Table 3.
Results for all classification models.
| Logistic Regression | Probit Regression | Decision Tree | Random Forest | SVM | |
|---|---|---|---|---|---|
| Area Under the Curve, AUC | 0.963 | 0.964 | 0.991 | 0.994 | NA |
| K- Cutoff | 0.460 | 0.420 | 0.87 | 0.34 | NA |
| Total cost | 94,450 | 96,200 | 22,200 | 13,900 | NA |
| True positive | 6455 | 6390 | 6712 | 6624 | 6696 |
| False positive | 277 | 342 | 20 | 38 | 169 |
| False negative | 334 | 310 | 101 | 84 | 42 |
| True negative | 1409 | 1433 | 1642 | 1729 | 1574 |
| Sensitivity | 0.960 | 0.950 | 1 | 0.98 | 0.975 |
| 1- Specificity | 0.190 | 0.180 | 0.060 | 0.01 | 0.026 |
| Accuracy | 0.928 | 0.923 | 0.986 | 0.985 | 0.975 |