy were neutralized by the addition 
of denuded oocytes to culture, indicating the mediation 
by OSFs. Importantly, the manifestation of the inhibitory 
effect of OSFs on AREG mRNA abundance after 4 h, and 
on AREG, EREG, and PTGS2 mRNA levels at 22 h of 
AREG-stimulated IVM indicates that this action is acute 
and independent of FSH signaling. Consistently with these 
changes, OSFs also suppressed TNFAIP6 and PTX3 tran-
scription in cumulus cells in our study, genes encoding 

structural proteins of the extracellular matrix, known to 
be activated downstream from EGF-like signaling [33, 
57, 58]. Interestingly, these findings suggest that, through 
OSFs, the oocyte inhibits precocious/excessive activation 
of the maturation cascade, likely preserving TZP-mediated 
communication with cumulus cells [28] and preventing 
premature meiotic resumption [16], both actions in favor 
of developmental competence. This suggestion is in line 
with studies in pigs and cattle, in which supplemention 
with Neuregulin 1 (NGR1), a modulatory EGF-like factor 
that attenuates AREG intracellular responses and slows 
meiotic progression [59–61], improved post-IVF embryo 
development [61, 62].

The identity of the OSFs mediating the inhibitory influ-
ence of the oocyte on the maturation cascade remains to be 
revealed. Intriguingly, the most investigated OSFs to date, 
BMP15 and GDF9, appear to act in consonance, both in 
opposition to the effects of OSFs observed in this study. 
BMP15 was previously shown to increase AREG, EREG, 
PTGS2, TNPAIP6, and PTX3 expression in mice and cows 
[40, 63, 64]. Although no study to date has demonstrated a 
direct effect of GDF9 on the expression of EGF-like factors, 
suppression of oocyte GDF9 expression by RNA interfer-
ence decreased the expression of PTGS2 in the murine COC 
[65], and GDF9 combined with BMP15 increased EGF sign-
aling in swine cumulus cells [66].

Interestingly and paradoxically, our data suggest that, 
although to a much lesser extent in relation to the afore-
mentioned inhibitory changes, the oocyte stimulates EGFR 
expression. This finding is in agreement with a previous 
study in mice, in which the negative impact of oocytectomy 
on EGFR mRNA levels was nevertheless far more intense 
[67]. It is tempting to speculate that, by increasing EGFR 
expression and paradoxically inhibiting FSH signaling and 
AREG/EREG transcription in cumulus cells, the oocyte may 
stimulate responsiveness to the maturation trigger, while try-
ing to assure that it occurs at the right time, only following 
LH-stimulated secretion of EGF-like factors from mural 
granulosa cells, and at an appropriate speed.

Finally, the present data indicate that, through OSFs, the 
oocyte stimulates HAS2 transcription in cumulus cells, which 
is somehow in contrast with its effects on genes triggering 
the maturation cascade (AREG, EREG, and ADAM17), as 
well as on downstream genes known to respond to MAPK3/1 
signaling (PTGS2, TPNFA1, and PTX3) [26, 68]. This find-
ing is nevertheless in agreement with previous evidence that 
OSFs regulate cumulus expansion and potently stimulate 
HAS2 expression in mice (BMP15 and GDF9) [65, 69] and 
cattle (BMP15) [40].

Our study is limited by the assessment of mRNA abun-
dance as the only endpoint reflecting gene expression. In 
addition, we cannot rule out that denudation may alter 
oocyte secretion activity thus impacting the physiologycal 
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accuracy of the effects attributed to OSFs herein. Therefore, 
further studies are needed to confirm the suggestions emerg-
ing from the present data. On the other hand, the present 
design including different IVM stimulators and culture times 
allowed the production of novel data shedding light on the 
actions of the oocyte in the regulation of cumulus cell gene 
expression in a mono-ovulatory species. Moreover, the pre-
sent evidence of inhibitory influences of the oocyte on FSH 
signaling and on the maturation cascade in cumulus cells 
represent new important parameters for the optimization of 
ART strategies, indicating that excessive FSH intrafollicular 
activity and premature activation of oocyte maturation may 
be detrimental to oocyte developmental competence.

In conclusion, the present findings suggest that, through 
the secretion of paracrine factors, the oocyte controls cumu-
lus cells gene expression in an apparent effort to restrict 
FSH signaling and to prevent premature activation of the 
maturation cascade. In the light of the converging literature 
discussed herein, we propose that these influences may be 
important in the determination of the cumulus cell pheno-
type and critical to safeguard cumulus-oocyte communi-
cation and nuclear-cytoplasmic synchronicity during final 
antral follicle development. Therefore, the present data and 
insights may contribute for a better understanding of the 
oocyte biology and stimulate clinical thinking towards the 
improvement of subfertility treatments through the optimiza-
tion of cumulus-oocyte homeostasis.
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