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The widespread testing for severe acute respiratory syndrome coronavirus 2 infection has facilitated the use
of test-negative designs (TNDs) for modeling coronavirus disease 2019 (COVID-19) vaccination and outcomes.
Despite the comprehensive literature on TND, the use of TND in COVID-19 studies is relatively new and calls
for robust design and analysis to adapt to a rapidly changing and dynamically evolving pandemic and to account
for changes in testing and reporting practices. In this commentary, we aim to draw the attention of researchers
to COVID-specific challenges in using TND as we are analyzing data amassed over more than two years of the
pandemic. We first review when and why TND works and general challenges in TND studies presented in the
literature. We then discuss COVID-specific challenges which have not received adequate acknowledgment but
may add to the risk of invalid conclusions in TND studies of COVID-19.

control selection; COVID-19; observational data; symptomatic testing; test-negative design; time-varying
confounding; vaccine effectiveness

Abbreviations: COVID-19, coronavirus disease 2019; DAG, directed acyclic graph; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; TND, test-negative design; VE, vaccine effectiveness.

The test-negative design (TND) is increasingly used to
evaluate postlicensure coronavirus disease 2019 (COVID-
19) vaccine effectiveness (VE). In a TND study, patients
who present at a health-care facility and get tested for severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection are classified as cases (test-positive) and controls
(test-negative). Then the odds of vaccination among cases
and controls are compared to estimate VE against medically
attended and laboratory-confirmed SARS-CoV-2 infection.
VE against severe outcomes such as hospitalization and
death may also be evaluated. The TND can be viewed as
a type of case-control design, where the control subjects are
drawn among those who tested negative. Besides estimation
of VE, TND has also been used to study risk factors and other
clinical outcomes of COVID-19 (1). Despite the comprehen-
sive literature on TND, the use of TND in COVID-19 studies
is relatively new and calls for robust design and analysis
to adapt to a rapidly changing and dynamically evolving
pandemic, with worldwide data amassed for more than 2
years. Over this time period, testing and reporting practices
have also changed considerably.

WHEN AND WHY DOES TND WORK?
Figure 1A and 1B illustrate the rationale behind the TND

and relationships among vaccination (V), true infection sta-
tus (I), symptoms (S), testing (T), observed infection status
(I∗), and health-care-seeking behavior (H), using directed
acyclic graphs (DAGs). DAGs are widely used in epidemiol-
ogy and econometrics to describe the variables under consid-
eration (represented by nodes) and the causal relationships
between them (represented by arrows). We highlight that
testing can be due to clinical symptoms, in which case the
outcome of interest is restricted to symptomatic infection, or
testing could be due to other reasons unrelated to symptoms,
in which case the outcome includes both symptomatic and
asymptomatic infections. We further introduce the observed
infection status I∗, which is not available among untested
individuals. More discussions and alternative DAGs are
available in other work (2–4). All arguments are implicitly
conditional on the measured confounders such as age, gen-
der, and socioeconomic status.

A major challenge TND aims to address is confounding by
unmeasured health-care-seeking behavior when estimating
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the vaccine effect against infection, indicated by the V → I
arrow. Patients with higher levels of health-care-seeking
behavior are more likely to get vaccinated (H → V) and
engage in healthy behaviors (H → I). As such, vaccination
may appear to be protective regardless of the true effect.
The TND reduces such confounding bias by enrolling only
the tested individuals, which is equivalent to conditioning
the analysis on T = 1, leveraging the fact that patients
with health-care-seeking behavior tend to seek care and
get tested when ill (H → T). We introduce the following
assumptions:

• Assumption A: Tested patients have the same health-care-
seeking behavior (i.e., H = 1 if T = 1).

• Assumption B: Vaccination status does not have a direct
impact on testing (i.e., no V → T arrow).

• Assumption C: Vaccination does not mitigate the symp-
toms among individuals with the test-positive infection
(i.e., no V → S arrow).

Under assumptions A, B, and C, the vaccinated and
unvaccinated are comparable in terms of health-care-seeking
behavior by design, which reduces confounding bias due to
unmeasured health-care-seeking behavior in the estimated
effect of vaccination.

In addition, when the outcome of interest is symptomatic
infection, in traditional case-control studies, controls are
randomly selected subjects, including those who may not
seek testing/care and potentially have unreported COVID-
19. That is, I∗ is unknown if T = 0. In contrast, in a
TND study where the outcome of interest is symptomatic
infection, the control subjects are those who develop symp-
toms and seek care with SARS-Cov-2 test results avail-
able, and thus TND can reduce bias due to unreported
cases when compared with case-control studies (5, 6). If
the outcome includes both symptomatic and asymptomatic
infection, misclassification bias due to asymptomatic testing
is likely to remain and be similar under both designs.

CHALLENGES IN TND IN GENERAL

The TND is known to be subject to different sources of
bias, which we illustrate in Figure 1C. First, as with all obser-
vational studies, TND may remain subject to unmeasured
confounding bias (U). For example, occupation as a health-
care worker, being residents of care facilities, needing a med-
ical procedure, COVID-related comorbidities, and previous
infection history are all potentially unmeasured common
causes of vaccination, infection, and testing. Even when
measured and included as an adjustment covariate, variables
such as previous infection history are likely to be error-prone
(3, 7). Circulating virus levels in the community may also
affect both vaccination and testing. Adjusting for calendar
time or daily test-positive rate can potentially control this
bias. In addition, assumption A is almost never realistic
because health-care-seeking behavior is multifaceted and
cannot be fully adjusted by simply conditioning on testing.

Second, conditioning the analysis on testing may intro-
duce collider stratification bias (8). A collider is a variable
affected by at least 2 other variables, which, when condi-
tioned on in analysis, can distort the association between

the two variables. In Figure 1C, T is a collider of V and I
due to the paths V → T and I → S → T , and conditioning
on T = 1 leads to an observed association between V and
I even when they are truly independent. For example, if
unvaccinated individuals are more likely to get tested for
SARS-CoV-2 infection due to, say, different SARS-CoV-
2 testing policies by vaccination status at workplace, and
individuals infected with SARS-CoV-2 are more likely to get
tested as they develop symptoms, then a negative association
between V and I may occur among the tested subjects. As
another example, if the vaccine may mitigate symptoms due
to SARS-Cov-2 infection, which leads to less testing, then
T is a collider due to the V → S → T and I → S → T
paths, which also leads to an observed negative association
between V and I.

Other challenges discussed in the literature include: mis-
classification of infection status I∗ due to imperfect testing
(3, 6), lack of generalizability from the TND sample to the
target population (9), confounding by calendar time due to
time-varying vaccine uptake and infection acquisition (3, 5,
10), viral interference where infection by one virus affects
infection by another virus (11), waning of VE (12), and
differential susceptibility to infection due to prior infection
(13). These issues have not received adequate acknowl-
edgement, mostly due to lack of suitable data or statistical
methods, but they add to the risk of invalid conclusions about
VE.

CHALLENGES IN TND AS WE ANALYZE COVID-19 DATA

As we learn to live with COVID-19, we would like to
draw the attention of researchers using TND to the following
COVID-specific challenges in TND.

Comparing a booster dose with initial 2-dose
vaccination

More recently, new TNDs have been implemented that
allow researchers to compare vaccine-boosted individuals
versus those who completed only primary series vaccina-
tion (14, 15). Several features of this comparison may be
leveraged to improve the analysis and make more accurate
causal conclusions. Because time of vaccination is available
in both arms, it can be adjusted for in an analysis to remove
time-window bias. Design strategies leveraging time of vac-
cination can be employed, such as using a negative control
period of 14 days within the initial dose of the primary
series vaccination, when no protection from vaccination
is expected, to further detect and control for unmeasured
confounding bias (16–18). Furthermore, as both arms have
completed primary series vaccination, the VE estimate is
less subject to confounding by health-care-seeking behavior.

Identifying covariates of relevance

Second, a growing fraction of the population has a his-
tory of prior infection. Adjustment for past SARS-CoV-2
infection history and differential test-positivity rate in geo-
graphical regions becomes important, as previous infection
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Figure 1. Directed acyclic graphs (DAGs) describing the causal relationship among vaccination status (V), true infection status (I), symptoms
(S), testing (T), observed infection status (I∗), latent health-care-seeking behavior (H), and other unmeasured confounders (U). A and B) These
DAGs illustrate how and why test-negative design works. C) This DAG presents scenarios when test-negative design can be subject to bias. If
the outcome of interest is infection regardless of symptoms, the H, U → T arrow contains the effect through other reasons for testing.

and regional COVID-19 prevalence may be confounders
between vaccination and new infection. It is also important
to distinguish between natural immunity from infection and
hybrid immunity from infection and vaccination by adjust-
ing for prior SARS-CoV-2 infection. Moreover, attention
should be paid when applying statistical methods that rely on
rare-disease assumptions, which may be violated in certain
study cohorts and as we move over time.

Test-negative design with widespread and regular
testing

Third, the availability of testing is increasing. Individuals
who self-test at home may not present at a health-care
facility, which may affect our ability to recruit test-negative
participants into a TND study. Alternative controls, such
as nontested controls or population controls proposed to
improve external validity (9, 19), may become less available.
More and more tests conducted due to reasons other than
health-care-seeking—such as traveling, work requirements,
and medical procedures—will also affect the validity of
TND to control for confounding bias (6, 20). With repeated
testing becoming increasingly common, defining a case as
someone with at least 1 reported positive test and a control as
someone with all tests reported negative leads to individually
varying sensitivity and specificity, depending on how many
times one got tested. Existing TND studies handle the issue
of repeated testing differently, for example, by limiting the
maximum number of negative tests for someone with mul-
tiple negative tests or by randomly selecting a negative test
result within specified intervals (21, 22). For someone with
multiple illness periods with reinfections, typically only the
first positive test in the initial period of illness is considered.
All these protocols for choosing index tests are ad hoc. We
need more systematic guidelines and research about the best
practice for handling repeated testing in TNDs.

Lack of integrated public health data systems

Fourth, in order to implement a TND, we need to have
a comprehensive database that captures all tests, vaccina-
tion, and other clinical outcomes for COVID-19 over time.

Such integrated public health and health-care systems are
available in the United Kingdom, Israel, and Denmark (15,
17, 23), and as such seminal observations regarding waning
effect of the vaccine and its reduced effectiveness against
newer variants have emerged through studies using such
large population-based data ecosystems. We need systems
where each domain of data cross-talks with the other. Even
to build a time-dependent model for “who is getting tested,”
we need individual-level data measured over time (24).
Collecting data on the reason for getting tested helps us
distinguish symptomatic testing.

Collecting accurate information on all-cause and cause-
specific mortality and date of death by linking electronic
health record data with state or national death registries may
also help mitigate survivorship bias and competing risk bias
(25). Survivor bias occurs since the study subjects in a test-
negative design are necessarily alive by the time of testing,
which restricts the conclusion of an analysis to the survivors.
Competing risk bias occurs if death precludes the occurrence
of testing and thus SARS-CoV-2 infection. Since COVID-
19 vaccines appear to reduce mortality for the infected
(26), among infected subjects who may die and who would
otherwise get tested and be selected into the study sample,
there may be an overrepresentation of unvaccinated subjects.
This selection bias may cause an underestimation of the VE.

Time-varying confounding

Fifth, more than 2 years into the pandemic, we need
to consider the time-varying features of confounding, vac-
cination, infection, and testing in the design of a study.
For example, as illustrated in Figure 2, confounders of the
vaccination-infection relationship, such as diagnosis of an
autoimmune disease, can change over time; thus, timing of
measurement for confounders should be carefully consid-
ered. Designs that only capture covariates between the index
test and the last vaccination can miss important confounding
information that influences both vaccination and infection
status. Differential circulation of virus, transmissibility of
emerging variants, change in policies, and human behav-
iors leading to time-varying infectiousness should also be
accounted for.
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Figure 2. A schematic diagram depicting the evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant landscape
(variant frequency data over time in the United States obtained from https://nextstrain.org), the reported coronavirus disease 2019 (COVID-
19) case counts in the United States over time (obtained from the Covid Data Tracker (35)), and the possibility of time-varying confounding
across some possible patient scenarios of vaccination and infection. V1, V2, and B represent the first, second, and booster vaccination; T+
and T− indicate test positive and negative. The colored shading indicates the Delta (blue) and Omicron (orange) variant periods. Patient 1 vs.
2: Differential circulation of virus and time-varying infectiousness should be accounted for. Patient 2 vs. 3: Measuring covariates between last
vaccination and the index test may miss important confounders. Patient 3 vs. 4: Everything after the index test does not count in the comparison.
RA, rheumatoid arthritis.

New designs and analysis

Finally, we need to be open to other forms of designs and
analyses that may better address specific questions related to
COVID-19. Some potential study designs are: using historic
controls, using contemporaneous controls, self-controlled
case series, and case-crossover studies. For example, to eval-
uate post-COVID new symptoms and health-care utilization,
a case-crossover design (27), choosing proper windows of
comparison during case (post-COVID) and control (pre-
COVID) periods, may be a prudent choice.

Assessing VE against severe COVID-19 outcomes—
such as hospitalization, intensive care unit admission, and
death—is critical to inform decision making, particularly
when clinical trials are inadequately powered for such
rare outcomes. Some TND studies leverage hospital-based

surveillance programs (28–30), in which patients admitted
to participating hospitals meeting eligibility criteria are
enrolled with infection and vaccination status prior to
hospitalization being verified (i.e., data are collected
prospectively) (3). Among hospitalized and tested patients,
VE against both COVID-19 infection and severe COVID-
19 outcomes among test-positive patients are studied. A
distinction regarding being hospitalized “with COVID” and
“for COVID” can be made in defining the hospitalization
outcome. Other TNDs identify tested patients from elec-
tronic health records or other administrative databases with
data collected retrospectively, and then investigate severe
outcome among only test-positive patients (31, 32).

Besides using other study designs, we may also explore
the utility of novel analysis to TND. The issue of follow-
up and censoring has often been ignored in many studies
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by using a binary indicator for COVID outcomes after
vaccination, but a time-to-event model is needed to properly
account for censoring and difference in follow-up time
(33). To our knowledge, standard survival analysis methods,
such as the renowned Cox regression model, have not been
applied to evaluate VE with data from a TND study, but
theoretical justification can be found in well-established
case-control study literature (34). For such an analysis, the
follow-up of test-negative controls may be right censored
at a prespecified calendar time. More assumptions need
to be made such that the comparison between the test-
positive and test-negative groups reflects the VE in the target
population. An example of such an assumption may be that
the vaccination does not change the distribution of time to
the symptom onset of test-negative illnesses.

With better data, better design, and better analysis with
clearly stated assumptions, we can improve our understand-
ing of key therapeutic and public-health questions around
COVID-19 vaccines and risk factors.
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