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SUMMARY

The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the 

key physiological characteristics of the immune system. Here, we focus on understanding the 

metabolic variability of MNPs through metabolic network analysis applied to three large-scale 

transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples 

across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and 

(3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled 

based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based 

computational approach, genes and metabolites (GAM) clustering, for unbiased identification 

of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic 

subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. 
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Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory 

dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by 

peritoneal and lung macrophages.

Graphical abstract

In brief

Gainullina et al. describe metabolic variability of the mononuclear phagocytes across 38 mouse 

tissues using GAM-clustering, a metabolic network analysis approach. The approach is applied to 

large-scale transcriptional datasets (ImmGen MNP OS and phase 1) and single-cell RNA-seq data 

(Tabula Muris) and highlights consistent metabolic modules across cells and tissues.

INTRODUCTION

The diversity of the myeloid cells across different tissues is truly astonishing, both in 

function and in their developmental trajectory.1,2 An additional dimension of this diversity 

is manifested by the metabolic characteristics of the individual mononuclear phagocytes, 

which can vary significantly based on the cell type and its location.3–5 At present, direct 

metabolomic profiling of tissue-residing subpopulations is not feasible, as the process of 

ex vivo sorting can be lengthy and cause significant metabolic perturbations.6,7 However, 

RNA levels are significantly more stable in the sorting process and can serve as a 

reasonably reliable proxy for activities of metabolic pathways.8,9 In this work, we focus 

on understanding metabolic variability across phagocytic subpopulations through integrated 
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examination of several large-scale datasets that transcriptionally profiled subsets of myeloid 

cells (Figures 1A–1C). Specifically, we have assembled a compendium of three datasets, 

including the public release of the dataset generated by the mononuclear phagocyte open-

source (MNP OS) ImmGen project.10

The ImmGen MNP OS dataset totals 337 samples and provides a source of information 

about individual cell subpopulations (Figures 1D and 1E). It extends the previous ImmGen 

effort that included 202 samples of various MNPs, also analyzed in this study (Figures 1F 

and 1G). In addition to an increased number of mature cell populations from adult mice 

(monocytes, macrophages, and dendritic cells), the MNP OS dataset contains macrophages 

from the yolk sac (embryonic day 10.5 [E10.5]) and macrophages differentiated in vitro 
from embryonic stem cells (embryoid body-derived macrophages, E6–E8). Furthermore, we 

leveraged recently released single-cell RNA sequencing (RNA-seq) profiling of the multiple 

murine organs (Tabula Muris Senis11) and reanalyzed those data by focusing only on the 

phagocytic populations across 18 tissues (Figures 1H and 1I). Taken together, a compendium 

of data assembled in this work covers multiple cell subpopulations found across 38 different 

tissues (Figure 1B).

Using these transcriptional data, we sought to identify the major metabolic features 

characteristic of the different populations of phagocytic cells and define how these 

features vary across the cell types and their locations. Such a computational task has 

not been addressed previously for data of such scale. Indeed, we previously described 

a computational approach, called genes and metabolites (GAM),12 that uses metabolic 

networks as the backbone for analysis of transcriptional data and provides a verifiable and 

systematic description of the metabolic differences between two conditions.9 However, the 

datasets in question contain hundreds or even thousands of individual profiles, while the 

GAM approach is designed to analyze comparisons between two conditions. Therefore, we 

have developed a computational approach, GAM-clustering, which performs an unbiased 

search of a collection of metabolic subnetworks that jointly define metabolic variability 

across large datasets (available on GitHub; see STAR Methods). By doing so, GAM-

clustering reveals metabolically similar subpopulations in a manner that does not require 

explicit annotation or pairwise comparison of individual samples. We demonstrate that 

this approach is more powerful in terms of identifying metabolic modules compared with 

conventional gene expression clustering approaches. Our analysis revealed major metabolic 

features associated with different cell subpopulations and highlighted several metabolic 

modules that are specific to individual cell types, tissues of residence, or developmental 

stages. As an example, GAM-clustering analysis revealed that the cholesterol de novo 
synthesis pathway might play an important role in the context of migratory dendritic cells 

(DCs), which we validated by measuring membrane cholesterol levels in migratory and 

tissue-resident DCs and using in vivo pharmacological inhibition of cholesterol synthesis 

followed by tracking of DC migration. As a second example, GAM-clustering revealed the 

antioxidant system as an important accompaniment of arachidonic acid metabolism during 

inflammatory response in tissue macrophages. Experimental measurement of cysteinyl 

leukotrienes production levels after inhibiting glutathione synthesis showed a biological 

effect of this system in peritoneal and lung alveolar macrophages.

Gainullina et al. Page 4

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Taken together, our work provides both (1) a data and analysis resource in terms of 

studying the variability of MNPs, as well as (2) a validated computational approach that can 

unbiasedly analyze both single-cell RNA-seq data as well as multi-sample bulk RNA-seq 

datasets in terms of key underlying metabolic features. Furthermore, we provide direct 

interactive access to the data for examination and visualization through both single-cell 

RNA-seq and bulk RNA-seq visualization servers, including metabolic cluster annotations 

obtained in this work (https://artyomovlab.wustl.edu/immgen-met/).

RESULTS

MNP OS and ImmGen Phase 1 (MNP P1) datasets

As a part of the OS ImmGen Project, a total of 337 samples were collected and profiled 

through the collaborative effort of 16 laboratories (Figures 1D, 1E, and S1A; Table S1). 

Each laboratory sorted specific populations of MNPs from 26 distinct tissues, isolated RNA 

from these populations, and submitted it for centralized deep RNA-seq and subsequent 

quantitation. Along with their samples of interest, each laboratory included RNA from 

locally sorted peritoneal macrophages as a common control for evaluation/correction of 

potential batch effects (STAR Methods, RNA-seq data processing). Of note, 15 samples 

from the MNP OS dataset were previously used in the study of sexual dimorphism of the 

immune system transcriptome,13 while the complete dataset has not been analyzed before 

this work.

Overall, the transcriptional data demonstrated high concordance between different collection 

sites and were merged into a final transcriptional master table (Figures S1B and S1C; Data 

S1). Previously established markers of individual myeloid subpopulations14–18 matched 

well with the sorted populations (Figure S2), indicating the overall consistency of the 

dataset across different research groups. As individual principal-component analysis (PCA) 

plots show (Figure 1D), samples have clustered in accord with their broad annotation 

as macrophages, DCs, monocytes, or microglia and not in terms of lab sorting or in 

terms of sequencing batch. Generally, subpopulation-specific effects were stronger than 

tissue-specific differences within individual subpopulations, as evident by comparing 

Figures 1D and 1E. To estimate the degree of metabolic variability in the data, we 

examined the enrichment of annotated metabolic pathways in this dataset, revealing coherent 

transcriptional patterns across individual subpopulations (Figure S3A). This indicated that 

systematic evaluation of the metabolic subnetworks within the data is warranted.

Initial ImmGen P1 data published previously5 include 202 samples of MNPs with a higher 

contribution of progenitor populations and a smaller number of microglial samples (Figure 

1F) overall spanning 16 tissues (Figure 1G)—we will refer to this subset as ImmGen 

MNP P1 from here onward. Similar to the MNP OS dataset, enrichment in metabolic 

pathways across subpopulations in MNP P1 data demonstrated coordinate variations across 

the samples (Figure S3B).
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Single-cell myeloid Tabula Muris Senis (mTMS) dataset

The Tabula Muris consortium has performed single-cell RNA-seq for many tissues without 

explicit sorting into individual cell populations.11 These data include myeloid cells localized 

in the corresponding tissues, which can be computationally separated based on the 

expression of common myeloid signatures. Using the latest public dataset, TMS, we have 

analyzed the data for 235,325 cells to identify 51,364 myeloid cells (MNPs and neutrophils) 

that expressed key myeloid markers (Lyz2, H2-Aa, Mki67, S100a9, Flt3, Emr1, Ccr2, 

Cx3cr1, Sall1, Clec4f, Lyve1, Itgax, Xcr1, Clec4a4, Siglech, Ccr7; Figures 2A and 2D; 

STAR Methods). These cells comprised a dedicated dataset, further referred to as the 

mTMS dataset. While single-cell RNA-seq data inevitably detect a smaller number of genes 

per cell compared with bulk RNA-seq (Figure S4), the depth of the mTMS dataset was 

sufficient to resolve classical cell populations. Specifically, unbiased clustering revealed 15 

subpopulations within the mTMS dataset (Figure 2B), which could be readily identified as 

well-described populations of plasmacytoid DCs, monocytes, Kupffer cells, microglia, and 

other cell types (Figure 2C) based on previously described cell-specific markers (Figure 2D). 

To our knowledge, we provide the first large-scale curated annotation for the myeloid cells 

within TMS data. Corresponding annotations are available for hands-on exploration in the 

interactive single-cell browser (https://artyomovlab.wustl.edu/immgen-met/, see TMS).

GAM-clustering: Identification of metabolic subnetworks in datasets with multiple 
conditions

Previously, we have shown that metabolic remodeling between two conditions can be 

analyzed using network-based analysis of their transcriptional profiles.9,12 Specifically, the 

GAM algorithm searches for optimal subnetworks within a global metabolic network by 

weighing individual enzymes in accord with the differential expression of their genes and 

then solving the generalized maximum-weight connected subgraph (GMWCS) problem.12,19 

While this approach cannot be directly translated to multi-sample/single-cell datasets such 

as ImmGen or TMS data, we were able to reformulate the weighting scheme in a manner 

that allows a GMWCS subnetwork search without explicit annotation of individual samples 

or conditions. Here, we describe a GAM-clustering method that allows the user to obtain 

metabolic subnetworks enriched within the transcriptional data that include many samples 

across multiple conditions.

In brief, GAM-clustering searches for connected metabolic subnetworks that have most 

correlated expressions of individual enzymes, resulting in a collection of subnetworks that 

follow distinct transcriptional profiles. To achieve that, we first initialize pattern-generating 

profiles by clustering all metabolic genes based on their co-expression patterns (Figure 3; 

see STAR Methods for details). For initialization of the multi-sample bulk RNA-seq data, we 

use k-medoids clustering with k = 32 (see Figures S5A and S5B for parameter sensitivity); 

any other gene expression clustering approach can be used in this step since downstream 

steps include significant regrouping and merging of individual clusters. For initialization 

of single-cell RNA-seq data, we first cluster the cells in the dataset into multiple clusters 

(~100), which provides a sufficient balance between fine resolution of the data and minimal 

coarse graining needed to avoid drop-out artifacts (see STAR Methods for details). Then, 

genes are clustered using the same procedure as for multi-sample bulk datasets.
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Next, each enzyme is weighed with respect to the similarity of its transcript’s profile to the 

average cluster/pattern profile, resulting in multiple weights per gene that are specific for 

each pattern (Figure 3). For any given pattern, weights of individual enzymes serve as input 

to the GMWCS solver, resulting in the individual subnetworks that are associated with each 

pattern. Individual subnetworks are then refined in an iterative procedure of updating the 

gene content for each pattern (see STAR Methods for details). The final output presents a 

set of specific subnetworks that reflect metabolic variability within a given transcriptional 

dataset (Figure 3).

GAM-clustering improves recognition of metabolic modules over unbiased clustering 
approaches

GAM-clustering utilizes preconceived knowledge about the underlying metabolic network 

and therefore is expected to be more powerful in terms of finding metabolically enriched 

modules. To evaluate this expectation, we compared GAM-clustering with commonly used 

unbiased clustering approaches such as weighted gene co-expression network analysis 

(WGCNA) and k-medoids (with Pearson correlation distance as a distance measure), 

which both allow identifying clusters of genes with high pairwise correlation. It is worth 

noting that the k-medoids approach is used as a part of the GAM-clustering method 

for generating the initial approximation (see STAR Methods for more details). Unlike 

GAM-clustering, both WGCNA and k-medoids methods do not take into consideration 

the network structure of metabolic reactions, so we expect that GAM-clustering improves 

recognition of metabolically enriched modules over these clustering approaches. To this end, 

we clustered 1,837 metabolic genes in the ImmGen MNP OS dataset using GAM-clustering, 

WGCNA, and k-medoids methods. As the k-medoids method requires an explicit setting 

of the parameter k equal to the number of produced clusters, k values were chosen to 

be equal to 10 and 20 to make the results comparable with 9 and 19 clusters unbiasedly 

produced by GAM-clustering and WGCNA methods, respectively. In an additional instance 

of the k-medoids clustering, k was set equal to 32 since this value was used for initial 

approximation production in the GAM-clustering method.

For each clustering method, obtained clusters (modules) were examined against 80 KEGG 

murine metabolic pathways by hypergeometric test (common and descriptive pathways 

corresponding to KEGG’s “global and overview maps” were not considered in order to 

increase the specificity of annotation; pathways with less than 10 constituting genes were 

also excluded). Modules’ overlap with the individual KEGG metabolic pathways was 

also analyzed in terms of the p value (p adjusted in the case of multiple comparisons) 

(Figure S6A) and the percentage of module’s covered genes (Figure S6B). For these 

comparisons, modules obtained by the GAM-clustering method demonstrate significantly 

higher enrichment in selected metabolic pathways in both metrics (p value and number 

of overlapping genes) compared with other clustering methods. Moreover, WGCNA and 

k-medoids have identified many modules without significant overlap with any KEGG 

metabolic pathway. This observation confirms that modules found by GAM-clustering are 

more relevant in terms of identifying metabolic features of the underlying dataset. Note that 

the GAM-clustering method does not specifically enforce enrichment in KEGG pathways 

but rather leverages the global metabolic network structure. An additional advantage 
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of GAM-clustering is its interpretability, as modules produced by GAM-clustering have 

moderate sizes from 5 to 39 genes and are composed of enzymes topologically closely 

located on the metabolic network (Figure S6C).

Major metabolic modules within MNP subpopulations

The GAM-clustering method was applied to data from all baseline (non-infected) samples 

and yielded nine distinct metabolic modules (Figure 4A; Table S2). Hierarchical clustering 

of samples based on the Euclidean distance metric in the space of these nine metabolic 

modules showed that they could be broadly separated based on the cell types: yolk 

sac macrophages, DCs, monocytes, and macrophages from an adult organism. Broadly 

defined mononuclear cell types are further split into several smaller metasamples: DCs 

subdivided into plasmacytoid DCs (pDCs), tissue-specific DCs, and migratory DCs 

(migDCs) and macrophages subdivided into microglia, adipose tissue macrophages, and 

a large metasample of tissue-residing macrophages, as well as an additional metasample 

composed of embryoid body, alveolar, and small peritoneal macrophages (SPMs) that 

clustered distinctly from other macrophage subpopulations (Figure 4A).

While obtained metabolic modules/subnetworks provide a more accurate description of 

metabolic diversity compared with canonically annotated pathways, the latter can be useful 

for coarse-grained understanding of functionalities associated with each subnetwork (Figure 

4B). Indeed, pathway enrichment analysis along with subnetwork gene content analysis 

indicate that modules 1, 2, 8, and 9 represent various aspects of lipid metabolism, and 

modules 3 and 4 represent two types of fatty acid synthesis pathways. Finally, distinct 

modules represent cholesterol synthesis metabolism- (module 5), glycolysis- (module 6), 

and nucleotide/folate metabolism-associated subnetworks (module 7).

The underlying metabolic phenotypes for each metasample can be represented using radar 

chart diagrams (Figure 4C): each metasample is defined by a specific combination of 

metabolic features that provides insights into metabolic wiring within those populations. 

Here, the names of metasamples are given based on the most common sample type inside 

the cluster. An alternative view of the samples in the space of metabolic modules can be 

obtained using PCA that is built based on only 9 metabolic modules, which shows the 

distinct separation of individual metasamples (Figure S6D). Consistently, when overlaid 

with the PCA representation from Figure 1, individual metabolic modules formed coherent 

patterns indicating the groups of metabolically similar samples (Figure S6E). Altogether, 

the metabolic modules/subnetworks and corresponding metasamples encapsulate metabolic 

variability across both cell types and their tissues of residency. We next turn to examine the 

robustness of the obtained subnetworks across three considered datasets.

Three independent large-scale datasets show consistent metabolic features

We next considered if metabolic subnetworks derived from ImmGen MNP OS data can be 

seen in the other two large-scale datasets considered in this work—ImmGen MNP P1 and 

mTMS datasets. While overlap in profiled tissues is considered (Figure 1B), three datasets 

are not identical in terms of populations profiled. We therefore grouped the samples into 19 

general classes and compared the datasets by looking at the metabolic enrichments across 
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these classes (Figure 5A; Table S3). To examine the robustness of metabolic signatures, 

we computed enrichments of individual metabolic modules from Figure 4A in each of the 

19 representative classes of ImmGen MNP OS, ImmGen MNP P1, and mTMS. Indeed, 

all dataset modules demonstrated extremely similar enrichment profiles (Figure 5B): for 

instance, module 1 was enriched in microglia, adipose tissue macrophages, and Kupffer 

cells, module 8 was enriched in alveolar macrophages, and module 5 was enriched in pDCs 

and migDCs across all datasets.

Importantly, independent application of the GAM-clustering method to each of the datasets 

also revealed a very high degree of similarity in obtained modules, highlighting the 

reproducible and robust nature of the derived metabolic subnetworks (Figure S7A).

Next, we examined individual subnetworks from the perspective of metabolic reactions 

covered and described both published evidence of the corresponding metabolic activities and 

validation data obtained in this project.

Subnetworks associated with early developmental stages

Module 6 (Figures 6A, 6B, and 6D) is one of the modules most distinctly associated 

with the yolk sac, embryoid body, alveolar, and SPMs. This module, though unbiasedly 

derived by our network analysis, closely matches the canonical glycolysis pathway (Figure 

6B), indicating strong transcriptional co-regulation of these genes across the collected 

samples. Enrichment of the glycolysis module in developmental cell types is consistent 

with previously published data highlighting the importance of glycolysis for stem-like 

and progenitor populations.20–23 This is also consistent with the ImmGen MNP P1 and 

mTMS data (Figure 6D), where this module is also most enriched in progenitor populations. 

Interestingly, mTMS single-cell RNA-seq data also demonstrate that this module is enriched 

in neutrophils, in accord with the described high glycolytic rate in these cells.24

Module 7 (Figures 6A, 6C, and 6D) represents another set of metabolic activities, including 

folate and serine metabolism and the nucleotide biosynthesis pathway, typically associated 

with the progenitor populations.25–27 In addition to the yolk sac macrophages, this module 

is also enriched in some tissue-residing DCs and pDCs (but not in migDCs). Indeed, the 

importance of some of these pathways (e.g., folate metabolism) has been demonstrated in 

DC functions such as antigen presentation.28

Cholesterol synthesis pathway is enriched in and functionally important for migDCs

Module 5 almost exclusively consists of enzymes from the cholesterol metabolism/

mevalonate synthesis pathway and is enriched in embryoid body macrophages and some 

DC subsets (Figures 6D–6F). Specifically, cholesterol synthesis appears to play a major 

role in migDCs, while it is less prominent in pDCs and conventional tissue-residing 

DCs. Additionally, with respect to potential tissue-specific imprinting, it is worth noting 

that a small subset of tissue-residing macrophages, comprised of epithelial and dermal 

macrophages, are enriched in genes of the mevalonate/cholesterol synthesis pathway (Figure 

6E).
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One of the main achievements in this work is the proof of the feasibility of metabolite 

level predictions from gene expression. For example, GAM-clustering analysis makes it 

possible to link cell cholesterol levels with the expression of specific genes. To illustrate this 

assertion, we analyzed cholesterol levels in cell plasma membranes in migDCs and tissue 

DCs using flow cytometry and perfringolysin O (PFO)-binding assay. Because PFO binds 

selectively to cholesterol-rich domains of cell membranes,29 its binding level correlates with 

cholesterol expression and membrane transport. Interestingly, PFO binding was significantly 

higher in migDCs migrating from the skin to skin-draining lymph nodes (sdLNs) compared 

with tissue conventional DCs from the spleen, liver, lungs, and perigonadal fat (Figures 6G, 

6H, and S7B). This pattern of cholesterol synthesis revealed by PFO binding was concordant 

with the increased expression of genes from the cholesterol module in migDCs (Figure 6E), 

indicating the biological relevance of increased cholesterol biogenesis in migDCs.

Enrichment of cholesterol metabolism in migDCs is consistent with mechanistic data by 

Hauser and colleagues, who showed that cellular cholesterol levels are directly linked to 

the ability of DCs to oligomerize Ccr7 (a key marker of migDCs) and acquire a migratory 

phenotype.30 Given the results of our analysis and these published mechanistic connections, 

we evaluated mobilization of DCs to LNs following epicutaneous application of fluorescein 

isothiocyanate (FITC) in either control mice or mice treated intraperitoneally (i.p.) with low-

dose simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reductase 

(0.57 mg/kg/day), for 7 days (Figure 6I), which significantly decreased cholesterol levels 

in their plasma (Figure 6J). dLNs collected 18 h after FITC application demonstrated 

significantly fewer migrated FITC+CD11c+ DCs in the animals treated with simvastatin, 

illustrating that in vivo interference with cholesterol synthesis reduces DC migration to the 

LN, fitting with the prominent expression of cholesterol synthesis genes in DCs (Figure 

6K). Surprisingly, simvastatin treatment increased membrane cholesterol levels of migDCs 

isolated from dLNs (Figure S7C), suggesting a cell-level compensatory mechanism in 

migDCs that counteracts systemic decrease in circulating cholesterol.31 Additionally, in this 

model, we cannot exclude an indirect effect of cholesterol-synthesis inhibition on migDCs 

via altered chemotactic effects in LNs. Nevertheless, these results illustrate general validity 

of our analysis and highlights features of the systemic metabolic perturbations, such as statin 

treatments, that were not recognized previously.

Subnetworks associated with lipid metabolism

Modules 1 and 2 cover various aspects of lipid metabolism and are strongly specific to 

macrophages relative to monocytes and DCs (Figures 7A–7D). Due to general similarity 

of their patterns, we merged the subnetworks for modules 1 and 2 in order to make the 

interpretation easier (Figures 7C, 7D, S8A, and S8B). The resulting subnetwork is centered 

around phospholipid and arachidonic acid metabolism and includes parts of the glutathione 

and cysteine/glutamate/glycine metabolism pathways, as well as the N-acetylglucosamine 

pathway. Indeed, arachidonic acid metabolism has been shown to play major role in 

macrophages.32,33 Its metabolic flow is associated with utilization of phospholipids to 

produce two major classes of arachidonic acid derivatives: leukotrienes and prostaglandins. 

Unlike prostaglandins, cysteinyl leukotriene production (C4 and downstream) requires 
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glutathione as an intermediate metabolite, thus involving the glycine, cysteine, and 

glutamate pathways.34

To validate the biological role of this metabolic module in tissue macrophages, we 

sorted mouse peritoneal and lung alveolar macrophages (Figure S8C), followed by 

inhibiting glutathione synthesis using buthionine sulfoximine (BSO), an inhibitor of gamma-

glutamylcysteine synthase (Figure 7E). Production of prostaglandin E2 (PGE2) is the 

glutathione-independent pathway of arachidonic acid derivative metabolism. In keeping with 

this metabolic model, glutathione depletion did not alter PGE2 secretion by peritoneal and 

alveolar macrophages activated with zymosan, a TLR2 and Dectin-1 agonist (Figure 7F). In 

contrast, as predicted by increased transcription of genes connecting glutathione synthesis to 

cysteinyl leukotriene production in tissue macrophages, glutathione depletion significantly 

reduced cysteinyl leukotriene secretion from zymosan-activated peritoneal and alveolar 

macrophages (Figure 7G). These results show that tissue-resident macrophages profoundly 

depend on glutathione synthesis to efficiently secret cysteinyl leukotriene, suggesting the 

role of glutathione-arachidonic acid metabolism as a key regulator of the inflammatory 

function of tissue macrophages.

Furthermore, our analysis picked up a distinct subnetwork of coexpressed genes from 

the glycerophospholipid pathway (module 9; see Figures S8D–S8F) that was particularly 

highly expressed in the microglial populations (Figure S8D). This module included enzymes 

such as Dgkd and Lpcat2, suggesting that their role in microglia might be of particular 

interest.35,36 As Figure S8E shows, these observations were common across all three 

datasets.

Subnetworks associated with fatty acid synthesis and degradation

Our analysis identified three distinct subnetworks associated with the modulation of fatty 

acids in terms of both their synthesis (modules 3 and 4) and fatty acid oxidation (module 8) 

(Figure S9).

The structure of module 3 (Figures S9A–S9C) reflects the energetic demands of the fatty 

acid synthesis and includes portions of the pentose phosphate pathway and the TCA cycle, 

where citrate synthase (Cs) is one of the most pattern-specific genes within this subnetwork. 

Overall, module 3 is highly enriched in DC populations but not in macrophage/monocyte 

samples, underscoring another facet of metabolic divergence between these cell types. The 

functional importance of this module for DCs is evident from the fact that a blockade of 

fatty acid synthase (Fasn)-mediated fatty acid synthesis markedly and selectively decreases 

dendropoiesis both in mice and in humans.37,38

Interestingly, the pattern of module 8 (Figures S9A, S9B, and S9E) was directly opposite 

to module 3 and was strongly enriched among various tissue macrophages, particularly in 

alveolar macrophages. Metabolic flow encompassed by this network includes enzymes such 

as Lipa (LAL), which is responsible for lysosomal lipolysis and the initial breakdown of 

intracellular lipid storage. This breakdown is followed by mitochondrial import of cytosolic 

fatty acids via carnitine transport shuttle (Cpt1a) and their subsequent breakdown via 

classical fatty acid oxidation (FAO) steps (Acox1, Hadha, etc.)39,40 (Figure S9E). The 
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Lipa expression pattern is one of the most specific for module 8, indicating its potential 

importance for macrophages. Indeed, there are studies highlighting the importance of Lipa 

for macrophage function, especially in the context of anti-inflammatory polarization.41 

Furthermore, Lipa is also likely to be important for human macrophages, as mutations in 

the LIPA gene of patients with cholesteryl ester storage disease (CESD) cause aberrant 

cholesterol accumulation in tissue macrophages.42,43 Enrichment of FAO-related module 8 

in alveolar macrophages is particularly interesting as it is distinctly reproduced in ImmGen 

MNP P1 and mTMS data. The importance of this pathway in the lungs is intriguing and 

warrants further detailed investigations.

DISCUSSION

Here, we introduced a dataset covering multiple subpopulations of DCs, monocytes, and 

macrophages from diverse tissues—the result of ImmGen MNP OS profiling effort. We 

focused on understanding potential metabolic variability among collected myeloid cell 

subpopulations and co-analyzed it in the context of two other large-scale profiling efforts—

ImmGen P1 and TMS. Using an algorithmic approach (GAM-clustering), we have defined 

9 metabolic subnetworks encapsulating the major metabolic differences that were highly 

reproducible across three studied datasets. Our analysis demonstrated that specific metabolic 

features could be attributed to cell populations and specific tissues of residence for distinct 

populations (e.g., adipose tissue macrophages).

Our analysis suggested that major metabolic differences between baseline (unactivated) 

macrophages and DCs are (1) levels of Fasn-mediated fatty acid synthesis enriched in DCs’ 

transcriptional profiles and (2) regulation of arachidonic acid metabolism, which is enriched 

in macrophages. Among various tissue-residing cell types, it was apparent that microglia and 

CNS macrophages have a very distinct phenotype relative to other populations: based on 

their transcriptional profile, they appear more metabolically quiescent, yet a particular lipid-

associated module (module 9) was enriched in these cells, with key genes being Lpcat2, 

Dgkd, and Csd1, which are involved in phospholipid metabolism and the generation of 

bioactive lipids from phospholipid precursors. Of interest, hierarchical metabolic clustering 

of macrophages places adipose-tissue macrophages and microglia closer than another group 

of diverse tissue macrophages. Residence in a lipid-rich environment made lipids an integral 

and very important part of microglia phenotype and functions regulation, which was shown 

in a wide range of publications.44–47 Perturbations in lipid substrate utilization can also 

affect microglia’s phagocytic and inflammatory statuses, shaping disease-specific microglia 

features.48–50

Indeed, distinct patterns in lipid metabolism, including pathways related to cholesterol, were 

also apparent in DCs versus macrophages. Macrophages’ capacity to handle cholesterol 

and store it in esterified form to generate so-called macrophage foam cells is a well-

established theme in cardiovascular research and inflammatory disease.51,52 Our data reveal 

that expression of Lipa, an enzyme involved in breaking down cholesterol esters in the 

lysosome and whose mutation is associated with lysosomal storage diseases, is a widespread 

characteristic of tissue macrophages but not DCs. On the contrary, we observed that 

Gainullina et al. Page 12

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathways active in cholesterol synthesis are very low in all tissue macrophages but elevated 

in monocytes and DCs, especially migDCs.

Thus, it appears as though macrophages are oriented toward handling exogenously derived 

cholesterol, such as that which may be derived from engulfment of large amounts of 

phagocytic cargo, whereas DCs are oppositely programmed to synthesize their own 

cholesterol and associated intermediates. Tissue macrophages are especially incapable of 

migrating to distal sites like LNs, a major functional distinction from DCs. We showed 

that transcriptional activity of cholesterol biogenesis genes and membrane cholesterol levels 

was increased in migDC compared with tissue DC subsets, suggesting its important role 

in DC migration from tissues into LNs. Moreover, we validated the importance of the 

cholesterol synthesis pathway for migDCs in vivo by using pharmacological interventions 

with simvastatin. However, our results show that membrane cholesterol levels in migDCs 

were increased in the context of circulating cholesterol lowering, indicating that further 

studies are needed to understand better the interplay between systemic and cellular 

cholesterol metabolism and DC migration.

Finally, we predicted and validated experimentally the elevated activity of metabolic 

pathways connecting glutathione synthesis and the production of cysteinyl leukotrienes 

in tissue macrophages. Cysteinyl leukotrienes are established mediators of bronchial 

asthma.53 Dectin-2 activation induces cysteinyl leukotrienes synthesis in lung phagocytes 

and increases Th2 immunity.54 Our results suggest a role of glutathione-mediated metabolic 

fine-tuning of Th2 immune responses through the cysteinyl leukotriene axis in alveolar 

macrophages.

Altogether, our analysis underscores metabolic variability across cell types and tissues 

and highlights the need to understand metabolic wiring not only in terms of cellular 

metabolism but also at the level of whole-body communication networks (see, e.g., Castillo-

Armengol and colleagues55 and Droujinine and Perrimon56). Furthermore, since direct 

metabolic profiling is not feasible or sufficiently accurate now, the development of ex vivo 
metabolomics profiling technologies57–59 suggests that direct insight into metabolism of 

various myeloid subpopulations through in vivo metabolomics techniques will be possible in 

the future.

Lastly, there are several aspects of this approach that can be further improved in the future. 

First, the current graph structure reflects the connectivity of a metabolic network but does 

not take into account explicit directionalities of specific reactions. This is a consequence 

of the use of the underlying path-solving algorithm, which works on undirected graphs19 

and can potentially impede interpretability of the results. Furthermore, the connectivity of 

the current network is based on the existence of metabolic reactions between individual 

metabolites and does not explicitly take into account transformation of individual atoms 

(carbons, nitrogens, etc.), akin to what can be measure in metabolic flux analysis. This can 

be addressed by introducing a more refined, atomistic structure of the metabolic network, 

as was recently done in the Shiny GATOM approach.60 Finally, utilization of different 

clustering metrics (e.g., silhouette) may be added to assess the quality of derived modules 

and therefore improve clustering.
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Limitations of the study

Even though gene expression might be considered a reliable proxy for metabolic processes 

exploration, it provides an indirect estimate of cellular metabolism. Mass-spectrometry-

based single-cell metabolomics, 13C-label-tracing, extracellular flux analysis, and protein 

data, as well as metabolic enzymes activity, are still valuable and necessary supplements to 

bulk and singlecell data to provide the full picture. However, no coherent data of this kind 

were available for the analyzed datasets.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Maxim N. Artyomov 

(martyomov@wustl.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The ImmGen MNP Open Source RNA sequencing dataset generated during 

this study has been deposited at GEO repository (GSE122108) and is publicly 

available as of the date of publication. This paper also analyzes existing, publicly 

available data: The ImmGen Phase 1 dataset (GSE15907) and The Tabula Muris 

Senis dataset (GSE149590). All accession numbers are also listed in the key 

resources table.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains—Female and male C57BL/6J mice of 6-week old were purchased from 

the Jackson Laboratory and housed in specific-pathogen-free animal facility at Washington 

University in St. Louis during two weeks before the start of experiments. Animal protocols 

used in this study were approved by the Institutional Animal Care and Use Committee 

at Washington University in St. Louis. Mice were co-housed and randomized before 

creating body-weight-balanced groups to treat with simvastatin or PBS. Mice used for flow 

cytometry analyses were euthanized at 10–11 week of age after 8 h fasting. Investigators 

were not blinded to experimental groups. No animals were excluded from analysis.

Primary cell culture—Mouse primary macrophages were sorted from peritoneal cavity 

fluid (peritoneal macrophages, CD45+CD11b+F4/80+CD64+) and lung tissue (alveolar 

macrophages, CD45+CD11b−F4/80+CD64+). 5 × 104 cells were plated in 0.2 mL of RPMI 

media +10% FCS in the presence of 2 mM glutamine and incubated with or without 0.5 mM 
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buthionine sulfoximine (BSO) for 12 h followed by activation with zymosan for additional 4 

h. Supernatant media were collected and used for ELISA assays.

METHOD DETAILS

RNA-sequencing—Bulk RNA-sequencing data were collected from 16 labs. All of the 

mice used in this study were handled in accordance with IACUC-approved protocols. Each 

lab, in addition to their own samples, sorted a standard peritoneal cavity macrophage 

population (CD115+B220−F4/80hiMHCII−) for comparability between all labs. Samples 

were profiled using ImmGen’s ultra low input (ULI) sequencing pipeline, in batches of 

90–96 samples. All samples were sequenced in two separate NextSeq500 runs and combined 

for increased depth (expect 8–12 106 reads per sample).

RNA-sequencing data processing—Following sequencing, ImmGen MNP OS raw 

reads were aligned with STAR to the mouse genome assembly mm10, and assigned to 

specific genes using the GENCODE vM12 annotation. Aligned reads were quantified using 

featureCounts. Samples that did not pass the QC threshold for read counts (<2 million reads) 

were dropped for further analysis. Pearson correlation was calculated between biological 

replicates to exclude samples that did not pass a threshold of 0.9 correlation coefficient. 

For the cell populations with three biological replicates, of which one did not agree with 

the other two, the suspect one was removed from the dataset. In case cell populations had 

only two replicates, both were removed. Samples with Jchain>1,000 and Ighm>10,000 were 

set asides as well as samples with high B cell, erythrocytes and fibroblasts transcripts. 

Peritoneal cavity samples were downsampled to keep consistency across samples number 

in all tissues. All gene counts were imported into the R/Bioconductor package EdgeR 

and TMM normalization size factors were calculated to adjust for differences in library 

size across all samples. Feature not expressed in at least three samples above one count-per-

million were excluded from further analysis and TMM size factors were recalculated to 

create effective TMM size factors. The effective TMM size factors and the matrix of counts 

were then imported into the R/Bioconductor package Limma and weighted likelihoods based 

on the observed mean-variance relationship of every gene and sample were then calculated 

for all samples. Performance of the samples was assessed with a Pearson correlation matrix 

and multidimensional scaling plots. As GAM-clustering method itself does not perform 

any counts normalizations or batch corrections, ImmGen MNP OS data were assessed for 

presence of any batch effect by PCA plots.

Single-cell RNA-seq data processing—Filtered h5ad file for Droplet subset was 

downloaded from the official Tabula Muris Senis repository (https://figshare.com/projects/

Tabula_Muris_Senis/64982). The data were processed by the standard Seurat pipeline and 

resulted in 235,325 cells organised in distinct clusters detectable on TSNE/UMAP plots. 

Next, cells annotated with names corresponding to myeloid populations were picked out. 

A differential gene expression analysis between these cells and all others was performed. 

Top 250 of these differentially expressed genes were used as a “myeloid signature genes” 

(Table S4) to identify clusters that most express them and thus correspond to myeloid cells. 

Cell content of these clusters was used to create a subset of 60,844 cells. Obtained dataset 

was analyzed by non-myeloid marker genes to detect and remove cell doublets with T-cells, 
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B-cells, NK-cells and fibroblasts (Cd3d, Cd3e, Cd3g, Cd4, Cd8a, Cd19, Cd79a, Tnfrsf17, 

Cd22, Nkg7, Gnly, Col6a1, Col6a2, Col6a3). Finally, dataset of 51,364 cells was obtained 

and used in the further GAM-clustering analysis.

GAM-clustering—The algorithm for multisample metabolic network clustering 

(hereinafter referred to as GAM-clustering) identifies modules describing regulation of 

metabolism and is based on the previously developed GAM method.12 GAM-clustering 

extends the GAM method by setting the task to find not one but several metabolic modules 

(connected subnetworks of metabolic network) with the condition that each of these modules 

should contain as many metabolic genes with high pairwise correlation of their expression as 

possible.

The metabolic network used in the current analysis is presented as a graph where vertices 

are metabolites and edges are KEGG database reactions which are mapped with catalyzing 

them enzymes and corresponding genes. This network is an undirected pseudograph. Totally, 

network contains all possible biological reactions documented in KEGG database. Reactions 

specific for metabolism of Mus musculus were selected based on gene annotation provided 

by KEGG and Bioconductor (https://bioconductor.org/packages/org.Mm.eg.db/).61

Expression matrix given as an input for GAM-clustering method has rows corresponding 

to genes and columns corresponding to the sequenced samples. GAM-clustering does not 

consider column annotations during the module deriving process.

There are two major parameters that control the number and the sizes of the final modules: k 
– the initial number of gene clusters, and base – the value which is used during edge weights 

calculation thereby enforcing the certain level of gene expressions correlation in the module. 

The initial approximation of the final set of modules is carried out by k-medoids clustering 

of a gene expression matrix for all metabolic genes of a dataset with some arbitrary k (here 

we used k = 32, see Statistical analysis of the GAM-clustering method for details and Figure 

S5A). Each cluster forms a corresponding expression pattern which can be determined as 

averaged value of its z-normalized gene expression values. The metabolic network used for 

further analysis is presented as a graph where vertices are metabolites and edges are KEGG 

database reactions which are mapped with catalyzing them enzymes and corresponding 

genes. For each particular pattern edges of this graph are scored (weighted) based on their 

gene expression similarity with this pattern and dissimilarity with other patterns.

For each case of weighted graph a connected subgraph of maximal weight is found by 

a signal GMWCS (generalized maximum weight connected subgraph) solver19,62 (https://

cran.r-project.org/web/packages/mwcsr/) and is called a metabolic module. This solver uses 

the IBM ILOG CPLEX library, which efficiently performs many iterations of this method in 

a reasonable amount of time. Then, each pattern is updated by replacing it with an averaged 

gene expression of the module’s edges with a positive score. If the pattern is changed, a new 

score set is calculated and a new iteration is performed. Before moving to the next iteration, 

small graphs are eliminated from further analysis so that there are no graphs with less than 

five edges and diameter less than four in the output solution. The algorithm continues until 

the pattern content stops changing.

Gainullina et al. Page 16

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bioconductor.org/packages/org.Mm.eg.db/
https://cran.r-project.org/web/packages/mwcsr/
https://cran.r-project.org/web/packages/mwcsr/


For the selection of the optimal set of modules we have assessed a range of module 

characteristics, for example, mean pairwise correlation of module edges (i.e. genes) and 

the number of annotating pathways (see more details in Statistical analysis of the GAM-

clustering method). Altogether, the most cohesive and informative modules were obtained 

using k = 32 and base = 0.4 (Figure S5B), which we decided to use for the consecutive 

analysis.

GAM-clustering method is applicable not to bulk RNA-seq data only but to single-cell 

RNA-seq data as well. Single-cell data need an additional step of preprocessing implying 

transformation of individual cells into technical samples. This is performed based on 

averaging gene expressions of individual cells inside high resolution clusters. In case of 

single-cell RNAseq data, among final metabolic modules might occur ones that do not cover 

all biological replicas of cell types they are specific for. These modules are eliminated from 

the final result.

Thus, the final metabolic modules are subnetworks of the overall metabolic network that 

contain a set of closely located genes with high correlation of their expression profile across 

all samples.

GAM-clustering method is available at https://github.com/artyomovlab/

ImmGenOpenSource.

Staining cells with perfringolysin O (PFO)—The cell suspension was prepared from 

collagenase D-treated and dissociated spleen, skin-draining lymph nodes, perigonadal white 

adipose tissue, lungs, and liver of wild-type 8-week-old male and female C57BL/6J mice 

(Jackson Labs).63 The cells were stained with Aqua Live/Dead kit followed by staining 

with 10 mg/mL of Perfringolysin O (PFO) from Clostridium perfringens (Cusabio # CSB-

EP314820CMB) in PBS at +25°C for 30 min, washed 3 times, and stained with an antibody 

cocktail (CD45 BUV563 clone 30-F11, I-A/I-E BUV496 clone M5/114.15.2 from BD, 

CD11c PE-Cy7 clone N418, CD3e AF488 clone 145-2C11, CD19 FITC clone 1D3/CD19, 

NK1.1 AF488 clone PK136, TER-119 AF488 clone TER-119, F4/80 AF488 clone BM8 

from BioLegend, anti-Perfringolysin O rabbit antibody [Abcam # ab225685] and Goat 

anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody AF647 [Thermofisher 

# A-21245]) and Fc-block for 30 min on ice. The cells were analyzed by flow cytometry 

using FACSymphony A3 Cell Analyzer and FlowJo software.

DC migration assay—Epicutaneous application of Fluorescein isothiocyanate (FITC) to 

study DC migration was performed on three areas of each side of the mouse back skin.64 

Both females and males were studied. Briefly, FITC (8 mg/mL) was dissolved in acetone 

and dibutyl phthalate and applied in 25-μL aliquots to each site. Recovered lymph nodes, 

18 h later, were teased and digested in 2.68 mg/mL collagenase D for 25 min at 37°C. 

Then, 100 μL 100 mM EDTA was added for 5 min, and cells were passed through a 

100-μm cell strainer, washed, counted, and stained for flow cytometry after counterlabeling 

with PE conjugated anti-CD11c (Biolegend). Prior to FITC painting, some cohorts of 

mice were treated with simvastatin i.p. at 0.57 mg/kg/day for 7 days, as this protocol 

was previously shown to significantly block monocyte diapedesis from the bloodstream.65 
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Control mice received vehicle i.p. For plasma cholesterol level measurements, blood was 

collected from the retro-orbital venous sinus in EDTA-coated tubes from mice fasted for 6 

h and anesthetized with isoflurane. Plasma was separated by centrifugation at 3000 RPM 

at +4°C for 10 min. Total plasma cholesterol levels were measured using a colorimetric 

Cholesterol Quantitation Kit (Sigma #MAK043).

Analysis of arachidonic acid metabolite secretion by primary mouse 
macrophages—The cell suspension was prepared from the lungs and peritoneal fluid 

of wild-type 8-week-old male C57BL/6J mice (Jackson Labs).63 The cells were stained with 

an antibody cocktail (CD45 APC/Cy7 clone 30-F11, CD64 APC clone X54–5/7.1, F4/80 PE 

clone BM8, CD11b BV421 clone M1/70 from Biolegend) and Fc-block on ice for 15 min 

followed by sorting of large peritoneal macrophages and lung alveolar macrophages using 

BD FACSAria II Cell Sorter. 5 × 104 macrophages were incubated in 100 mL of RPMI 

+10% FCS in 96-well plates in the presence of 0.5 mM buthionine sulfoximine (BSO), an 

inhibitor of GSH synthesis, for 12 h followed by activation with 5 × 106 particles per ml 

of zymosan (Invivogen) for 4 h. PGE2 and cysteinyl leukotrienes were measured in cell 

supernatants using ELISA kits.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the biological data—No statistical method was used to 

predetermine the sample size. For comparison of groups, non-paired two-tailed t test 

was used. In case of multiple comparisons, p values were adjusted using the Dunnett’s 

correction. Statistical analyses were performed with Prism v9.4.1 (GraphPad Software). 

Data are shown as means ± standard errors of mean. p < 0.05 was considered statistically 

significant.

Statistical analysis of the GAM-clustering method—The initial approximation of 

the final metabolic modules is carried out by k-medoids clustering of the expression matrix 

of all metabolic genes of the dataset with some arbitrary parameter k (here used k = 

32). Each cluster forms a corresponding expression pattern which can be determined as 

the averaged value of z-normalized gene expression values in this cluster. Then, a gene’s 

score relative to each cluster is calculated according to formula (4). This score represents 

similarity of gene expression with the module’s pattern (1) and dissimilarity with other 

modules’ patterns (3). Formally, score is defined as follows:

d gi, cj = 1 − cor gi, cj Equation 1

d gi, c0 ≡ base Equation 2

d′ gi, cj = min
k ≠ j, k ∈ 0, M

d gi, ck Equation 3

score gi, cj = − log d gi, cj

d′ gi, cj
Equation 4

Gainullina et al. Page 18

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where gi– expression of the i-th gene,i ∈ 1, N ;

cj– pattern of the j-th cluster,j ∈ 1, M ; ck – pattern of the j-th cluster or the fake pattern,

j ∈ 0, M ; c0– the fake pattern;

d – distance to the pattern the score is being calculated for;

d’ – distance to the pattern which this gene has the most correlation with.

(all other patterns are considered except the pattern the score is being calculated for);

base – distance to the fake pattern.

The following approach allows to avoid collapsing similar modules with enough supporting 

genes into one module as only one positive score per gene is possible.

Thus, a set of networks where each edge is weighted according to its gene score is formed. 

For each pattern a connected subgraph of maximal weight is found. These subgraphs are 

called metabolic modules. This procedure is carried out by an SGMWCS (signal generalized 

maximum weight connected subgraph) solver19,49 (https://cran.r-project.org/web/packages/

mwcsr) which uses the IBM ILOG CPLEX library that efficiently performs many iterations 

of this method in a reasonable amount of time. Thus, an iterative procedure of metabolic 

modules refinement is performed in a process of updating each of the patterns by replacing it 

with an averaged gene expression of the module’s edges with a positive score.

One of the important parts in the procedure of updating the modules is the question when 

to stop. To answer this question, the difference between the values of the patterns of the 

current iteration and the values of the patterns of all previous iterations, in which there 

were the same number of modules, is found (this is done to avoid missing the situation 

when new iteration comes to the condition close to one that once already has occurred). If 

difference is large (>0.01) which means that pattern content is quite changed, a new score 

set is calculated and a new iteration is performed. If the difference between patterns is small 

enough (<0.01), but non-informative (having less than 5 edges and/or diameter less than 

4) modules are still presented in the output, the less informative (most correlated with any 

other graph) module is eliminated from the further analysis. After removing one module, the 

weights are recalculated and a new iteration of refinement is performed. The final result is 

a set of specific subnetworks that reflects metabolic variability among the samples of the 

analyzed transcriptome data.

The GAM-clustering method has two parameters: the number of initial clusters k (here 

used k = 32) and the distance to the fake pattern base (here used base = 0.4). They affect 

the number, the size, intramodular gene correlation, and the number of unique annotating 

pathways of the resulting modules (Figures S5A and S5B).

To explore the influence of k value to number of final modules the model data were 

designed. They imitate experiment with complex design (15, 18 or 21 samples) where 

several (5, 10 or 15) modules are active each in a particular subset of samples. All 

combinations of these data were analyzed by the GAM-clustering method and the following 
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output features were calculated: number of final modules found by method, number of 

iterations performed and time elapsed during the analysis (Figure S5A). As these data are 

modeled, we know how many modules are there in each experiment (dashed line in Figure 

S5A) and therefore we can evaluate how the number of found modules relates to the number 

of real modules. In most cases GAM-clustering found approximately all real modules when 

launched with the value k several times greater that the number of real modules. Moreover, 

a further increase of k does not lead to results improvement, but nonlinearly increases the 

number of iterations and the working time of the method. Thus, it is reasonable to detect 

some advisable k value so that user gets approximately full set of modules and does not 

spend to much time for the analysis. As in real data we do not know the number of real 

modules, there is a heuristic approach that allows to find some k based on the characteristics 

of the input data. This approach is based on elbow method that calculates the total within-

cluster sum of square (wss) for each k. For expression data there is no pronounced inflection 

point where wss is sharply stops decreasing (usually this point is considered equal to the 

optimal number of clusters). Here, we used point where the slope of the wss curve is 50% 

as steep as its steepest slope. Corresponding to this point abscissa value was considered as k 
value.

The strategy for selecting optimal value of base parameter was formed on the basis of 

real data analysis, since it requires consideration of the biological meaning of the obtained 

modules. At the beginning of the analysis, the GAM-clustering algorithm produces some 

recommended value of k (see previous paragraph). For this k, we can calculate the average 

dissimilarity (distance) between the observations of the initial cluster and this cluster’s 

medoid over all clusters. Obtained value is proposed by the method as the recommended 

value of the base parameter. For the ImmGen MNP OS data analyzed in this study, 

there were 32 initial clusters proposed and the recommended base value was equal to 

0.4. This base value was determined to be optimal during the comparative study of the 

results obtained with other different base values (Figure S5B). The optimality criterion 

included the calculation of the following characteristics of the output modules: their number, 

size, average correlation of edges, the number of unique annotating paths, the number of 

annotating paths corresponding to one cluster only, the percentage of genes with negative 

score, the percentage of genes with negative correlation, the percentage of genes with 

correlation less than 1 – base. Noticeably, such characteristics as the average number of 

genes in the module, the average percentage of genes with negative score and correlation, as 

well as with a correlation less than 1 – base, are minimal for the recommended base value 

(0.4). This indicates that the modules obtained for base = 0.4 have good internal correlation, 

as well as compactness. Modules obtained with a lower base value also show good internal 

correlation, but they are characterized by the loss of a large number of significant modules. 

It is worth noting that for base = 0.2 no modules were found. Modules obtained with 

larger base values, on the contrary, are annotated with a bigger number of unique canonical 

pathways, however, many of these pathways relate to the same biochemical processes. 

Moreover, these modules are characterized by lower rates of intramodular correlation.

Even though default values of k and base parameters are proposed to user before the analysis 

based on the input data properties, there is still an opportunity for user to select custom 

values of these parameters. Nevertheless, the general recommendation is to stick with the 
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proposed value of the base parameter, since its changes lead to the strong alterations in the 

size and content of the final modules.

ADDITIONAL RESOURCES

The interactive browser for gene expression exploration of ImmGen MNP OS, Phase 1 and 

Tabula Muris Senis datasets analyzed in this study was created.

Description: https://artyomovlab.wustl.edu/immgen-met/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ImmGen monomuclear phagocyte open-source (MNP OS) dataset is 

introduced (337 samples)

• Myeloid mouse scRNA-seq dataset across tissues is assembled based on 

Tabula Muris

• GAM clustering is metabolic network analysis of the large-scale/single-cell 

data

• Tissue-/cell-specific cholesterol, glycolysis, nucleotide, GSH/lipid modules 

reported
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Figure 1. General overview of ImmGen mononuclear phagocytes open-source (IG MNP OS), 
ImmGen mononuclear phagocytes phase 1 (IG MNP P1), and myeloid Tabula Muris Senis 
(mTMS) datasets
(A) Schematic representation of Mus musculus tissues, where samples were derived from 

(marked with colored dots depending on the dataset).

(B) Number of tissues overlapping across all datasets.

(C–G) Cell-type distribution across all datasets. Principal-component analysis (PCA) based 

on 12,000 most expressed genes across all samples colored by the tissue of its origin (E and 

G) or cell type (D and F).

(H and I) Uniform manifold approximation and projection (UMAP) representation of cells 

colored by the tissue of its origin (I) or its type (H). LN, lymph node.
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Figure 2. TMS single-cell RNA-seq dataset
(A) Dataset preprocessing resulting in myeloid subset derivation.

(B–D) UMAP plot with natural clusters (B) and cell types (C) identified based on cell 

specific markers (D). NP, neutrophil; Mo, monocyte; prog, progenitor; DC, dendritic cell; 

MF, macrophage; alvMF, alveolar macrophage; MG, microglia; KC, Kupffer cell; pDC, 

plasmacytoid dendritic cell; migDC, migratory dendritic cell.
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Figure 3. Scheme of analysis approach for multi-sample metabolic network clustering (GAM 
clustering)
The dataset’s metabolic genes are initially clustered based on a k-medoids algorithm. 

Averaged gene expression of the obtained clusters is further considered as patterns. For 

each gene, a score is calculated on the basis of its correlation with each pattern. These 

scores are superimposed on the KEGG metabolic network. Based on these scores, the most 

weighted connected subnetwork is found for each parent. After the refinement procedure, 

metabolic modules as a final version of subnetworks are obtained.
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Figure 4. Metabolic modules as a result of multi-sample metabolic network clustering of all 
myeloid cells but not inflammatory conditions from ImmGen MNP OS dataset
(A) Heatmap representing samples hierarchically clustered based on averaged gene 

expression of each of obtained module (from lowest as blue to highest as red). Euclidean 

distance is used as a clustering metric. YS MF, yolk sac macrophage; EB MF, embryoid 

body macrophage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG, 

microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacytoid DC; 

migDC, migratory DC.

(B) Annotation of the obtained modules based on gene enrichment in KEGG and Reactome 

canonical pathways. Enrichment value is calculated as a percentage of module genes 

contained in a particular pathway.

(C) Radar chart representation of metabolic modules within each metasample. Each 

individual sample is shown as a gray line, while mean of all samples inside one metasample 

is shown as a colored line. Nine radii of the radar chart are devoted to the corresponding 

metabolic modules: 1 and 2: lipid metabolism; 3: FAS pathway; 4: mtFASII pathway; 5: 

cholesterol synthesis; 6: glycolysis; 7: folate, serine, and nucleotide metabolism; 8: FAO and 

sphingolipid de novo synthesis; and 9: glycerophospholipid metabolism. Metasamples of EB 
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MFs + alvMFs and alvMFs + SPM cells are shown at one chart as they are extremely close 

in their metabolic characteristics.
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Figure 5. Cell types shared between IG MNP OS, IG MNP P1, and mTMS datasets have similar 
patterns of metabolic modules signatures
(A) Population memberships across the datasets: prog, progenitor; SC, stem cell; 

MLP, multi-lineage progenitor; MF YS, yolk sac macrophage; MF EB, embryoid body 

macrophage; MF, macrophage; alvMF, alveolar macrophage; SPM, small peritoneal 

macrophage; MG, microglia; KC, Kupffer cell; Mo, monocyte; pDC, plasmacytoid dendritic 

cell; DC, dendritic cell; migDC, migratory dendritic cell; NP, neutrophil (Table S3).

(B) Enrichment of individual metabolic modules across all datasets obtained during GAM-

clustering analysis of IG MNP OS dataset.
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Figure 6. Subnetworks associated with early developmental stages and DCs
(A and E) Heatmaps of module patterns along with the expression of some of its genes or 

genes related to the same biological subject (from lowest as blue to highest as red). YS MF, 

yolk sac macrophage; EB MF, embryoid body macrophage; alvMF, alveolar macrophage; 

SPM, small peritoneal macrophage; MG, microglia; MF, macrophage; Mo, monocyte; DC, 

dendritic cell; pDC, plasmacytoid DC; migDC, migratory DC.

(B, C, and F) Metabolic modules per se where edges of modules are attributed with color 

according to correlation of its enzyme’s gene expression to this particular module pattern 

and thickness according to its score.

(D) Enrichment of modules genes expression (from lowest as blue to highest as red, 

transparent dots correspond to treated samples) across all three analyzed datasets: IG MNP 

OS, IG MNP P1, and mTMS datasets.

Gainullina et al. Page 33

Cell Rep. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G and H) Flow cytometry analysis of DC staining with cholesterol-dependent cytolysin 

perfringolysin O (PFO) that indicates the level of cholesterol in the cell membrane. (H) 

Mean fluorescence intensity (MFI) levels of PFO binding in DC subsets. n = 4 mice 

per group (2 male and 2 female); each dot indicates an independent mouse. Statistics by 

one-way ANOVA with Dunnett’s multiple comparison test.

(I) DC migrations experiment scheme.

(J) Total plasma cholesterol levels in control and treated-with-simvastatin animals; n = 5 

mice in each group; statistical analysis by unpaired two-tailed t test.

(K) Percentage of migrated FITC+CD11c+ DCs in draining lymph nodes after FITC 

application in control and treated-with-simvastatin animals; n = 20 mice in each group; 

statistical analysis by unpaired two-tailed t test. **** p < 0.0001.

(H, J, and K) Data shown as mean ± standard error of the mean.
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Figure 7. Subnetworks associated with fatty acid synthesis and degradation
(A) Heatmaps of module patterns along with the expression of some of its genes (from 

lowest as blue to highest as red). YS MF, yolk sac macrophage; EB MF, embryoid 

body macrophage; alvMF, alveolar macrophage; SPM, small peritoneal macrophage; MG, 

microglia; MF, macrophage; Mo, monocyte; DC, dendritic cell; pDC, plasmacytoid DC; 

migDC, migratory DC.

(B) Enrichment of module gene expressions (from lowest as blue to highest as red, 

transparent dots correspond to treated samples) across all three analyzed datasets: IG MNP 

OS, IG MNP P1, and mTMS datasets.

(C) Metabolic modules per se and corresponding schematic diagrams. Edges of modules 

are attributed with color according to correlation of its enzyme’s gene expression to this 

particular module pattern and with thickness according to its score.

(D) Schematic representation of metabolic module.

(E) Schematic illustrating the design of the experiment with mouse peritoneal (Per) and 

alveolar (Alv) macrophages (MΦs) treated with BSO for 12 h to inhibit GSH synthesis 

followed by activation by zymosan for 4 h.

(F) Secretion levels of PGE2; n = 3 mice per group; statistics by unpaired two-tailed t test. 

N.S., non-significant (p > 0.05).
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(G) Secretion levels of cysteinyl leukotrienes; n = 3 mice per group; statistics by unpaired 

two-tailed t test.

(F and G) Data shown as mean ± standard error of the mean.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD45 BUV563 clone 30-F11 BD Biosciences Cat#612924; RRID:AB_2870209

CD45 APC-Cy7 clone 30-F11 Biolegend Cat#103116; RRID:AB_312981

I-A/I-E BUV496 clone M5/114.15.2 BD Biosciences Cat#750281; RRID:AB_2874472

CD11c PE-Cy7 clone N418 Biolegend Cat#117318; RRID:AB_493568

CD11c PE clone N418 Biolegend Cat#117308; RRID:AB_313777

CD3e AF488 clone 145-2C11 Biolegend Cat#100321; RRID:AB_389300

CD19 FITC clone 1D3/CD19 Biolegend Cat#152404; RRID:AB_2629813

NK1.1 AF488 clone PK136 Biolegend Cat#108718; RRID:AB_493183

TER-119 AF488 clone TER-119 Biolegend Cat#116215; RRID:AB_493402

CD64 APC clone X54–5/7.1 Biolegend Cat#139306; RRID:AB_11219391

F4/80 AF488 clone BM8 Biolegend Cat#123120; RRID:AB_893479

F4/80 PE clone BM8 Biolegend Cat#123110; RRID:AB_893486

CD11b BV421 clone M1/70 Biolegend Cat#101236; RRID:AB_11203704

anti-Perfringolysin O rabbit antibody Abcam Cat#ab225685

Goat anti-Rabbit IgG (H + L) AF647 Thermofisher Cat#A-21245; RRID:AB_141775

Mouse TruStain FcX (anti-mouse CD16/CD32, 
clone 93) antibody

Biolegend Cat#101320; RRID:AB_1574975

Chemicals, peptides, and recombinant proteins

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit Thermofisher Cat#L34957

Collagenase D Sigma Cat#11088882001

Perfringolysin O (PFO) from Clostridium 
perfringens

Cusabio Cat#CSB-EP314820CMB

Fluorescein isothiocyanate (FITC) Sigma Cat#F7250

Simvastatin Sigma Cat#S6196

L-Buthionine-sulfoximine (BSO) Sigma Cat#B2515

Zymosan Invivogen Cat#tlrl-zyn

Critical commercial assays

Cholesterol Quantitation Kit Sigma Cat#MAK043

PGE2 ELISA kits Enzo Cat#ADI-900-001

Cysteinyl leukotriene ELISA kits Enzo Cat#ADI-900-070

RPMI 1640 Medium Thermofisher Cat#11875093

Deposited data

ImmGen ULI: OpenSource Mononuclear 
Phagocytes Project (raw and processed data)

This paper GEO: GSE122108

ImmGen Microarray Phase 1 (raw and processed 
data)

Gautier et al.5 GEO: GSE15907

Tabuls Muris Senis (raw and processed data) Tabula Muris 
Consortium11

GEO: GSE149590; 
https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-
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REAGENT or RESOURCE SOURCE IDENTIFIER

muris-senis/; https://figshare.com/articles/dataset/
Processed_files_to_use_with_scanpy_/8273102/2

Experimental models: Cell lines

Mouse peritoneal primary macrophages This paper NA

Mouse lung alveolar primary macrophages This paper NA

Experimental models: Organisms/strains

Mouse: wild-type C57BL/6J mice Jackson Laboratory Strain#000664

Software and algorithms

GAM-clustering This paper GitHub: https://github.com/artyomovlab/
ImmGenOpenSource
https://doi.org/10.5281/zenodo.7492657

GMWCS-solver Loboda et al.19 https://cran.r-project.org/web/packages/mwcsr

FlowJo software v10.2 BD https://www.flowjo.com/

Prism v9.4.1 Graphpad Software https://www.graphpad.com/scientific-software/prism/

Other

Resource website: Hands-on interactive browser 
for gene expression exploration both for ImmGens 
and Tabula Muris Senis datasets

This paper https://artyomovlab.wustl.edu/immgen-met/
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