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It is known that the behavior of many complex systems is controlled by local dynamic
rearrangements or fluctuations occurring within them. Complex molecular systems,
composed of many molecules interacting with each other in a Brownian storm, make
no exception. Despite the rise of machine learning and of sophisticated structural
descriptors, detecting local fluctuations and collective transitions in complex dynamic
ensembles remains often difficult. Here, we show a machine learning framework
based on a descriptor which we name Local Environments and Neighbors Shuffling
(LENS), that allows identifying dynamic domains and detecting local fluctuations
in a variety of systems in an abstract and efficient way. By tracking how much
the microscopic surrounding of each molecular unit changes over time in terms of
neighbor individuals, LENS allows characterizing the global (macroscopic) dynamics
of molecular systems in phase transition, phases-coexistence, as well as intrinsically
characterized by local fluctuations (e.g., defects). Statistical analysis of the LENS time
series data extracted from molecular dynamics trajectories of, for example, liquid-like,
solid-like, or dynamically diverse complex molecular systems allows tracking in an
efficient way the presence of different dynamic domains and of local fluctuations
emerging within them. The approach is found robust, versatile, and applicable
independently of the features of the system and simply provided that a trajectory
containing information on the relative motion of the interacting units is available. We
envisage that “such a LENS” will constitute a precious basis for exploring the dynamic
complexity of a variety of systems and, given its abstract definition, not necessarily of
molecular ones.

descriptor | complex molecular systems | local fluctuations | dynamic environments |
machine learning

Supramolecular assemblies and crystalline structures are characterized by a nontrivial
internal dynamics that is often ambiguous and challenging to unveil (1–5). Self-
assembled structures, composed of molecular units interacting with each other via
reversible noncovalent interactions, offer a notable example of systems where a continuous
reshuffling and exchange of the constitutive building blocks is at the origin of interesting
bioinspired and stimuli-responsive properties (6–13). Also, other completely different
systems, such as, for example, metallic structures, are known to possess a nontrivial
internal dynamics. Already at∼1/3 of the melting temperature (i.e., the so-called Hüttig
temperature) metal surfaces are known to enter a dynamic equilibrium where atoms may
leave their lattice positions and start moving on the atomic surface, inducing surface
transformations and reconstructions (5, 14, 15). In nanosized metal systems (metal
nanoclusters, nanoparticles, etc.), such atomic dynamics emerges even at lower (e.g.,
room) temperature (16). In all these cases, the dynamics and fluctuations in time of
the building blocks are deeply connected to important properties of the materials, such
as, for example, the mechanical properties of metals (17–19), their performance in
heterogeneous catalysis (20–23), or, for example, the dynamics adaptivity and stimuli-
responsiveness of supramolecular materials (13, 24–27). Gaining the ability to track
the dynamics of the building blocks in complex self-organizing molecular systems is
fundamental to studying and rationalizing most of their properties (6, 27–31). However,
this is also typically challenging and demands efficient analysis approaches.

Molecular dynamics (MD) simulations are being increasingly used to obtain high-
resolution insights into the behavior of a variety of systems (1, 32–40). One key
advantage of MD trajectories is that these keep track of the motion of the individual
molecular units and contains all phase-space information, hence the complete structure
and dynamics of the complex system. Nonetheless, nontrivial aspects concern the
extraction of relevant information from the large amount of data contained in the
MD trajectories and their conversion to a human-readable form. Typical descriptors
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used to extract information from MD trajectories may be divided
into system-specific or abstract (general) descriptors. Extensively
used to investigate, for example, ice-water systems (41), or metal
clusters (38, 42), ad hoc descriptors build on a priori knowledge
of the system under consideration and are developed and
optimized on it, but poorly transferable to different ones. Abstract
descriptors, for example, smooth overlap of atomic positions
(SOAP), radial distribution functions (g(r)), etc., are conversely
less specific and more general (41, 43–49). Although less precise
than the tailored ones, abstract descriptors offer an advantage in
terms of transferability: They can be applied to different systems
and do not require deep a priori knowledge of the system’s
features (43, 48, 50). The high-dimensional data obtained using
such descriptors are typically converted into lower-dimensional
human-readable information via supervised and unsupervised
machine learning (ML) approaches (e.g., clustering) and analyzed
to characterize the internal dynamics of the studied systems (51–
57). For example, unsupervised clustering of SOAP (43) data
extracted from MD trajectories recently allowed studying the
complex dynamics in self-assembling fibers, micelles, and lipid
bilayers (47, 50, 58–60), in confined ionic environments (47, 59),
as well as in metal nanoparticles and surfaces (5, 16).

Despite the advantages granted by such ML developments, the
behavior of complex molecular systems is often determined by
rare fluctuations and local dynamic rearrangements (6, 7, 27),
poorly captured by average-based measurements. The dynamics
of defects in materials science is a typical example of local
events determining a variety of hierarchical materials’ properties
(31, 61). However, detecting and tracking local fluctuations
becomes increasingly difficult when dealing with complex
molecular/atomic systems where a certain degree of structural
order is coupled with a continuous exchange and reshuffling of
molecules/atoms (25). Abstract descriptors that are transferable
and at the same time effective in capturing local fluctuations in
complex dynamic systems would be fundamental.

Here, we develop an abstract descriptor named “Local Envi-
ronments and Neighbors Shuffling (LENS).” Combined with
a ML-based analysis, LENS is capable of detecting different
dynamic domains and tracking local fluctuations in complex
molecular systems without deep prior knowledge of the chemi-
cal/physical features of the constituent building blocks but simply
by tracing their reciprocal motion and instantaneous fluctuations
in space and time. LENS builds on a relatively simple definition
and can be transferred to a variety of complex systems with,
liquid, solid, or diverse/hybrid dynamics (e.g., typical of phase
transitions). The results obtained with LENS change the vision of
complex molecular systems and, building on simple and general
basic concepts, suggest broad applicability (e.g., not necessarily
restricted to molecular ones).

Results

LENS: Local Environments & Neighbors Shuffling. In this work,
we analyze molecular dynamics (MD) trajectories of various
molecular/atomic systems, from soft to crystalline ones, pos-
sessing liquid-like to solid-like dynamics. As examples of fluid-
like systems, we use lipid bilayers and surfactant micelles (60),
while for solid-like dynamics, we focus on metal surfaces (5)
and nanoparticles (16). Furthermore, we also include systems
with intrinsically nonuniform internal dynamics, such as, for
example, a system where ice and liquid water coexist in dynamic
equilibrium in correspondence with the solid–liquid transition,
and soft self-assembled fibers whose behavior is dominated by
local dynamic defects (see SI Appendix, Table S1 for system

details) (6, 7, 50). Such a large diversity is functional to test
the generality of our approach.

Despite their intrinsic differences, all these systems can be
considered from an abstract point of view as composed of
N dynamically interacting particles with their own individual
trajectories. The analysis approach we present herein is based on
the concept of molecular individuals (even in cases of systems
of chemically identical particles). In particular, from the global
trajectory of the system, we can identify the subtrajectory of
the ith particle (with i ranging from 1 to N ). From this, we
can thus describe the local environment surrounding each ith
particle in terms of its neighbor individuals (IDs) and monitor
the changes of IDs at each interval between the sampled timestep
1t along the trajectory. Fig. 1 A, Top-Left shows a representative
scheme where, at a given time t, the neighbor ID units (gray
circles) surrounding the ith particle (i = 1 – red circle) within
a sphere of radius rcut (namely, the neighborhood cutoff) are
listed in a fingerprint string C t

i=1. The local C t+1t
i=1 environment

at t + 1t may change from that one at time t (C t
i=1) when

neighbor switching (Fig. 1 A, Top-Right), addition (Fig. 1 A,
Bottom-Left), or subtraction (Bottom-Right) occurs in 1t.

Our analysis is based on monitoring the time-lapse sequence of
the ID data along a given trajectory. We developed a descriptor
named “LENS,” which allows us to track to what extent the
ith local environment changes at every consecutive time interval
(C t

i , C t+1t
i , C t+21t

i , etc.) along its trajectory. LENS is built
to detect essentially two types of changes in the local neighbor
environments along a trajectory: i) changes in the number of
neighbors (addition/leave of one or more neighbors) and/or ii)
changes in the IDs of the neighbors (switching of one or more
neighbor IDs). The instantaneous value of LENS (δi, in its
variable form) is defined as

δ
t+1t
i =

#(C t
i
⋃

C t+1t
i − C t

i
⋂

C t+1t
i )

#(C t
i + C t+1t

i )
, [1]

where the first (C t
i
⋃

C t+1t
i ) and the second terms

(C t
i
⋂

C t+1t
i ) of the numerator are respectively the mathemat-

ical union and intersection of the neighbor IDs present within
rcut from particle i at time t and at time t+1t. The denominator
contains a normalization factor, which is the total length of the
neighbor ID lists (strings) at the two consecutive timesteps. Thus,
for every particle i, the δi(t) ranges from 0 to 1 for local neighbor
environments which are respectively persistent to highly dynamic
over time. For example, in the hypothetical case where no local
neighbor changes occur in 1t, the union of C t

i and C t+1t
i is

identical to their intersection, and LENS gives δt+1t
i = 0. In

a case where, for example, all IDs permute in different IDs in
1t (complete shuffling while the number of neighbors remains
constant), the numerator of the δti ((C t

i + C t+1t
i )− 0) is equal

to the denominator and LENS gives δt+1t
i = 1. As shown in

Fig. 1 B, Top, the LENS signal (δi) for the generic particle i can
be considered proportional to the local neighborhood changes
within a time interval1t. Fig. 1B reports two examples of LENS
signals over time in the cases of a particle with fluid-like behavior
(Center) and of another particle (Bottom) whose dynamics is
dominated by local fluctuations.

The time-lapse analysis provided by LENS can be also corrob-
orated/compared with a time-independent statistical analysis of
the ID neighbor list data Ci. In particular, from the ID neighbor
list data Ci calculated at every sampled time step (t, t + 1t,
t + 21t, etc.), one can easily estimate how many times a particle
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Fig. 1. Tracking local neighbor environments in complex molecular systems with the LENS descriptor. (A) The local molecular environment of the particle i = 1
at time t is defined by an array Cti containing the identities (IDs) of all molecular units within a sphere of radius rcut (blue arrow). Along the MD trajectory, Cti
can be calculated for all constitutive particles at each sampled MD timestep t. The local molecular environment Cti of the unit i = 1 (red particle) at time t1
(Top-Left). The local environment Ct+1ti at time t2 = t1 +1t, when particle switching occurs in 1t (Top-Right). The local environment Ct+1ti at time t2 = t1 +1t,
when one particle enters (Bottom-Left) or leaves (Bottom-Right) the neighborhood sphere in 1t. (B) The LENS descriptor. The LENS signal for the generic particle
i ��i is proportional to the number of changes in the neighborhood within a timestep � (Top). Two examples of typical LENS signals, �i(t) (raw data smoothed
as described in Materials and Methods), for a particle with fluid-like behavior (Center) and a particle with dynamics dominated by local fluctuations (Bottom). (C)
Global statistical analysis. All contact events between the particle i and all the others in the system, visited along the entire trajectory T , are counted and listed
in the DTi array. Two examples of contact counts, DTi , between a molecule i and all other IDs in the two distinct dynamics cases of C are shown.

i has been in direct contact with all the other N ID particles
during a sampled trajectory T. All inter-IDs contacts visited along
the trajectory T are then stored into an array DT

i (Fig. 1C ). In
such global statistical analysis, the DT

i data are useful to detect
the presence of domains differing from each other in terms of
dynamicity/persistence of the local neighbor individuals over
time (i.e., in terms of how quickly/slowly the neighbor IDs change
along the trajectory). In particular, analysis of the global DT

contact matrix (Fig. 2E) provides information on the propensity
of a certain i unit to be, for example, persistently surrounded by
the same neighbors (IDs) or by a population that is in continuous
reshuffling during the simulation (see Materials and Methods for
details).

To provide a more quantitative investigation, we define a
variability (V) parameter by estimating the Standard Deviation
(SD) of theDT

i counts. Namely, high SD of theDT
i values means

that, among all sampled timesteps, a generic unit i shows a high
number of contact events with few neighbors and very low contact
occurrence with the others (meaning that its closest neighbors
tend to remain always the same along the trajectory). On the
other hands, low SD of the DT

i values implies a moderate but
uniform number of neighboring events among all neighbor IDs
(meaning that the closest neighbors of unit i change a lot along
the trajectory). In this perspective, the variability (V) parameter
is then defined as the inverse of the SD of the DT

i values: More
dynamic neighborhood environments of i have high V while
more static neighborhood environments have low V values.

As it will be discussed in the next sections, such global
time-independent analysis does correlate with the LENS one
for systems composed of statistically relevant dynamically di-
verse domains (populated by a relevant number of units that
can be effectively detected via “dynamic-pattern recognition”
approaches), while it does not for systems whose dynamics is
dominated by sparse local fluctuations/transitions.

Into the Dynamics of Fluid-Like Systems. We start testing LENS
on a soft molecular system with nontrivial fluid-like dynamics
(Fig. 2). In particular, we analyze a MD simulation trajectory
of a coarse-grained (CG) bicomponent lipid bilayer composed
of 1,150 DIPC:DPPC lipid molecules in a 2:3 ratio (see
Fig. 2A, where DIPC and DPPC are colored in red and
blue, respectively). It is well known that at T = 280 K, a
2:3 DIPC:DPPC lipid bilayer self-segregates into two distinct
regions, populated by the two lipid species which do not mix
in such conditions (62). For this lipid model, we ran 15 μs of
CG-MD simulation using the Martini 2.2 force field (63) (see
Materials and Methods and SI Appendix, Table S1 for details).
The last 10 μs, representative of an equilibrated MD regime, are
used for the analysis.

Being interested in the lipid shuffling dynamics, in our LENS
analysis, we use the lipid heads as reference constituent particles,
and we set a time interval of 1t = 10 ns with a neighborhood
cutoff rcut = 16 Å (SI Appendix, Fig. S2). On average, with such
a setup, every reference lipid has ∼13 neighbors. Noteworthy,
the robustness of the analysis while changing the rcut or 1t is
demonstrated in SI Appendix, Figs. S3 and S4. Fig. 2B shows
on the Left the time-profiles of δi(t) for the 1,150 lipid heads
forming the bilayer, while on the Right, the δi data distribution
and the correlated KDE are reported. Here, two peaks are clearly
detected. A simple supervised clustering analysis, carried out with
the KMeans algorithm (64) on LENS signals, demonstrates that
the δi distribution can be classified into four clusters (cyan, green,
orange, and purple) denoted as dynamic clusters or domains. The
time series data of the individual lipid IDs along the trajectory
allows computing the exchange probability matrix represented
in Fig. 2C and obtaining the associated dendrogram detailing
the hierarchical interconnection/adjacency between such four
detected clusters. In the exchange probability matrix, the pnn
and pnm entries indicate the % probability for a lipid i belonging
to a given dynamic cluster n—having a characteristic rate of
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Fig. 2. LENS analysis of fluid-like systems. (A) Bicomponent lipid bilayer made of 1,150 lipid molecules, namely DIPC:DPPC in 2:3 ratio (460:690 in total, 230:345
per leaflet) colored in red and blue, respectively. (B) Time series of LENS signals, �i(t), with the kernel density estimate (KDE) of LENS distribution classified
into four clusters (Left). MD snapshot of lipids bilayer colored according to their clusters of belonging (Right). (C) Interclusters normalized transition probability
matrix. The pii and pij matrix entries indicate the % probability that molecules with LENS signal typical of a cluster i remain in that dynamic environment or
move to another one j (with different dynamics) in 1t. Hierarchical grouping of the dynamically closer clusters (dendrogram cutting) is reported on Top of
the matrix, and it provides two macroclusters, merging cyan and green on one hand, and orange and purple on the other hand. (D) MD snapshot of the lipid
bilayer colored according to macroclusters in (C): light blue identifying DPPC lipids and pink identifying DIPC lipids (Top-Left). Cluster composition histogram
(Top-Right) and interconversion diagram (Bottom) with the transition exchange probabilities and the cluster population percentages (within the colored circle).
(E) HC analysis of the DT matrix identifying four main clusters (light blue, green, purple, and orange). (F ) Variability, V , analysis of the clusters: distributions,
median (first and third quartiles), maximum and minimum values (whiskers). The green and light blue clusters, arranging on separated bilayer leaflets, have
higher V than the orange and magenta clusters (Left). MD snapshot front view of the lipid bilayer colored according to the HC of DT matrix (Middle). Cluster
composition histogram (Top-Right): The green and light blue clusters are made of DIPC lipids (in red in A), while the orange and magenta ones correspond to
the DPPC lipids (in blue in A). MD snapshot lateral view of the lipid bilayer colored according to the HC of DT matrix (Bottom-Right). Note that the subunits within
each considered system are illustrated coherently to the color code of the belonging cluster.

change of its local neighbor environment—to remain in that
dynamic domain or to undergo a transition into a different
dynamic cluster m—with a different LENS fingerprint—in 1t
(see Materials and Methods for additional details). The four
obtained microclusters can be then hierarchically merged based
on the dendrogram in Fig. 2C, by connecting those having a high
probability of exchanging molecules. Such an approach provides
two main macroclusters, colored in light blue and pink, whose
populations and transition probabilities in 1t are reported in
the interconversion diagram of Fig. 2D within circles and on the
arrows, respectively.

The data show that the pink domain, obtained after merging
orange and purple clusters, is dominated by those lipid units
having a higher aptitude to mutate their neighborhood environ-
ment: in other words, by those having a more dynamic local
neighbor environment (high δi). On the other hand, the lipids
belonging to the light blue domain, resulting from blending the
cyan and green microclusters, reveal a slower variation of their
surrounding environment and hence weaker local mobility (low
δi). Not surprisingly, while the pink dynamics domain overlaps
with theDIPCmolecules (red component), known to be in liquid
phase (62), the light blue cluster matches up with the DPPC
lipids (blue component) that are instead in gel phase (62) (see
composition histogram in Fig. 2D,Top-Right). Furthermore, the
estimated exchange probabilities between the pink and light blue
macroclusters are very low (<1%) in 1t = 10 ns, which is con-
sistent with a sharp segregation between the gel and fluid phases.

In order to test the robustness of our descriptor LENS,
we have also carried out a 2D Voronoi-based tessellation [a
reference approach to detect, for example, liquid/gel phases
in lipid bilayers (65)] on the MD trajectories of the DIPC-

DPPC lipid bilayer at T = 280 K. The obtained results show
how, in the case of phase segregation in the DIPC-DPPC
bilayer, the Voronoi analysis while qualitatively matching with
the results obtained with LENS, reports a less well defined
and more blurred characterization of the liquid DIPC and gel
DPPC segregated phases that are expected experimentally (62)
(SI Appendix, Fig. S15).

We also tested the robustness of the LENS results against
tuning the 1t (i.e., the time resolution) in the analysis (see SI
Appendix, Fig. S4). Comparing the results of SI Appendix, Fig. S4
A and B, it is possible to note that the absolute values of LENS—
which are related to the degree of reshuffling in the microscopic
neighbor environments in the1t—may differ while changing the
sampling time step. This is expected, as changing the1t in these
analyses equals to changing the time resolution and the details
that are consequently captured (i.e., events occurring faster than
the used 1t cannot be captured). However, it is worth noting
that i) the quantitative LENS numbers are of little interest, while
their comparison, distributions, and the fashion of the LENS
time series are the key interesting points. Furthermore, ii) while
the microscopic details captured may change with the 1t (SI
Appendix, Fig. S4, Left: for example, 1t = 5 ns vs. 50 ns), the
analysis remains quite robust on a macroscopic level, and group-
ing the adjacent microclusters into dynamic macroclusters based
on the hierarchical interconnection dendrogram provides the
same (coarse-grained) results in both cases (SI Appendix, Fig. S4,
Right). While, as in many other types of analyses, a preliminary
phase of similar tests is useful to identify the best match between
high-resolution and robustness/relevance in the obtained results,
the LENS analyses reported herein demonstrated considerable
robustness in the obtained global results.
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Fig. 2 E and F illustrates the main outcomes of the global
statistical analysis explained in the previous paragraph. The
collected data, DT

i , are organized into a count matrix where
the single entry i, j defines the total number of neighboring
events between lipids i and j (Fig. 2E). Although such statistical
analysis is unrelated to the temporal sequence of the C t

i s, the
global DT matrix allows distinguishing the propensity of a
certain lipid to be, for example, persistently surrounded by
the same neighbors or by a population in continuous exchange
(reshuffling) during the simulation. After hierarchical clustering
(HC) of the DT matrix data (see Materials and Methods for
details), four main dynamic domains are identified (Fig. 2 E,
Right): in green, light blue, orange, and purple. Lipid molecules
characterized by a similar distribution of neighbor contacts in
the DT matrix are classified in the same dynamics domain. For
a more quantitative investigation, we also define a variability (V)
parameter by estimating the SD of the DT

i : The broader is the
distribution of the neighbor IDs, the higher is the variability
(see Materials and Methods for details). The analysis shows that
the green and light-blue domains are identically highly dynamic,
while the orange and purple clusters, similar to each other from
a dynamic standpoint, are ∼4 times more static (Fig. 2 F, Left).
Note that, while having the same variability and local-shuffling
dynamics, the two green/light-blue (and orange/purple) clusters
are identified in this analysis as separate environments. In fact,
since the bilayer model replicated on the xy through periodic
boundary conditions, the DIPC and DPPC lipids belonging to
the upper leaflet do not get in contact with those in the Bottom
one (their DT

i distributions do not overlap). The histograms in
Fig. 2 F, Right reveal that the green and blue clusters correspond
to red DIPC lipids, while the orange and purple domains
correspond to the blue DPPC molecules. This is consistent
with the experimental evidence (62) showing that the DIPC
lipids form a liquid phase segregating from gel-phase DPPC
molecules at the simulation temperature. It is worth noting how
the macroclusters obtained with the global statistical analysis
(Fig. 2 E and F ) correspond in this case to those obtained
via LENS-based clustering. As anticipated, such correspondence
occurs only in those systems composed of “statistically dominant”
different dynamic domains, as in this case, where a liquid and a
fluid phase coexist in the bilayer system. In the next sections, we
will also discuss cases where LENS detects fluctuations that get
lost and cannot be tracked via such global/average analyses since
they are not statistically relevant.

To test the generality of our approach, we also tested the same
analysis on a CG-MD simulation trajectory of a bicomponent mi-
celle model (SI Appendix, Fig. S2) made of n-stearoyl L-histidine
(H) and p-nitrophenyl ester of n-stearoyl L-phenylalanine self-
assembling surfactant molecules (see Materials and Methods for
details) (60). SI Appendix, Fig. S2 A–D show how both LENS
and the corresponding time-independent Variability analyses
identify two distinct dynamic domains: a “donut-like” region
of H surfactants (red) and two separated, flatter circular sections
of F-NP surfactants (in blue). Similarly to the bicomponent lipid
bilayer case discussed above, the dynamics of such bicomponent
micellar assembly appears to be thus characterized by different
statistically relevant dynamic domains.

Into Phase Transitions & Dynamic Phases Coexistence. We also
tested the efficiency of LENS in characterizing phase transitions
as well as the dynamic coexistence between different phases. To
this end, we discuss two different example systems: i) a (soft)

DPPC lipid bilayer system undergoing gel-to-liquid transition
with increasing temperature and ii) a simulation box where
crystalline ice and liquid water coexist in correspondence with
the melting/solidification temperature.

For case (i), we analyze 1,001 consecutive snapshots taken
along 1 μs of CG-MD simulations (1t = 1 ns) of a lipid
bilayer model composed of 1,152 self-assembled DPPC lipids
parametrized with the Martini force field (63) at three distinct
temperatures: 273 K, 293 K, and 323 K (see Materials and
Methods for details) (58). It is known that DPPC lipid bilayers
have a transition temperature gel-to-liquid of ∼315 K (66).
However, detecting in a robust manner such gel-liquid phases is
not straightforward and typically requires sophisticated analysis
approaches that are not always trivial to handle (58, 67).
After reducing the number of clusters detected by KMeans (SI
Appendix, Fig. S6), LENS identifies two main phases dominating
the DPPC bilayer at T = 293 K (Fig. 3A): The δi(t) data
indicate that while the largest part of lipids shows a reduced local
reshuffling of neighbors over time, a nonnegligible portion of
them is more dynamic. As shown in Fig. 3 A, Right, two phases
coexist at T = 293 K: ∼ 8% of DPPC lipids are found in the
red phase, which starts nucleating into the blue one (∼92%); see
also SI Appendix, Movie S1. The transition probability between
the two phases is also detected and reported on the black arrows.
By using the same setup that detected the gel/liquid separation at
293 K, LENS-based clustering identifies two dominating phases
in theDPPC bilayer atT = 273 K andT = 323 K, respectively:
a cyan domain with lower δi vs. a red environment with higher
δi, respectively (Fig. 3B). Global statistical analysis summarized
in Fig. 3C by the Variability of DT

i distributions reveals that
the dynamic reshuffling of lipids is considerably reduced in
the cyan domain compared to the red one (∼2 to 6 times).
This indicates that the lipids assigned to the cyan cluster most
probably correspond to the gel phase, while the lipids in the red
environment behave as a liquid phase, as also evident in the red
disordered lipid tails compared with the more extended/ordered
cyan ones (see the snapshot in Fig. 3A). These data thus demon-
strate how LENS can blindly distinguish between gel (cyan) and
liquid (red) lipid phases and efficiently detect their nucleation
and transitions across temperature variations. Furthermore, a
2D Voronoi analysis is found essentially inefficient compared
to LENS in detecting the nucleation of small liquid domains and
their coexistence within a dominant gel phase in a DPPC bilayer
at T = 293 K (SI Appendix, Fig. S16). This shows how LENS,
despite being a general descriptor, thus not optimized for any
system in particular, may perform at least as well and even better
for such soft dynamic systems than ad hoc tailored analyses which
typically assume a considerable a priori knowledge of the analyzed
systems and are also poorly transferable to different systems.

For case (ii), we analyze 500 consecutive frames taken every
1t = 0.1 ns along 50 ns of MD simulation at T = 268 K of a
periodic box containing 2,048 water molecules in total, 1,024 of
which are in the solid state and arranged in a typical hexagonal
ice crystal configuration, while the other 1,024, segregated from
the first ones, are in the liquid phase (Fig. 3D). Shown in Fig.
3E, the LENS signals for all water molecules (δi(t) data) clearly
demonstrate the presence of two main phases coexisting: one
corresponding to low δi values (more static behavior), while the
second one characterized by higher δi values (more dynamic). HC
on the dendrogram reduces the number of clusters (SI Appendix,
Fig. S7A), identifying three main dynamic phases (Fig. 3E): the
ice phase (in white), the liquid phase (in red), and the water–
ice interface (in cyan). The interconversion diagram of Fig. 3 F,
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Fig. 3. LENS analysis of multiphases coexistence. (A) LENS analysis for the DPPC lipid bilayer in coexistence conditions at T = 293 K: time series of LENS
signals, �i(t), with the KDE of LENS distribution, and the interconnection dendrogram identifying two macroclusters in cyan and red (Left). MD snapshot of
a DPPC lipid bilayer colored according to the two main LENS macroclusters (Top-Right) and related dynamic interconversion diagram (Bottom-Right). (B) LENS
analysis, detecting phase transition at T = 273 K (gel) and T = 323 K (liquid) for a DPPC lipid bilayer. (C) Global statistical neighborhood analysis of the DPPC
lipid bilayer across a phase transition: At T = 273 K, the bilayer is in gel state (low variability V ); at T = 323 K, it is in the liquid state (high), while two domains
(gel and fluid) are detected at T = 293 K. (D) Ice/water coexistence in an MD simulation [using the TIP4P/Ice water model at 268 K (68)]: oxygen atoms in red
and hydrogen atoms in white. (E) LENS analysis of ice-water coexistence: time series of LENS signals (�i(t): Left) with the KDE of the LENS distribution, and the
HC interconnection dendrogram–based clustering (Center). The four initially detected LENS microclusters, represented in different colors in the MD snapshot
(Right), are merged via HC into three main dynamic environments/clusters. (F ) Left: MD snapshot showing the three main LENS macroclusters, which identify
the liquid phase (in red), the ice phase (in white), and the ice–liquid interface region (in cyan). Right: Dynamic interconversion diagram showing how water
molecules undergo dynamic transitions from ice-to-liquid and vice versa, passing through the ice–liquid interface in such conditions. Note that the subunits
within each considered system are illustrated coherently to the color code of the belonging cluster.

Right reveals how the ice and liquid phases exchange molecules
through such an interface cyan region. We underline how such
a neat classification is typically nontrivial to be attained via
sophisticated abstract structural descriptors such as, for example,
SOAP (69–71), and typical pattern recognition algorithms. On
the other hand, with LENS, the detection of different dynamic
environments emerges in a straightforward manner and simply
by tracking differences in the local reshuffling of the individual
water molecules.

As additional tests, we have also carried out a systematic
comparison between the information that can be inferred via
our LENS-based analyses vs. state-of-the-art benchmark analyses
for the ice/water system by using the dynamic propensity (DP)
descriptor (SI Appendix, Fig. S19) (72). The characterization
obtained via such DP analysis is found similar to those attained
via the average KDE LENS distributions of Fig. 3E or via
our V parameter. This demonstrates how LENS can work at
least as well as state-of-the-art DP analysis for such systems.
Nonetheless, it is worth noting that our LENS analysis also retains
richer information than those evincible from such averaged
analyses. Indeed, from dynamic propensity (DP), KDE LENS
distributions, and V parameter analyses, one can extract only
those dynamic domains which are statistically relevant along the
sampled trajectory (e.g., ice in equilibrium with water, similar
size gel–liquid segregated lipid domains, etc.), while hiding
any information about the time–evolution of the contact data.
This is a limit, for example, in the case of out-of-equilibrium
trajectories—where the obtained distribution does not provide

any information on the direction of the evolution of the system—
or in the case of sparse/rare local events occurring in the trajectory
of the units, which get lost in such averaged analyses due to their
negligible statistical weight. While the ensemble average adopted
for such analyses may prevent the detection of local (sparse,
rare) events, these are instead explicitly captured by the raw
LENS time series data (e.g., Fig. 3 E, Left). The LENS analysis
reported herein can be thus considered at least as powerful as, for
example, a DP analysis, and, by definition, even more powerful
as it retains complete information of all the microscopic events
that can be captured along the trajectory (compatibly with the
time-resolution 1t of the analysis).

Into Discrete Solid-Like Dynamics. As completely different test
cases, we also tested LENS on systems with solid-like dynamics. In
particular, we focused on metal surfaces. While metallic crystals
are typically considered hard matter, it is known that they may
possess a nontrivial atomic dynamics even well below the melting
temperature (5, 18, 19). In particular, we consider two Cu FCC
surfaces Cu(210) and Cu(211), having a strikingly different
dynamics.

We use a 150 ns-long atomistic MD trajectory of a Cu(210)
composed of 2,304 Cu atoms at T = 700 K (Fig. 4A) conducted
with a dynamically accurate deep-potential neural network force
field trained on DFT calculations (5). We analyze with LENS
502 consecutive frames taken every 1t = 0.3 ns along the MD
simulation (see Materials and Methods for details). The LENS
signals indicate that the large part of the atoms of this surface is
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Fig. 4. LENS analysis of dynamic metal (Cu) surfaces. (A) MD snapshots of an ideal Cu(210) surface (Top: 0 K) and of the same surface at T = 700 K (Bottom):
atoms colored according to their LENS-detected dynamic environments of belonging. (B) Time series of LENS signals, �i(t), with the KDE of LENS distribution,
and interconnection dendrogram. Four dynamic domains are first identified by KMeans and then merged into three clusters via HC. (C) MD snapshot of Cu(210)
stable bulk in gray, surface in cyan, and dynamic surface spots in red (Top). Dynamic interconversion diagram reports the transition probabilities on the arrows
and the cluster composition percentages within the colored circles (Bottom). (D) MD snapshots of Cu(211) ideal (Top) and equilibrated surface at T = 600 K
(Bottom) colored according to LENS clusters. (E) Time series of LENS signals, �i(t), with the KDE of LENS distribution, and interconnection dendrogram. Five
clusters are detected by the LENS-based analysis and merged into three macroclusters. (F ) Pie chart of the clusters’ compositions and transition probability
matrix of the clusters (Top). The merged clusters define the surface characterization: the bulk (silver domain) and dynamic atoms which move on the surface
breaking/reconstructing rows (orange and purple). Representative MD snapshots showing the surface reconstructions over time are shown on the Bottom.
Note that the subunits within each considered system are illustrated coherently to the color code of the belonging cluster.

substantially static, while a considerable fraction of the atoms is
more dynamic. The LENS-based clustering, applied coherently
with the protocol described above, detects three main dynamic
domains (Fig. 4 B, Right), corresponding essentially to dynamic
surface domains (in red), more static surface and subsurface
domains (cyan), and the crystalline bulk of Cu(210) (gray),
containing, respectively, ∼8%, ∼18%, and ∼74% of the Cu
atoms in the model system (Fig. 4C : cluster populations in the
colored circles). The dynamic interconversion plot in Fig. 4C
reports the probabilities (in 1t = 0.3 ns) for atomic exchange
between the three main LENS environments, revealing a continu-
ous dynamic exchange of atoms between surface, subsurface, and
bulk in the nanosecond-scale, consistent with what was recently
demonstrated (5).

As a second case, we analyze a Cu(211) surface composed
of 2,400 atoms at 600 K (Fig. 4D). We analyze with LENS
502 consecutive frames taken every 1t = 0.3 ns along an MD
simulation performed with the same deep-potential force field of
the previous case (see Materials and Methods for details) (5).

Such a Cu(211) surface has completely different dynamics
from the Cu(210) one. In this case, the time series δi(t)
data provide clear evidence of strikingly nonuniform dynamics
(Fig. 4E). In the Cu(210) simulation at 700 K, LENS shows a
“fluid-like” atomic surface dynamics. Conversely, in theCu(211)
surface, the LENS-based clustering shows that most of this surface
is solid/static (Fig. 4F : ∼99.8% of atoms in the gray cluster and
have a low δi), while sparse atoms (Fig. 4F : ∼0.1 to 0.2% in the
orange and violet clusters) diffuse and move fast on the surface

(large δi LENS signal). Such sparse atoms dynamically emerge,
diffuse, and reabsorb on the Cu(211) surface in a dynamic
fashion: In total, we observe∼200 gray-to-orange transitions over
∼500 sampled frames (transition frequency of one event every
750 ps of simulation). The transition matrix in Fig. 4F describes
the kinetic hierarchy between the different static/dynamic LENS
states, revealing in orange those atoms in the surface edges which
are prone to move (Fig. 4 F, Bottom: MD snapshot), while in
violet are the atoms moving at high speed on the surface after
leaving the orange edge defects (SI Appendix, Movie S2).

In this last case, LENS reveals a strikingly nonuniform
dynamics governed by local rare fluctuations, which are typically
poorly captured by average-based analyses such as, for example,
pattern recognition approaches, or the global statistical analysis
reported for the previous cases (SI Appendix, Fig. S12A) (5, 16).
This underlines the efficiency of a local time-lapse LENS
analysis to detect such rare fluctuations, which has been chal-
lenged further with other prototypical case studies as discussed
below.

LENS Detection & Tracking of Local Fluctuations. We tested
LENS on other molecular systems whose dynamics is dominated
by local fluctuations.

First, we focus on a 309-atoms icosahedral Gold nanoparticle
(Fig. 5A: Au-NP). It is known that such metal NPs may
possess nontrivial dynamics even at room temperature (16). We
analyze 1,000 consecutive frames taken every 1t = 1 ns along
1 μs of MD simulation at 200 K of temperature (all atoms
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of a BTA self-assembled fiber (Bottom). (E) LENS analysis: time series �i(t) data (Left), with related KDE of LENS distribution and interconnection dendrogram
(Center). Right: Detected LENS clusters, corresponding to the bulk (in gray) and the defect domains in the BTA fiber (green and orange), and to the monomers
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for these fibers (6, 7, 50). Note that the subunits within each considered system are illustrated coherently to the color code of the belonging cluster.

are thermalized to guarantee that the temperature is globally
constant in the Au-NP; see Materials and Methods for details)
(16). At T = 200 K, the atomic motion is reduced and the
ideal icosahedral architecture of the Au-NP is consequently
more stabilized than at, for example, room temperature (16).
Nonetheless, after ∼180 ns of MD simulation, the LENS signal
rapidly increases from ∼0.02 to ∼0.18 (Fig. 5B: δi(t)). HC of
the dendrogram of Fig. 5B provides four main LENS dynamic
domains (in gray, cyan, orange, and violet, going from the
lowest to the highest δi values). Focusing on one Au-NP vertex
(Fig. 5 C, Bottom: in the Au-NP center), its surrounding area,
initially static (in gray in the first MD snapshot on the Left), this
vertex becomes suddenly more dynamic (second MD snapshot: in
orange) and, as a dynamic wave, this area turns then violet (third
snapshot). Between the second and third snapshots from the Left
in Fig. 5C (Bottom), LENS detects a local event well known in
icosahedral Au NPs: One vertex (having five neighbors in an
ideal icosahedron) penetrates inside the NP surface generating
a concave “rosette” (having six neighbors—in violet) (73). Such
local transition/fluctuation breaks down the Au-NP symmetry,
generating a dynamic region that then coexists with a more static
area, in gray (SI Appendix, Movie S3). The data in Fig. 5 C, Top
report the transition probabilities between the detected LENS
dynamics domains. This case demonstrates how rare local

fluctuations may generate larger collective rearrangements and
the efficiency of LENS in detecting them.

As additional tests, we have also carried out different control
analyses using the Steinhardt (74) order parameters or SOAP
(43) descriptors on the Cu(211) surface at T = 600 K and
on the Au-NP at 200 K (SI Appendix, Figs. S17 and S18).
These comparisons demonstrate how, while such sophisticated
descriptors may preserve a structurally rich characterization of
the systems (5, 16), the emergence of rare fluctuations or
local transitions are typically overlooked in such structure-
based pattern-recognition analyses (SI Appendix, Fig. S17). In
particular, the few atoms running sensibly faster than all other
ones on the Cu(211) surface at 600 K, are efficiently captured
by LENS (see Fig. 4F and in SI Appendix, Movie S2 with
clusters in orange and purple), but they get lost in such analyses
due to their negligible statistical weight. In a similar way, the
clear evidence provided in Fig. 5 that half Au-NP surface
becomes highly dynamic following to the conversion of one
vertex into a rosette, while the other half remains crystalline-
like, is difficult to attain via averaging the dynamic transitions
between the many atomic surface environments identified by
structural-based analyses (16) (SI Appendix, Fig. S18). In this
sense, LENS is found complementary to such structural analyses,
providing details that cannot be easily captured by them and that
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are fundamental to understand the dynamic properties of such
systems.

Local transitions/fluctuations are not exclusive of crystalline-
like materials but may be present also in soft systems. We use
LENS to analyze a water-soluble 1,3,5-benzenetricarboxamides
(BTA) supramolecular polymer composed of monomers that self-
assemble directionally via π−π stacking and hydrogen-bonding
interactions (Fig. 5D) (75, 76). It has been demonstrated how
these supramolecular fibers possess interesting dynamics due to
defects that continuously form and annihilate in a dynamic way
in the monomer stack (6, 7, 50). In this case, we analyze 20,001
consecutive frames taken every 1t = 1 ns along 20 μs of CG-
MD simulation at room temperature (see Materials and Methods
for details) (6, 7). Recently, unsupervised clustering of SOAP
data extracted from the MD trajectories of such BTA-fibers
allowed the unbiased detection of the fiber’s defects. However,
unveiling a posteriori from such structural data the dynamics
of these defects and of monomers’ diffusion between them is
nontrivial (7, 50). Nonetheless, the time series δi(t) data in Fig.
5E clearly show how the dynamics of such fibers is strongly
controlled by sharp local fluctuations that are well captured by
LENS. HC of the LENS data distinguishes well the interior of
the fiber as a more static environment (Fig. 5 E and F : gray
cluster), the defects along the fiber as slightly more dynamic
(green and orange), and also the monomers diffusing on the fiber
surface (in violet) (6, 7). The transition matrix and pie chart of
Fig. 5F show how the gray, green, and orange clusters include
the majority of the BTA-monomers. On the other hand, sparse
monomers (∼0.2%) belonging to the violet cluster undergo sharp
transitions and instantaneous reshuffling of their local neighbors.
These are the monomers that are diffusing defect to defect on the
fiber surface, which provides a picture of the internal dynamics
of such complex BTA fibers in optimal agreement with previous
studies (6, 7, 32, 50).

Also in these cases (as in the Cu(211) surface of Fig. 4 D–
F ), LENS is found to be efficient in detecting and tracking
local fluctuations that play a dominant role in the dynamics of
the entire system. It is worth noting how in all such cases a
time-independent (pattern recognition-based) statistical analysis
of neighbors’ variability is inefficient to outline such nonuniform
dynamics, due to the low statistical weight of the local events
occurring in these systems (SI Appendix, Fig. S12).

Discussion

Many molecular systems are controlled by local fluctuations
that are often difficult to detect and typically lost in average-
based analyses. Here, we present a general descriptor designed
to track local fluctuations in complex dynamic systems, named
LENS. Different from many descriptors, LENS is based on the
concept of neighbor identities (IDs) instead of, for example,
molecular/atomic species. At each sampled time frame along
a trajectory, our analysis builds a string listing the neighbor
IDs surrounding each particle i in the system. Within the time
interval between consecutive time frames, LENS measures the
variations in the neighbor IDs in terms of addition, subtraction,
or reshuffling of neighbors (Fig. 1). Large time-lapse variations in
the local neighborhood provide strong LENS signals, while weak
LENS signals indicate reduced dynamics in the local environment
surrounding a given particle i.

We tested LENS in a number of systems with strikingly
different internal dynamics. Shown in Fig. 2, LENS reveals that
a bicomponent lipid bilayer is characterized by surface patches,
with different molecular reshuffling dynamics, which correspond

to the segregation of the lipid species into two domains. In Fig.
3, we demonstrate how our time series LENS analysis detects
efficiently phase transitions and coexistence of different phases:
For example, in a DPPC lipid bilayer undergoing gel-to-liquid
transition increasing the temperature from 273 K to 323 K or in
a liquid water–ice system at freezing/melting temperature.

When a system is characterized by statistically dominant
dynamic domains, the time-dependent LENS and global (time-
independent) statistical analyses correlate (Figs. 2 and 3 A–
C ). Conversely, system dynamics dominated by rare local
fluctuations are poorly described by global statistical analyses
(SI Appendix, Fig. S12). In the Cu(211) surface (Fig. 4 D–
F ), for example, a global statistical analysis based on a pattern
recognition approach identifies only one domain, as reported
in SI Appendix, Fig. S12A, meaning that the sparse atoms
diffusing fast on the metal surface are not statistically relevant
and are statistically lost in such analyses. Rare local transitions
are not captured by a global time-independent analysis even
in the systems of Fig. 5. This is not necessarily an exclusive
problem of time-independent analyses conducted with this
specific descriptor: Also, other descriptors such as, for example,
SOAP, coordination number, etc., are in fact efficient as far as
they are used to detect statistically relevant dynamic/structural
populations and patterns. Nonetheless, the results of Figs. 4 D–F
and 5 demonstrate how a local time-dependent LENS analysis
is efficient in detecting and tracking such local fluctuations and,
in this sense, appears as more general, complete, and robust
than an average time-independent investigation. In addition,
while average-based and global pattern recognition analyses work
typically well when one knows what to search, this is less the case
for LENS. The LENS analysis in fact only requires knowing the
IDs of the interacting particles and having a sufficiently sampled
trajectory. This is fundamental in most practical cases where
the nature of a system is not known a priori. In principle, for
ensuring a sufficient sampling of the events captured from the
analyzed trajectories, it would be desirable to use a sampling 1t
small enough to capture the interesting fluctuations/transitions
and to have at disposal a sufficiently long trajectory to ensure
that statistically relevant information on given events can be
effectively attained. It would be ideal to analyze a very long
trajectory using a very tight sampling (small 1t); however, in
most practical cases, this is limited by, for example, the complexity
of the system, the available computational power, and by the
cost of the analysis (which could produce large dataset difficult
to handle/analyze and full of irrelevant information and noise).
Like in the majority of analyses, a preliminary test phase is thus
required to optimize the resolution/cost of the LENS analysis.
For example, in our cases, our preliminary tests demonstrated
that a sampling time (1t ) in the range of 1 to 10 ns produced
robust insightful results, for example, in the case of the CG
simulations of lipids, while a smaller time step in the range
of 0.1 to 1 ns was found best suited for, for example, the AA
simulations and solid-state systems studied herein (water/ice, Cu
surface, and Au-NP). The (temporal) resolution of the analysis
(1t) can be adjusted/optimized to focus on specific events of
interest. The raw time series LENS data (as well as the transition
matrices recomputed from them reported in the figures) provide
information on the statistical confidence in the identification of
the different dynamic domains populating the various systems
and on the observation of the various transitions/fluctuations
between them.

To test the robustness and efficiency of the LENS descriptor,
we have carried out a systematic comparison between LENS
and existing reference techniques, typically used as a benchmark
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for the various systems studied herein [Voronoi (65), Steinhardt
(74), mean square displacement, and dynamic propensity (DP)
(72) analyses]. These additional tests show how LENS works at
least as well as such analyses, which are considered state-of-the-
art for the various testes systems, and even better (SI Appendix,
Figs. S15–S19). At the same time, a strong advantage of LENS is
its generality. Differently from most of such benchmark analysis
approaches, LENS is not tailored ad hoc on a specific system and
does not require prior knowledge of the studied systems. LENS is
thus in principle transferable and well suited to reveal the dynamic
features of a variety of systems (as demonstrated by the diverse
test systems used herein). Our tests also show how, while such
benchmark techniques can capture structurally rich information,
they may be inefficient, for example, in capturing local and rare
dynamic events/fluctuations, key to unveil the system properties,
and which are instead well described by LENS.

LENS has also some intrinsic limitations. Based on its
definition, if in 1t the neighbors do not change (same IDs)
but move remaining in the rcut sphere (local structural rearrange-
ment of the neighborhood), LENS provides no signal. This is
opposed to descriptors such as, for example, SOAP that—being
permutationally invariant—provide vice versa a signal in case
of local rearrangements, but no signal in case of a switching
of IDs (keeping the same structural displacement). This makes
LENS best suited to measure local dynamicity rather than local
structural variations, which is nonetheless key in many complex
systems where dynamics plays a major role. At the same time, one
key advantage of LENS is its abstract definition. This makes it
well suited to analyze a variety of trajectories of systems for which
the identities of the moving units are known and, in principle,
not necessarily restricted to molecular ones.

Materials and Methods
MD Simulations. All data concerning the molecular models and the MD
trajectories analyzed herein are available at https://doi.org/10.5281/zenodo.
8013279 (77).

The DIPC/DPPC lipid bilayer (Fig. 2) is simulated using the Martini2.2 force
field (63). A binary mixture of dipalmitoyl-phosphat-idylcholine (DPPC) and
dilinoleoyl-phosphatidyl-choline (DIPC), with 2:3 molar ratio, is used to model
the coexistence of liquid-crystalline and gel phases into such self-assembled
bilayer. To get the separation of the bilayer into domains of coexisting phases,
the mixture is simulated at T = 280 K. The initial configuration of the binary
lipid mixture in water is generated using insane (78) with the specified box
dimensions (18 × 18 × 11 nm). The bilayer system is composed of 1,150
lipids, consisting of 2:3 DIPC:DPPC on each leaflet, and 17,987 (W) water
molecules. To prevent water crystallization (T < 290 K in Martini) (63), ∼5%
of regular water particles are substituted by the antifreezing water particles. For
nonbonded interactions, a reaction-field electrostatics algorithm is used with a
Coulomb cutoff of rc = 1.1 nm and a dielectric constant of 15. The cutoff for
Lennard-Jones interactions is set to rLJ = 1.1 nm. The timestep used during
the MD simulation is δt = 20 fs. The system is preliminarily minimized and
equilibrated for t = 100 ns. A production run is then performed for t = 15 μs,
and the data acquisition is performed every 1 ns. The solvent and membrane
are coupled separately using a v-rescale thermostat with a relaxation time of
t = 1.0 ps. During the equilibration, the pressure is maintained at p = 1
bar using the Berendsen barostat with the semiisotropic coupling scheme, a
time constant of τp = 4 ps, and compressibility c = 3 ∗ 10−4 bar−1. During
the production, the Parrinello–Rahman barostat is used, with a time constant of
τp = 12 ps. An equilibrium part of the trajectory is analyzed (the last 10 μs)
every1t = 10 ns (1,001 sampled frames).

The bicomponent F-NP/H micelle (SI Appendix, Fig. S2) is simulated at
T = 300 K in explicit water via Martini2.2 (63) scheme (see ref. 60 for further
details). The system is a binary mixture of p-nitrophenyl ester of n-stearoyl
L-phenylalanine (F-NP) and n-stearoyl L-histidine (H) with a 1:1 molar ratio

(NF-NP = 100 and NH = 100). The initial configuration consists of NF-NP =
100 and NH = 100 randomly dispersed surfactants, which assemble into a
single micelle within a 10-μs-long MD simulation sampled every 1 ns. The last
3 μs of the MD trajectory is considered representative of the equilibrium (60)
and used for the analysis—3,001 analyzed frames taken every1t = 1 ns along
the MD.

All the DPPC lipid bilayer trajectories at T = 293 K, 273 K, and 323 K
(Fig. 3 A–C) are obtained from MD simulations of a bilayer model composed of
NDPPC = 1152 DPPC lipids, simulated and parameterized in explicit water via
Martini2.2 (63), as reported in ref. 58. The equilibrated-phase MD trajectories
used for the analyses are in all cases 1μs. A total of 1,001 frames extracted every
1t = 1 ns along the MD trajectories are used for the analyses.

The atomistic ice/water interface model of Fig. 3 D–F is simulated employing
the direct coexistence technique. The TIP4P/Ice water model (79) is used to
model both the solid phase of ice Ih and the phase of liquid water. The direct
coexistence technique is based on the idea to put in contact more phases in
the same box and at constant pressure. To get the coexistence, the temperature
is set at T = 268 K, the energy is constant at 268 K, and the system melts
at 269 K (68), kept constant using the v-rescale thermostat with a relaxation
time of t = 0.2 ps. The initial configuration of the ice Ih is obtained using
the Genice tool proposed by Matsumoto et al. (80) generating a hydrogen-
disordered lattice with zero net polarization satisfying the Bernal–Fowler rules.
To equilibrate the solid lattice, anisotropic NPT simulation is carried out using
the c-rescale barostat, with a time constant of δt = 20 ps and compressibility of
9.1 ∗ 10−6 bar−1. The equilibration lasted 10 ns at ambient pressure (1 atm).
The liquid phase is obtained from the same ice Ih solid phase, performing a NVT
simulation at T = 400 K to quickly melt the ice slab. Thus, both the solid and
liquid phases are obtained with the same number of molecules (1,024) and box
dimensions. The liquid phase is then equilibrated at T = 268 K for t = 10 ns,
using the c-rescale barostat in semiisotropic conditions and compressibility of
c = 4.5∗10−5 bar. The two phases are, then, put in contact and equilibrated for
t = 10 ns using the c-rescale pressure coupling with the water compressibility
(c = 4.5 ∗ 10−5 bar) at ambient pressure. The production NPT ice/water
coexistence MD simulation (Fig. 3D–F) is performed in semiisotropic conditions,
with the pressure applied only in the direction perpendicular to the ice/water
interface. This allows to reproduce the strictly correct ensemble for the liquid–
solid equilibrium simulation by the direct coexistence technique. After the
equilibration, a production run is performed for t = 50 ns, sampled and
analyzed every 0.1 ns. All the trajectories analyzed for the systems simulated
above are obtained using the GROMACS software (81).

The atomistic models of the Cu(210) and Cu(211) surfaces (Fig. 4) are
composed of N210 = 2,304 and N211 = 2,400 atoms, respectively. The MD
simulations are conducted at T = 700 K and at T = 600 K respectively for the
two example surfaces. Deep-potential MD simulations of both Cu surfaces are
conducted with LAMMPS software (82) using a neural network potential built
using the DeepMD platform (83), as described in detail in ref. 5. The sampled
trajectories are 150 ns long. A total of 502 frames are extracted every1t = 0.3
ns along the MD trajectories and used for the LENS analyses.

The atomistic model for the icosahedral Au-NP is composed of NAu−NP =
309 gold atoms (Fig. 5 A–C). The Au-NP model is parametrized according to
the Gupta potential (84) and is simulated for 1 μs of MD at T = 200 K using
LAMMPS software (82) as described in detail in ref. 16. A total of 1,000 frames are
extracted every1t = 1 ns of the MD trajectory and then used for the analyses.

The coarse-grainedBTA fiber model is built consistent with the MARTINI force
field (63) and optimized as described in detail in refs. 6 and 37. In particular, the
fiber model is composed of NBTA = 80 BTA monomers. A trajectory of 20 μs,
obtained with the GROMACS software (81), is then analyzed every1t = 1 ns
(20,001 sampled frames in total).

Preprocessing of the Trajectories. All MD trajectories are first preprocessed
in order to obtain plain xyz files keeping only the coordinates of the particles of
interest, that is, considered during the neighborhood’s evaluation, as reported
in SI Appendix, Table S1. For example, in the lipid bilayer analyses of Figs. 2
and 3 A–C, we considered only the tan PO4 (MARTINI) beads as representative
of the “center” position of each lipid molecule in the systems. For the analyses
conducted herein, we used as the LENS centers respectively the centers of mass
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of the surfactant heads for the micelles of SI Appendix, Fig. S2, the oxygen atoms
of each water molecule in the water/ice system (Fig. 3D–F), each individual atom
in the metal surfaces and Au-NP (Figs. 4 and 5 A–C) each atom, and the center
of each monomer core in the BTA fiber (Fig. 5 D–F). In all cases, the analysis
is then conducted by building at each sampled timestep strings collecting the
neighbor IDs of each unit iwithin a sphere of radius rcut (which is set depending
on the system and based on the shape and the minima of the radial distribution
functions, g(r)m—see SI Appendix, Table S1 and Fig. S1).

Time-Lapse LENS Analysis. The instantaneous δi parameter for each unit i in
each model system is calculated over time along the system’s trajectory from
the Ci strings containing the IDs of the neighbor units calculated at times t and
t+1t as reported in Eq. 1. The analysis is then repeated for all units i at all time
intervals1t sampled along the analyzed trajectories, obtaining the δi(t) plots of
Figs. 1B, 2B, 3 A and E, 4 B and E, and 5 B and E. The δi parameter is normalized
such that it gives 0 when the local neighborhood does not change and 1 when
it changes completely at each 1t. To reduce the noise in each δi(t) signal, we
processed them by using a Savitzky–Golay (85) filter [as implemented in the
SciPy python package (86)], obtaining smoothed 〈δi(t)〉 signals. In particular,
each δi(t) signal is smoothed using a common polynomial order parameter of
p = 2 on a time window of 100 frames for the bicomponent DIPC/DPPC lipid
bilayer system, the F-NP/H micelle, DPPC lipid, and for the water/ice interface.
A smaller time window of 20 frames is used for the crystalline Cu surfaces, for
the gold Au-NP, and for the BTA systems, which allows to better capture the
rapid emergence of rare fluctuations within them. Such setups are considered
as the best compromise in the various cases after a preliminary phase in which
we tested the reliability and robustness of results by systematically studying
the effect of changing the smoothing windows on the results obtained for the
various systems (SI Appendix, Figs. S5–S7). In order to simplify the notation, we
refer to the 〈δi(t)〉 signal as δi.

After the noise reduction, the clustering of the δi data is performed by means
of the KMeans algorithm (64) implemented in SciPy python package (86). The
KMeans algorithm requires the definition of the number of clusters as an input.
The initial number of microclusters is set (as a default choice) as twice the
number of peaks/discontinuities in the δi data (distributions on the Right of
Figs. 1B, 2B, 3 A and E, 4 B and E, and 5 B and E), while in case only one peak
is detectable in the δi distribution, the initial number of microclusters is always
set to five. This guarantees that KMeans always detects an excess of starting
microclusters, allowing us to start from an excess of dynamic information. After
such a preliminary step, a transition matrix is built collecting the probabilities
for each single identity/subunit belonging to a certain specific cluster at time
t to remain in that cluster (diagonal entries) or to undergo transition into
another one in 1t (off-diagonal matrix entries). Then, the microclusters are
merged hierarchically a posteriori into macroclusters based on a concept of
direct closest adjacency (i.e., clusters having the smallest distance from each
other are merged together). To this end, a single link algorithm based on the
metrics correlation implemented in the HC interconnection dendrograms is
used. Specifically, the HC algorithm first computes the distances, according to
the selected metrics—correlation between any couple of rows (clusters) in the
transition matrix; then, it couples/merges specific rows following the single-
algorithm rational. This implies that clusters in the transition matrices having,
for example, high diagonal % entries (higher than 50%) are kept as distinct,
meaning that within the time resolution of the analysis, they are recognized
as dynamically distinct environments with good statistical confidence, while
clusters with low off-diagonal % entries (e.g., close to or lower than 50%) and
high off-diagonal entries % (high probability to undergo transition into another
cluster in 1t) are most likely merged together. Such a hierarchical clustering
(HC) approach is used to relate all microclusters with each other and to provide
the rationale for merging them into the macroclusters reported in our analyses

based on their adjacency, thereby obtaining a coarse-grained characterization
of the internal dynamics of the studied systems. This is the effect of cutting the
HC dendrogram at different levels (SI Appendix, Figs. S6–S11).

We note that the results shown herein are obtained via such a simple
iterative supervised clustering approach, which in the cases we discuss in this
work was found simple, effective, and robust to against the tuning of clustering
parameters (thus satisfactory from the robustness and reproducibility point
of view). Nonetheless, we underline that other (e.g., unsupervised) clustering
approaches could be used for the purpose, although they do not always provide
consistent results with each other, and where the tuning of the setup parameters
may be nontrivial.

Global Statistical Analysis. Average information on the statistically dominant
dynamic domains present in the systems can also be obtained from the global
dataset of the Ci as described in the text. For each i unit, the numbers of the
contacts with the other neighbor IDs along the trajectory (DTi , considering all
T sampled frames) are collected from the global Ci dataset (see, e.g., Fig. 1C).
The contacts data are then organized into a contact matrix where the individual
entry i, j indicates the total number of neighboring events between the bead i
and j in all sampled time intervals along the analyzed trajectory (Fig. 2E and SI
Appendix, Fig. S2E).

The data related to each unit i (i.e., to each row of the contact matrix) are
centered on the mean and normalized on the SD of the neighboring events. The
variability (V ) is then defined as the inverse of the SD of the DTi values: Low SD
around a mean value implies that each unit i gets in direct contact with all other
IDs along the trajectory; the variability (V ) of its neighborhood is thus high. On
the other hand, high SD identifies cases where the number of neighbors tends
to remain the same along the trajectory and the number of visited neighbor IDs
is thus low: This means that the neighborhood of unit i in such cases is rather
static, and its variability (V ) is low. What is important to note is that, rather than
the quantitative V values (which may depend on, for example, the length of
the trajectory, the dynamics of the system, etc.), the comparison between the
(V ) parameters of the individual units (i: from 1 to N) in the system, and the
presence of molecular domains characterized by different V indexes (identifying
the presence of different dynamic domains) are actually relevant. The matrix
is then analyzed via hierarchical clustering (HC). In particular, the normalized
contact data are gathered by means of the Ward method (87) with the Euclidean
metric both implemented in SciPy python package (86), and the number of
clusters is determined based on the dominant patterns from the sorted matrix
(see, e.g., the matrices of Fig. 2E and SI Appendix, Fig. S2 E, Right).

Data, Materials, and Software Availability. Details on the molecular models
and on the MD simulations and additional simulation data are provided
in Supporting Information. The LENS analysis code, together with complete
molecular simulation data, complete data on all molecular models used for
the simulations, and on the simulation parameters (input files, etc.) used in
this work are available at https://doi.org/10.5281/zenodo.8013279 (77) and at
https://github.com/GMPavanLab/LENS (88).
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