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A B S T R A C T   

Background: Multi-modal magnetic resonance imaging (MRI) measures are supposed to be able to capture 
different brain neurobiological aspects of major depressive disorder (MDD). A fusion analysis of structural and 
functional modalities may better reveal the disease biomarker specific to the MDD disease. 
Methods: We recruited 30 MDD patients and 30 matched healthy controls (HC). For each subject, we acquired 
high-resolution brain structural images and resting-state fMRI (rs-fMRI) data using a 3 T MRI scanner. We first 
extracted the brain morphometric measures, including the cortical volume (CV), cortical thickness (CT), and 
surface area (SA), for each subject from the structural images, and then detected the structural clusters showing 
significant between-group differences in each measure using the surface-based morphology (SBM) analysis. By 
taking the identified structural clusters as seeds, we performed seed-based functional connectivity (FC) analyses 
to determine the regions with abnormal FC in the patients. Based on a logistic regression model, we performed a 
classification analysis by selecting these structural and functional cluster-wise measures as features to distinguish 
the MDD patients from the HC. 
Results: The MDD patients showed significantly lower CV in a cluster involving the right superior temporal gyrus 
(STG) and middle temporal gyrus (MTG), and lower SA in three clusters involving the bilateral STG, temporal 
pole gyrus, and entorhinal cortex, and the left inferior temporal gyrus, and fusiform gyrus, than the controls. No 
significant difference in CT was detected between the two groups. By taking the above-detected clusters as seeds 
to perform the seed-based FC analysis, we found that the MDD patients showed significantly lower FC between 
STG/MTG (CV’s cluster) and two clusters located in the bilateral visual cortices than the controls. The logistic 
regression model based on the structural and functional features reached a classification accuracy of 86.7% (p <
0.001) between MDD and controls. 
Conclusion: The present study showed sensory abnormalities in MDD patients using the multi-modal MRI anal
ysis. This finding may act as a disease biomarker distinguishing MDD patients from healthy individuals.   

1. Introduction 

Major depressive disorder (MDD) is a severe psychiatric disorder that 
severely impacts individual life quality and has a high worldwide 
prevalence (Malhi and Mann, 2018). As ranked by World Health Orga
nization (WHO), depression has been one of the leading causes of the 
global burden of disease (WHO, 2008). The 12-month and prevalence 

lifetime prevalence for MDD were observed to be 6.6% and 16.2% 
respectively. Moreover, MDD was more commonly reported in women 
compared to men, indicating a twice higher occurrence rate (Kupfer 
et al., 2012). Several hypotheses involving the monoamine, hypothal
amic–pituitary–adrenal axis, inflammation, neuroplasticity, genes, and 
brain structural/functional changes have been proposed to understand 
the pathophysiology of depression (Jeon and Kim, 2016; Kennis et al., 
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2020; Kupfer et al., 2012; Malhi and Mann, 2018; Miller and Raison, 
2016; Price and Drevets, 2012). Among them, neuroimaging techniques 
comprise a powerful method to detect brain structural and functional 
changes. Many studies have already analyzed neuroimaging biomarkers 
specific to depression and subtypes of depression (Cohen et al., 2021; 
Kube et al., 2020; Sui et al., 2020). However, despite extensive research, 
the lack of spatially converged findings across modalities in MDD still 
poses challenges to its diagnosis and treatment and calls for more 
investigation (Cash et al., 2023; Gray et al., 2020; Malhi and Mann, 
2018; Müller et al., 2017). 

Magnetic resonance imaging (MRI) has been widely used to delineate 
brain structural and functional properties in vivo. Brain structural and 
resting-state functional MRI techniques are largely used to explore 
neuroimaging biomarkers specific to MDD (Pilmeyer et al., 2022). The 
structural MRI (sMRI) modality enables the depiction of neuroanatom
ical morphological changes, and the resting-state fMRI (rs-fMRI) mo
dality enables the measurement of brain functional abnormalities, like 
abnormal functional relationships between brain regions. The voxel- 
based morphometry (VBM) (Good et al., 2001), surface-based 
morphometry (SBM) (Pantazis et al., 2004), and rs-fMRI functional 
connectivity (FC) (Mulders et al., 2015) are commonly used to analyze 
brain anatomical and functional characteristics in MDD. These methods 
have revealed large-scale alterations in brain regions associated with 
cognitive and affective functions (Dichter et al., 2015; Disner et al., 
2011; Wang et al., 2012). Previous sMRI studies (Arnone et al., 2012; 
Bora et al., 2012; Du et al., 2012; Koolschijn et al., 2009; Li et al., 2020; 
Zhang et al., 2016; Zhao et al., 2014; Zhu et al., 2022) reported 
abnormal gray matter (GM) volume and thickness in MDD in regions of 
the prefrontal cortex, orbitofrontal cortex, temporal cortex, insular 
cortex, cingulate cortex, hippocampus, striatum, amygdala, and thal
amus. In addition, previous rs-fMRI studies (Briley et al., 2022; Jav
aheripour et al., 2021; Long et al., 2020; Mulders et al., 2015; Veer et al., 
2010) frequently reported resting-state FC abnormalities in regions 
involved in the default mode network, salience network, dorsal atten
tion network, visual network, and somatosensory network. Although 
promising progress has been made in MDD research, the findings from 
different MRI modalities are not well-converged (Cash et al., 2023; Gray 
et al., 2020; Müller et al., 2017). The spatially heterogeneous distribu
tion of these findings across multiple MRI modalities (Liu et al., 2016; 
Zhang et al., 2022) may limit the knowledge of neuroimaging markers 
for diagnoses and treatments of MDD (Zhuo et al., 2019). 

A considerable solution for this heterogeneity is to include multi
disciplinary technologies such as multimodality MRI and artificial in
telligence approaches (Zhuo et al., 2019). Multi-modal MRI measures 
can capture different aspects of brain structural and functional proper
ties (Glasser, Coalson, et al., 2016), and a fusion analysis of them can be 
powerful in identifying the disease markers (Calhoun and Sui, 2016; Liu 
et al., 2018; Meng et al., 2017; Sui et al., 2015; Sui et al., 2018). To 
detect confirmative imaging results, previous studies overlapped regions 
showing between-group differences across measures (Hong et al., 2017; 
Liu et al., 2016) and used multivariate algorithms such as the canonical 
correlation analysis (Liu et al., 2018; Meng et al., 2017; Sui et al., 2015; 
Sui et al., 2018) to characterize the association between brain struc
tural/functional properties and clinical symptoms and behaviors. 

Surface-based analysis (SBA) is considered to provide a better 
framework to analyze multi-modal measurements than volume-based 
analysis (Glasser et al., 2013) for two main reasons. First, the SBA 
approach enables simultaneously analyzing multiple structural mea
sures such as cortical thickness (CT), surface area (SA), and cortical 
volume (CV) (Peng et al., 2015). Second, due to subject-wise variabil
ities in cortical folding patterns (Glasser, Smith, et al., 2016), the SBA 
approach may provide better cortical spatial localizations (Coalson 
et al., 2018; Glasser, Smith, et al., 2016), alignments (Glasser, Smith, 
et al., 2016; Robinson et al., 2018; Van Essen, 2004), morphological 
identification and visualization (Dale et al., 1999; Xu et al., 2016) 
relative to the voxel-based analysis (VBA). A recent study (Brodoehl 

et al., 2020) suggested that the surface-based smoothing process reduced 
signal contamination and enhanced brain activity and FC results 
compared to the volumetric smoothing process. Hence, we were moti
vated to perform a surface-based multi-modal fusion analysis, involving 
the detection of the structural alteration and the FC alterations based on 
structural findings in MDD. 

The present study aimed at detecting brain abnormalities in MDD 
patients using surface-based multi-modal MRI analysis. We used 30 
MDD patients and 30 age-, sex- and education-level-matched healthy 
controls (HC). We first detect the clusters with significant differences in 
the CV, CT, and SA measures between the MDD and HC groups. We then 
determined brain FC alterations associated with structural changes that 
we found in MDD patients. Finally, we investigated whether these 
structural and functional abnormalities can successfully distinguish 
MDD from HC or not by using a logistical regression model. 

2. Materials and methods 

2.1. Subjects 

Thirty patients with MDD and thirty age-, gender- and education- 
matched HCs were recruited from the Department of Psychiatry at the 
Affiliated Brain Hospital of Guangzhou Medical University. All subjects 
who qualified for this study were right-handed and aged from 18 to 60 
years. All MDD patients were clinically diagnosed according to the 
Structured Clinical Interview for DSM-IV Patient Edition (Glasofer et al., 
2017) and none of them had any other comorbid psychotic or neuro
logical diseases. The severity of depression was evaluated using the 24- 
item Hamilton Depression Rating Scale (HDRS) (Williams, 1988) and 
each of the MDD patients had at least 21 scores on HDRS. In this study, 
26 MDD patients never received antidepressant treatment (i.e., 
medication-free), and the other 4 MDD patients took no medication for 
three months before participating in this study (i.e., medical-naive). The 
healthy subjects were screened with the DSM-IV Non-Patient Edition to 
confirm the lifetime absence of Axis I illnesses and had no history of 
psychiatric illness in any two lines of first- to third-degree biological 
relatives. All the MDD patients and healthy controls reported no lifetime 
history of seizures, head trauma, serious medical or surgical illness, 
substance abuse or dependence, or contraindications for MRI. Moreover, 
none of the subjects had abnormal MRI signals in the brain checked 
based on the clinical T1-weighted and T2-weighted FLAIR MRI images. 
The study protocol was approved by the Ethics Committee of Affiliated 
Brain Hospital of Guangzhou Medical University, and all subjects gave 
their written informed consent. 

2.2. MRI data acquisition 

All MRI data were acquired from a 3.0 Tesla MRI system (Achieva X- 
series scanner; Philips, Medical Systems, Best, Netherlands) with an 8- 
channel phased-array head-coil at the Department of Radiology in the 
Affiliated Brain Hospital of Guangzhou Medical University. Tight but 
comfortable foam padding was used to reduce head motion, and ear
plugs were provided to muffle scanner noise. 

The high-resolution brain structural images were obtained with T1- 
weighted (T1w) 3D turbo field-echo (TFE) and T2-weighted (T2w) 3D 
turbo spin-echo (TSE) sequences. The T1w TFE sequence parameters 
were as follows: TR = 8.2 ms, TE = 3.7 ms, flip angle = 7◦, the field of 
view (FOV) = 256 × 256 mm2, data matrix = 256 × 256, slice thickness 
= 1 mm, voxel size = 1.0 mm3, and 188 sagittal slices. The T2w TSE 
sequence parameters were: TR = 2,500 ms, TE = 250 ms, flip angle =
90◦, FOV = 256 × 256 mm2, data matrix = 256 × 256, slice thickness =
1 mm, voxel size = 1.0 mm3, and 188 sagittal slices. The rs-fMRI was 
obtained with a gradient-echo echo-planar-imaging (EPI) sequence with 
the following parameters: TR = 2,000 ms, TE = 30 ms, flip angle = 90◦, 
FOV = 220 × 220 mm2, data matrix = 64 × 64, slice thickness = 4 mm 
with interslice gap = 0.6 mm, voxel size = 3.4 mm × 3.4 mm × (4.0 +
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0.6 mm), and 33 axial interleaved slices. The rs-fMRI scanning lasted 
about 8 min and acquired 240 time points for each subject. During the 
rs-fMRI scanning, subjects were instructed to relax with their eyes closed 
and not to sleep or think about things in particular. All of the images 
were acquired in the same session for each subject. 

2.3. Structural MRI data pre-processing 

The structural MRI (sMRI) data, including T1w and T2w images, 
were visually inspected and rated on a four-point quality scale (poor, 
fair, good, and excellent) by a neuroradiologist (HW). Only the “good” 
or “excellent” images were included in this study. No imaging datasets 
were excluded according to this threshold. All the eligible images were 
preprocessed by using the structural Human Connectome Project (HCP) 
pipeline (version 3.27) (Glasser et al., 2013). 

The sMRI data were preprocessed by following partial sessions of 
HCP structural pipelines which involved the PreFreeSurfer and Free
Surfer. In the PreFreeSurfer section, the T1w images were cropped, AC- 
PC aligned, and brain extracted. PreFreeSurfer produced an undistorted 
“native” structural volume space for each subject, aligned the T1w and 
T2w images, performed a bias field correction, and registered the sub
ject’s native structural volume to the MNI space. Due to the lack of 
structural field maps, the gradient nonlinearity correction was not 
included. In the FreeSurfer section, we conducted the procedures of the 
auto-recon pipeline of FreeSurfer, which used the brain mask from 
PreFreeSurfer as an input, performed brain extraction, brain segmen
tations, surface tessellation, spheric registration, and morphometric 
measurements. From these procedures, we obtained the cortical mea
surements of the CT, SA, and CV. 

2.4. Resting-state fMRI preprocessing 

The rs-fMRI data were preprocessed with the pipeline of DPABI (http 
s://rfmri.org/dpabi). The pipeline included the following steps: exclu
sion of the first 10 volumes, slice-timing and head motion correction, 
detrend, regression of Friston-24 motion parameters and signals of the 
white matter and cerebrospinal fluid, and temporal filtering (0.01–0.1 
Hz). In the preprocessing, we set the threshold of the rs-fMRI images as 
the head movement < 1.5 mm in any plane or rotation < 1.5◦ in any 
axis. No subject was excluded according to this threshold. 

2.5. Cortical measurement generation 

We first extracted three structural morphological measures including 
the cortical thickness (CT, lh/rh.thickness), surface area (SA, lh/rh. 
area), and cortical volume (CV, lh/rh.volume) from the FreeSurfer sec
tion described above. Then, we took a surface-based down-resampling 
procedure to normalize these measures. The normalization steps 
(Glasser et al., 2013; Zhang et al., 2022) were as follows: (1) individual 
midthickness surfaces were averaged from white matter (WM) and pial 
surfaces and were resampled to the fs_LR 164 k surface and then to the 
fs_LR 32 k surface (2-mm vertex spacing), (2) CT, SA, and CV were 
separately resampled to fs_LR 32 k surface via the fs_LR 164 k surface, 
and (3) all measures were smoothed (Glasser et al., 2013; Liu et al., 
2016; Zhang et al., 2022) with a Gaussian kernel of full-width-at-half- 
maximum (FWHM) = 10 mm (σ = 4.25 mm, FWHM = σ

̅̅̅̅̅̅̅̅̅̅
8ln2

√
) for 

keeping a consistency in smoothing effects. Finally, we examined the 
differences in each of these measures between MDD and HC groups, 
which were denoted as structural alterations, and the significant clusters 
were used as seeds in the following functional analysis. 

After the identification of structural alterations, we performed the 
seed-based FC analysis on the cortical surface with the following steps: 
(a) the functional images (timeseries) were co-registered to the cortical 
surface using a boundary-based registration (BBR). Individual mean 
functional images were registered to the preprocessed structural images 

to generate transformation matrices. The other functional images were 
projected to the cortical surface by sampling along the midthickness 
surface using the BBR transformation matrix. (b) The projected func
tional images were resampled to fs_LR 32 k surface via fs_LR 164 k, and 
smoothed with a Gaussian kernel of 10-mm FWHM. (c) The FC between 
the seed region and rest vertices of bilateral surfaces were calculated by 
taking each structural cluster as the seed (wb_command -cifti-average-roi- 
correlation). Finally, we examined the difference in the seed-based FC 
between MDD and HC groups. 

2.6. Statistical analyses 

2.6.1. Demographical statistics 
We assessed group differences in gender, age, and education years 

between MDD and HC groups. In the demographical statistics, a χ2 test 
was used for comparing the gender differences, while independent t- 
tests were used for comparing age and years of education between the 
two groups. The significance level was set at p < 0.05. 

2.6.2. Multidimensional structural analyses 
To assess structural morphological differences between the MDD and 

HC groups, we applied the Permutation Analysis of Linear Models 
(PALM) (Winkler et al., 2016), a tool that allows inference using per
mutation methods, to the structural measures of the left- and right- 
hemisphere surfaces separately. In specific, we calculated between- 
group differences in each structural measure on each vertex by using 
the PALM (5,000 permutations) with gender, age, and educational level 
as covariates. Cluster-forming threshold (cluster) and family-wise error 
(FWE) methods were applied for the multiple-comparison correction 
(pcluster+FWE < 0.05). To determine the significant clusters of each 
measure after the corrections, we split measure-specific results into in
dependent clusters by using Workbench/wb_command -cifti-find-clusters. 
These clusters were reported based on the Desikan-Killiany atlas (Desi
kan et al., 2006). 

2.6.3. Seed-based FC analyses 
To detect brain FC alterations associated with structural alterations 

in MDD patients, we used clusters showing significant differences be
tween MDD and HC groups in the Multidimensional structural analyses 
as seed regions. We then applied PALM (5,000-time permutations) with 
seed-based FC as the dependent variable, group as the independent 
variable, and gender, age, and educational level as the covariates. Af
terward, the seed-based FC results were thresholded by a cluster- 
forming FWE method (pcluster+FWE < 0.05) and split into the clusters 
using the Workbench. FC results after multiple-comparison corrections 
were reported based on the network parcellation atlas (Yeo et al., 2011). 

2.6.4. Classification analysis 
To distinguish MDD from controls based on our multi-modal results, 

we applied a cross-validated logistic regression model by using the 
classification module of Matlab 2020a. The steps were as follows. (1) 
Feature selection: The cluster-wise averaged values from both structural 
morphological and seed-based FC analyses were taken as features. (2) 
Model selection: A logistic regression model was used to detect the 
model classification based on both structural and functional features. (3) 
A k-fold cross-validation: A 10-fold cross-validation procedure was 
applied to evaluate the accuracy of the logistic regression model. In each 
of the cross-validation iterations, 90% of the subjects were selected as 
the training set, while the rest 10% of the subjects were selected as the 
test set. (4) Statistical significance: For confirming the significance of 
our model and its probability distance to the chance level, a label- 
shuffled permutation was applied (5,000 times). In each permutation 
loop, the group labels (MDD/HC) of subjects were randomly assigned 
and re-entered into the model space to compute the classification ac
curacy. After all permutation loops (5,000 times), the null accuracy 
distribution based on the label-shuffled permutation was calculated and 
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then the model performance was identified by seeking the position of the 
accuracy gotten from our model in the generated null accuracy 
distribution. 

To assess the performance of the logistic regression model, we 
generated classification accuracy and statistical significance. For the 
model performance, a confusion matrix and a receiver-operating char
acteristics (ROC) plot were created to show the model’s classification 
accuracy and sensitivity. 

3. Results 

3.1. Demographics 

Table 1 lists the demographical information of the MDD and HC 
groups. No significant difference was found in gender, age, and educa
tional level between MDD and HC groups. 

3.2. Surface-based structural properties 

To detect the abnormal brain structure in MDD, we compared the 
morphological properties between the two groups. We found that the 
MDD patients had significantly lower cortical volume (CV) and surface 
area (SA) in the temporal and occipital cortices than the HC (Fig. 1, 
pcluster+FWE < 0.05). However, no significant between-group difference 
was found in the cortical thickness (CT). Fig. 1A shows that the MDD 
patients had significantly lower CV than the HC group in a cluster, 
involving the superior temporal gyrus (STG) and middle temporal gyrus 
(MTG). Fig. 1B shows that the MDD patients had significantly lower SA 
in three clusters than the HC group. The first cluster involves vertices of 
the left inferior temporal lobe (ITG), STG, temporal pole gyrus (TPG), 
entorhinal cortex (EC), and fusiform gyrus (FG). The second cluster in
cludes vertices of the left FG and ITG. The third cluster involves vertices 
of the right STG, TPG, and EC. The detailed information for these clus
ters is listed in Table 2. 

3.3. Seed-based functional connectivity 

To determine the FC alterations in the MDD, we took the significant 
structural clusters as the seeds and compared the seed-based FC between 
the two groups. Fig. 2 shows that the MDD patients had significantly 
lower FC in two regions than the controls when we took the cluster at 
STG/MTG (obtained from CV comparison) as the seed. These regions are 
mainly distributed in the visual network according to the network par
cellation atlas (Yeo et al., 2011). 

3.4. Classification 

The logistic regression model analysis showed an 86.7% classifica
tion accuracy in distinguishing the MDD patients from the HC (Fig. 3). 
The area under the curve (AUC) was 0.93, the true positive rate (TPR) 
was 83%, and the false positive rate (FPR) was 10%. 

4. Discussion 

The present study applied a multi-modal fusion analysis, which 
included structural analysis and seed-based FC analysis, to detect the 
cortical morphological vulnerabilities and functional network alter
ations associated with structural abnormalities in MDD. The MDD pa
tients had significantly lower CV and SA in the temporal and occipital 

Table 1 
Demographical information of the Major Depressive Disorder (MDD) and 
healthy controls (HC) groups.  

Parameter MDD 
(n = 30) 

HC 
(n = 30) 

p-value 
(two-tailed) 

Gender 12 M/18F 12 M/18F 1.00 a 

Age (years old) 26.7 ± 5.9 26.3 ± 5.6 0.82b 

Educational level (years) 13.9 ± 3.5 13.9 ± 2.4 0.98b 

Onset age (years old) 24.5 ± 6.5 N/A  
Duration time (years) 2.23 ± 2.6 N/A  
HDRS 31.6 ± 7.3 N/A  

aχ2-test. btwo-sample t-tests. 
Abbreviations: HDRS, Hamilton Depression Rating Scale; MDD, Major Depres
sive disorder; HC, healthy controls; N/A, non-applicable; M, male; F, female. 

Fig. 1. Regions with significantly decreased brain structural morphological 
properties obtained from the surface-based analysis in the MDD group relative 
to the HC group (MDD < HC). (a) Cortical volume, and (b) Surface area. The 
color bar indicates the vertex-wise t values survived under a cluster-forming 
thresholded family-wise error (FWE) correction (p < 0.05). 

Table 2 
The cortical structural alterations of the Major Depressive Disorder (MDD) group 
compared with the healthy control (HC) group.  

Cluster MNI t Vertices Brain Areas 
x y z 

CV       
C1 60 − 4 0  − 3.33 374 R.STG, R.MTG 
SA       
C1 − 42 − 10 − 41  − 3.65 297 L.ITG, L.TPG, L.EC, L.FG, 

L.STG 
C2 − 40 − 48 − 20  − 3.89 190 L.FG, L.ITG 
C3 50 2 − 12  − 3.06 212 R.STG, R.TPG, R.EC 

This table lists the MNI coordinates of the clusters and the associated areas 
showing significantly decreased cortical volume (CV) and surface area (SA) in 
major depressive disorder (MDD) patients relative to the healthy controls (HC). 
These clusters were reported based on the Desikan-Killiany atlas (Desikan et al., 
2006). 
Abbreviations: STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, 
inferior temporal gyrus; TPG, temporal pole gyrus; EC, entorhinal cortex; FG, 
fusiform gyrus. C1, C2, and C3 refer the 1st, 2nd, and 3rd cluster, respectively. 
The MNI coordinates were on the mid-thickness surface (fs_LR 32 k). 

Fig. 2. The seed-based functional connectivity (FC) analysis in the MDD group 
relative to the HC group. (a) The selected seed was the region showing signif
icant between-group differences in the cortical volume. (b) An example of the 
ROI-based FC maps for an individual. The color bar shows the robust range of 
Fisher’s r-to-z transformed FC. (c) Clusters showed significantly decreased FC in 
the MDD group relative to the HC group. The color bar indicates the vertex-wise 
t values survived under a cluster-forming thresholded family-wise error (FWE) 
correction (p < 0.05). 
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cortices than the controls. The seed-based FC analysis revealed lower FC 
between STG/MTG and regions in the visual network relative to the 
controls. In addition, structural values (CV and SA) in those regions and 
FC between them provided a high classification accuracy in dis
tinguishing MDD patients from controls. 

4.1. Structural alterations 

The surface-based analyses showed that the values of CV and SA 
were lower in the regions involving the STG, MTG, EC, FG, ITG, and TPC 
in the MDD patients than in the HC (Fig. 1 and Table 2). These regions 
largely overlapped with brain sensory cortices (i.e., visual and auditory 
cortices). The STG, MTG, ITG, and TPC are located in the lateral tem
poral cortices, which are believed to be engaged in the auditory, visual, 
facial cognition, and language-associated functions (Acheson and 
Hagoort, 2013; Cheng et al., 2016; Ishai et al., 1999; Kellogg, 2003; 
Sakurai et al., 2008). The abnormality in these regions was found to be 
associated with symptom severity and suicidal behaviors in MDD pa
tients (Cao et al., 2016; Fitzgerald et al., 2008; Hwang et al., 2010; 
Kocsis et al., 2021; Li et al., 2010; Niu et al., 2017; Pan et al., 2015; Peng 
et al., 2015; Phillips et al., 2015; Takahashi et al., 2010). The FG is 
involved in face cognition and social communication (Haxby et al., 
2002; Hoffman and Haxby, 2000), and its alteration may influence the 
vulnerability to depression (Papmeyer et al., 2015). The EC acts as the 
gateway between the hippocampus and neocortex, and its volume was 
found to be decreased in patients with depression (Furtado et al., 2008). 
Moreover, optogenetic activation in the entorhinal-visual circuit was 
found to promote depressive behaviors in mice (Lu et al., 2022). 
Although depression is not a typical psychiatric disorder characterized 
by disturbed sensory perception, the sensory abnormality (e.g., visual, 
auditory, and touching systems) was found to contribute to the anhe
donia symptoms and individual emotional experiences in MDD (Bubl 
et al., 2012; Fitzgerald, 2013; Qiao et al., 2013; Schwenzer et al., 2012). 
The deficits in auditory and visual perception may potentially lead to 
attentional and control deficits in MDD patients (Grange and Rydon- 
Grange, 2022; Zweerings et al., 2019). Moreover, accumulating evi
dence reported interactions between sensory perception and depressive 

symptoms in MDD patients (Canbeyli, 2010; Canbeyli, 2013). For 
instance, a bidirectional relationship was suggested that sensory stim
ulation can modulate depression and in turn, depression impairs sensory 
perception (Canbeyli, 2022). 

4.2. Seed-based FC alterations 

The present study found decreased FC between the cluster at MTG/ 
STG and clusters in the bilateral occipital cortices (Fig. 2C). The 
impaired activity of visual cortices was found to be related to abnormal 
cognitive and emotional functions in MDD patients (Le et al., 2017). A 
previous study also found that the FC of the visual network may 
contribute to distinguishing MDD patients from controls (Zeng et al., 
2012). Moreover, repetitive transcranial magnetic stimulation to the 
visual cortices was reported to alleviate depressive symptoms (Zhang 
et al., 2021) and its activation was found to correlate with treatment 
responses in MDD patients (Furey et al., 2013). Our study reported 
significantly decreased FC between the STG/MTG and bilateral visual 
network, suggesting a disrupted connection between the auditory and 
visual cortices in MDD patients, which is consistent with previous 
studies (He et al., 2016; Lu et al., 2020). Taken together, the structural 
and functional alterations observed in the present study may suggest a 
disrupted sensory system in MDD patients. 

4.3. Classification 

The present study showed that the patients had brain structural and 
functional alterations in regions related to sensory processing functions 
(Figs. 1 and 2). Based on these multi-modal MRI alterations, we detected 
a relatively high classification rate (86.7%) in distinguishing the MDD 
patients from the healthy controls (Fig. 3). These findings indicated 
sensory processing abnormalities in individuals with MDD, which are 
consistent with previous studies (Bubl et al., 2010; Chen et al., 2022; 
Fitzgerald, 2013; Gong et al., 2020; Xia et al., 2022; Zweerings et al., 
2019). 

Furthermore, altered activity and connectivity of sensory areas have 
been identified as indicators of treatment responses and factors 

Fig. 3. The confusion matrix and receiver operating characteristic (ROC) curve of the logistic regression model. (a) The confusion matrix lists the classification 
performance of the logistic regression model. (b) The area under the curve (AUC) was 0.93, the true positive rate (TPR) was 0.83, and the false positive rate (FPR) 
was 0.1. 
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modulating depressive symptoms in individuals with MDD (Canbeyli, 
2022; Dichter et al., 2015; Farb et al., 2011; Furey et al., 2013; Gao et al., 
2018; Li et al., 2021; Rolle et al., 2020). Although the classification 
model performance is varied by modalities, cross-validation schemes, 
sample sizes, and classification algorithms, our classification result 
aligns with previous research that classified MDD patients from controls 
or predicted treatment outcomes (Aleem et al., 2022; Cohen et al., 2021; 
Gao et al., 2018). Previous reviews reported that the overall classifica
tion accuracy was 82% (Lee et al., 2018) and AUC was 0.84 (Cohen 
et al., 2021) for predicting treatments in MDD patients. The classifica
tion accuracy between MDD and HC reviewed by (Gao et al., 2018) was 
discovered to be ranged from 45% to 99% (Lord et al., 2012; Sunder
mann et al., 2017). In line with these studies, our cross-validated logistic 
regression model has shown a good classification performance, sug
gesting that sensory processing abnormalities may potentially serve as 
one of the disease biomarkers in MDD (Lu et al., 2020; Xia et al., 2022). 

5. Conclusion 

The present study showed that MDD patients had structural and 
functional alterations in the sensory system that contributed to a high 
classification accuracy in distinguishing the MDD patients from controls. 
The findings of structural and functional alterations in the sensory sys
tem may act as a neuroimaging biomarker in MDD disease. 

6. Limitations 

Several limitations should be considered in our study. First, the 
sample size in the current study is relatively small, which may bias the 
results and impact the result reproducibility. Future studies should 
address this issue by employing a larger sample size or including an 
independent sample for validation. Second, the subcortical areas were 
not considered in the SBA approach. In fact, the cortico-subcortical 
(limbic) circuits have been proposed to be involved in the pathophysi
ology of MDD (Disner et al., 2011; Kupfer et al., 2012). Future studies 
should consider the effect of subcortical areas on the mechanisms of 
MDD. Third, the removal of global signals can reduce physiological 
noise and alter neural signal distribution, and this approach is still in 
debate (Aquino et al., 2020; Murphy and Fox, 2017; Power et al., 2017). 
Future multi-modal MRI studies may also consider the effect of global 
signals. 
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