Skip to main content
. 2023 Jul 26;13:12136. doi: 10.1038/s41598-023-39215-1

Table 3.

Performance metrics.

Race Feature selection model Prediction method TPR (sensitivities) FPR MCC F1
AA Boruta Decision tree 0.7 0.166667 0.526789 0.682927
AA Boruta Random forest 0.909091 0.215686 0.559715 0.625
AA Boruta Logistic 0.733333 0.212766 0.471053 0.611111
AA RFE Random forest 0.833333 0.22 0.512001 0.606061
AA RFE SVM 0.8 0.25 0.427428 0.516129
AA RFE Decision tree 0.368421 0.176471 0.213946 0.4375
AA Boruta SVM 0.857143 0.272727 0.390796 0.428571
AA RFE Logistic 0.75 0.277778 0.334493 0.413793
NHW Boruta Random forest 0.8 0.285714 0.515515 0.761905
NHW RFE Logistic 0.736842 0.285714 0.450564 0.717949
NHW Boruta Logistic 0.647059 0.277778 0.370494 0.666667
NHW Boruta Decision tree 0.631579 0.4375 0.194079 0.631579
NHW RFE Decision tree 0.631579 0.4375 0.194079 0.631579
NHW RFE Random forest 0.833333 0.22 0.512001 0.606061
NHW RFE SVM 0.714286 0.428571 0.280976 0.606061
NHW Boruta SVM 0.611111 0.470588 0.140984 0.594595

Comparison of the performance of various combinations of feature selection and classification methods.