Skip to main content
. 2023 Jul 11;9(7):e18189. doi: 10.1016/j.heliyon.2023.e18189

Table 5.

ANOVA for full and simplified regression models regarding efflux estimation at collar level (LOG(Efflux), μmol m-2 s−1) depending on predictive variables: DBH (cm), distance of the collar to the nearest tree (Dist, m) and air temperature (Tair, °C). n = 169 measurements. In bold significant coefficients.

FULL MODEL Sum of Squares Df Mean Square F-Snedecor Sig. Level R2 SEEa
Model 26.6547 6 4.44246 8.2 0.0000 20.4 0.74
Residual 87.8169 162 0.54208
Total (Corr.) 114.472 168
PREDICTIVE VARIABLES Estimate Standard Error t-Student Sig. Level CFb
CONSTANT 8.4885 1.9533 4.3458 0.0000 1.3150
DBH 0.0008 0.0064 0.1299 0.8968
Dist −0.0089 0.0090 −0.9984 0.3196
Tair −0.2060 0.0594 −3.4678 0.0007
DBH*Dist 0.0000 0.0000 −0.8301 0.4077
Dist^2 0.0000 0.0001 0.6812 0.4967
Dist^3 0.0000 0.0000 −0.5808 0.5622
SIMPLIFIED MODEL Sum of Squares Df Mean Square F-Snedecor Sig. Level R2 SEEa
Model 24.8898 2 12.4449 23.06 0 20.8 0.73
Residual 89.5818 166 0.53965
Total (Corr.) 114.472 168
PREDICTIVE VARIABLES Estimate Standard Error t-Student Sig. Level CFb
CONSTANT 8.4835 1.8490 4.5882 0.0000 1.3053
Dist −0.0044 0.0008 −5.2780 0.0000
Tair −0.2105 0.0587 −3.5831 0.0004
a

Standard error of the estimation (residual deviation, log-units).

b

Sprugel (1983) correction factor (already included in the final model, Eq. (3)): CF = exp (SEE2/2).