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Abstract

Recent evidence suggests that nongenetic (epigenetic) mechanisms play an important role at 

all stages of cancer evolution. In many cancers, these mechanisms have been observed to 

induce dynamic switching between two or more cell states, which commonly show differential 

responses to drug treatments. To understand how these cancers evolve over time, and how they 

respond to treatment, we need to understand the state-dependent rates of cell proliferation and 

phenotypic switching. In this work, we propose a rigorous statistical framework for estimating 

these parameters, using data from commonly performed cell line experiments, where phenotypes 

are sorted and expanded in culture. The framework explicitly models the stochastic dynamics of 

cell division, cell death and phenotypic switching, and it provides likelihood-based confidence 

intervals for the model parameters. The input data can be either the fraction of cells or the number 

of cells in each state at one or more time points. Through a combination of theoretical analysis 

and numerical simulations, we show that when cell fraction data is used, the rates of switching 

may be the only parameters that can be estimated accurately. On the other hand, using cell number 

data enables accurate estimation of the net division rate for each phenotype, and it can even enable 

estimation of the state-dependent rates of cell division and cell death. We conclude by applying 

our framework to a publicly available dataset.
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1 Introduction

Cancer evolution has long been understood to be a genetic process. However, recent 

evidence suggests an equally important role for non-genetic forces, including epigenetic 

mechanisms and the inherent stochasticity in gene transcription and translation [1, 2, 3, 

4, 5, 6]. These mechanisms are heritable and reversible, and they can enable cells to 

dynamically switch between two or more phenotypic states. Such switching dynamics have 

been observed e.g. in lung cancer [7, 8, 9], melanoma [10, 11, 12], glioblastoma [13, 

14], leukemia [15, 16], colon cancer [17, 18, 19, 20] and breast cancer [21, 22, 23, 24]. 

The different phenotypes commonly show differential responses to drug treatments, which 

enhances the adaptability of the cancer under treatment and significantly increases the 

probability of treatment resistance [25].

Unraveling how the cancer-specific rates of cell division, cell death and phenotypic 

switching shape tumor evolution over time is crucial to furthering our understanding of the 

disease and to informing new treatment strategies. For example, in a two-phenotype cancer 

where one type is drug-sensitive and the other is drug-tolerant, the change in phenotypic 

proportions during the initial stages of treatment can be explained by a combination of 

sensitive cells dying, drug tolerant cells proliferating, and cells switching between sensitivity 

and tolerance. Disentangling the relative rates at which these events occur can help us to 

better understand how resistance arises, how it evolves over time, and how best to combat it 

[25].

Our current quantitative understanding of the rates of cell proliferation and phenotypic 

switching in cancer is largely derived from cell line experiments. In these experiments, live 

cells are commonly sorted into phenotypes, e.g. based on gene expression profiles or cell 

morphologies, isolated subpopulations are expanded in culture, and phenotypic proportions 

are tracked over time (Fig. 1). These isolated subpopulations have been observed to give rise 

to all other phenotypes over time, with proportions between types eventually converging to 

the constant proportions observed in the parental population [21, 17, 19, 20, 23, 24, 14].

To explain this behavior, simple mathematical models of phenotypic switching have been 

proposed, and these models have been used to estimate the rates at which cells switch 

between states [21, 26, 27, 28, 29, 22, 12, 30]. These works are reviewed in Section 2 below. 

Previous estimation methods have been deterministic in nature, and they have generally 

derived their estimates from data on the fraction of cells in each state at each time point. If 

the total size of the cell population is measured at the same time points, as e.g. in [30], one 

obtains data on the number of cells in each state at each time point. We will show that when 

cell fraction data is used, the rates of phenotypic switching may be the only parameters that 

can be estimated accurately. In contrast, using cell number data enables accurate estimation 

of the net cell division rate for each phenotype, and it can even enable estimation of the 

state-dependent rates of cell division and cell death. Understanding how growth rates vary 

between types is as important as understanding the rates of phenotypic switching, especially 

in the context of treatment response. Not only do the growth rates influence the phenotypic 

composition of the population, they also control the evolution of the tumor burden over time.
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Our goal in this work is to develop a statistically rigorous framework for estimating the 

rates of cell proliferation and phenotypic switching in cancer. In contrast to previous 

approaches, our framework explicitly models the stochastic dynamics of cell division, cell 

death and phenotypic switching, it provides likelihood-based confidence intervals for the 

model parameters, and it enables estimation both from cell fraction and cell number data. 

We also use our framework to analyze the identifiability of model parameters and how it 

depends on the input data. This important topic has not been addressed by previous works.

The rest of the paper is organized as follows. In Section 2, we review prior estimation 

methods. In Section 3.1, we introduce our stochastic model of cell division, cell death and 

phenotypic switching. In Section 3.2, we state our assumptions on the cell line experiments 

conducted and the data collected. In Sections 3.3 and 3.4, we propose statistical models 

for cell number and cell fraction data, respectively, and describe how parameter estimates 

and confidence intervals are computed. In Section 4.1, we present theoretical analysis of 

the identifiability of parameters under each model. In Section 4.2, we conduct numerical 

experiments for the case of two phenotypes, and in Section 4.3, we apply our framework to 

a publicly available dataset. We conclude by discussing limitations of the framework as well 

as avenues for improvement (Section 5). For simplicity, the development of the estimation 

framework in the main text is focused on the case of experiments started by isolated 

subpopulations. General starting conditions are treated in full detail in the appendices.

2 Review of prior estimation methods

At the single-cell-level, phenotypic switching has commonly been modeled by a discrete-

time Markov chain with K ≥ 2 states, where K is the number of phenotypes. In each time 

step, a cell in state j transitions to state k ≠ j with probability pjk, and it remains in state 

j with probability pjj = 1 − ∑k ≠ j pjk. The transition probabilities are collected into the K × K
transition matrix P = pjk . The evolution of the Markov chain is determined by P and the 

initial distribution q = q1, …, qK , where qj is the probability that a cell starts in state j. If we 

let q(ℓ) denote the cell state distribution after ℓ ≥ 1 time steps, then q(ℓ) = qPℓ.

Say we conduct K cell line experiments starting with N cells in each experiment and known 

initial cell state distributions q1, …, qK. The initial distributions are collected into a K × K
matrix Q, where qi is the i-th row vector. Each experiment is run for ℓ ≥ 1 time steps, at 

which point the fraction of cells in each state is recorded. Let fij
(ℓ) be the observed fraction 

of cells in state j under the i-th initial condition. The observa at the l-th time step under the 

i-th initial condition are collected into a vector f i
(ℓ) = fi1

(ℓ), …, fiK
(ℓ) , and all observations at the 

l-th time step are collected into a K × K matrix F(ℓ) = fij
(ℓ) . If there are multiple replicates 

r = 1, …, R, we let F ℓ , r denote the data from the r-th replicate.

Now assume that the starting population N is large, that there is no cell division or cell 

death, and that each cell switches between states according to the above Markov model. In 

this case, by the strong law of large numbers, the model-predicted distribution between cell 

states QPℓ after ℓ time steps can be approximated by the experimentally observed cell-state 
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fractions F(ℓ). If we simply equate these two matrices, we can obtain an estimate Pℓ of the 

transition matrix P by inverting the matrix Q of initial distributions and taking an l-th matrix 

root, Pℓ = Q−1F ℓ 1/ℓ
. Here, we assume that Q is invertible, which is e.g. the case when 

experiments are started with isolated subpopulations.

This simple estimation idea was applied by Gupta et al. [21] to investigate phenotypic 

switching between stem-like, basal and luminal cell states in breast cancer, using data from 

a single time point. A multiple-time-point extension has since been implemented in the R 

package CellTrans [26]. Say that cell state fractions are experimentally observed at time 

steps m1, …, mL for L ≥ 1. CellTrans first computes an estimate Pmℓ of the transition matrix for 

each time step as above, and then returns a final estimate as the average across time steps:

P: = (1/L)∑ℓ = 1

L Pmℓ . (1)

CellTrans also involves a regularization step to ensure that P is stochastic. CellTrans is used 

on publicly available datasets in [26] and it has been applied more recently in [31, 32, 33].

Cell populations in culture typically change in size over time. If all phenotypes grow at 

the same rate, and cell growth occurs deterministically at the end of each time step, the 

constant-sized Markov model can be used to describe the evolution of cell state fractions. 

Both Gupta et al. [21] and Su et al. [12] have applied an augmented version of the Markov 

model intended to capture proliferation differences between types. In the augmented model, 

during a single time step, each type-j cell first grows deterministically to a population of size 

Λjj, and a fraction pjk of cells then switch to type-k. The growth factors Λjj are collected into a 

diagonal proliferation matrix Λ, and the multiple ΛP, after being normalized to produce cell 

fractions as opposed to cell numbers, is used to predict the distribution between cell states. 

In both Gupta et al. [21] and Su et al. [12], the matrix Λ is found by randomly sampling 

candidate parameter values and selecting the values that best fit the experimental data.

TRANSCOMPP [27] is a more systematic version of the aforementioned method. In 

TRANSCOMPP, the diagonal proliferation matrix Λ and the transition matrix P are 

estimated by minimizing the sum of squared errors between the model prediction and the 

data,

minΛ, P∑
i = 1

I ∑
ℓ = 1

L ∑
r = 1

R
f i

mℓ , r − qi(ΛP)mℓ1T −1qi(ΛP)mℓ
2

. (2)

Note that this problem only determines the growth factors relative to one another, Λjj/Λ11

for j = 2, …, K. TRANSCOMPP is implemented in MATLAB, and it includes a stochastic 

resampling procedure for estimating the distributions of the transition probability estimates. 

The stochastic resampling is performed on single-cell measurements of cell phenotypes, if 

available, or on data generated from a user-defined distribution of cell state fractions.
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In modeling switching between HER2+ and HER2− states in breast cancer, Li and 

Thirumalai [28] employ a deterministic continuous-time model. Their model assumes 

symmetric and asymmetric cell divisions, which through reparametrization leads to the 

same dynamics as symmetric cell divisions and switching between types. Li and Thirumalai 

assume equal rates of asymmetric division for the two types (or equivalently, equal rates 

of switching between types), and they show that if experiments are started with isolated 

subpopulations, the slopes of the cell fraction trajectories at time 0 can be used to estimate 

these rates. They also show that the equilibrium proportion between types can be used to 

estimate the difference in symmetric division rate between the two types. The proportion 

between phenotypes in the parental population is used as an estimate of the equilibrium 

proportion. We have made use of these insights in our identifiability analysis in Section 4.1.2 

below.

Finally, in their investigation of epithelial to mesenchymal transition in breast cancer, 

Devaraj and Bose [30, 34] employ a discrete-time model where cells divide, die and switch 

between types. Their model includes a separate state for dead cells to facilitate estimation of 

death rates and well as division rates. We have used the same idea in Section 4.2.3 below 

to improve the identifiability of birth and death rates under our framework. Their model 

furthermore assumes that the rates of birth, death and switching are time-dependent. Devaraj 

and Bose derive difference equations for the change in the number of cells in each state 

between time points. They then propose a multi-objective optimization problem to estimate 

the model parameters from data on cell state fractions and the total number of alive and dead 

cells at each time point. Their parameter fitting procedure minimizes the least squares error 

between the model predictions and the data across the different time points, while ensuring 

that parameters do not vary too drastically between time periods.

3 Models and methods

In this section, we propose statistical models for cell number and cell fraction data, which 

are based on a multitype branching process model of the cell population dynamics [35]. To 

simplify the discussion, we will focus on the case where all experiments are started from 

isolated subpopulations of cells. We emphasize however that the estimation framework can 

be applied to any set of starting conditions, as is outlined in more detail in Appendix A.

3.1 Multitype branching process model

3.1.1 Model definition and model parameters—To model the cell population 

dynamics, we employ a multitype branching process model in continuous time, with K ≥ 2
types [35]. In the model, a type-j cell divides into two cells at rate bj ≥ 0, it dies at rate 

dj ≥ 0, and it switches to type-k at rate νjk ≥ 0 for k ≠ j, independently of all other cells. This 

means that in an infinitesimally short time interval of length Δt > 0, a type-j cell divides with 

probability bjΔt, it dies with probability djΔt, and it switches to type k with probability νjkΔt. 
The multitype branching process model captures a variety of switching dynamics previously 

observed in the literature (Fig. 2).
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We allow νjk = 0 for some j and k, which means that a type-j cell is not able to switch 

directly to type-k. However, in our exposition, we assume that the model is irreducible, 

in that each cell type is accessible from any other cell type, possibly through intermediate 

types. In mathematical terms, this means that for each j, k = 1, …, K with k ≠ j, there exist 

r ≥ 0 integers m1, …, mr ∈ 1, …, K  so that νjm1νm1m2⋯νmrk > 0. Our estimation framework can 

also be applied to reducible switching models, as we discuss in Appendix B below.

For j = 1, …, K, we define λj: = bj − dj as the net birth rate of a type-j cell. We collect the 

growth parameters into 1 × K vectors b = b1, …, bK , d = d1, …, dK  and λ = λ1, …, λK . We 

also define λ[ − j]: = λ − λj1 as the vector of net birth rates relative to λj, with λk
[ − j] = λk − λj

for k ≠ j and λj
[ − j] = 0. We finally define the K × K matrix A with ajj: = λj − ∑k ≠ j νjk for 

j = 1, …, K and ajk: = νjk for k ≠ j as the infinitesimal generator of the model, where ajk is the 

net rate at which a cell of type j produces a cell of type k.

3.1.2 Random processes and their moments—If the branching process is started 

by N cells of type-j, the state of the process at time t ≥ 0 is encoded in the 1 × K random 

vector of cell numbers Z(j)(t; N) = Z1
(j)(t; N), …, ZK

(j)(t; N) . On the event ∑k = 1
K Zk

(j)(t; N) ≠ 0

that the cell population is still alive at time t, we let Δ j t; N  denote the corresponding 

random vector of cell fractions, i.e.

Δi
(j)(t; N): = Zi

(j)(t; N)/ ∑
k = 1

K
Zk

(j)(t; N) , i = 1, …, K .

If the process is started by a single type-j cell, we write Z(j)(t): = Z(j)(t; 1), and we define the 

associated mean vector and covariance matrix by

m(j)(t): = E Z(j)(t) ,

Σ(j)(t): = E Z(j)(t) − m(j)(t) T Z(j)(t) − m(j)(t) , t ≥ 0.
(3)

We also define the K × K matrix M t  with row vectors m(j) t  as the mean matrix for 

the process at time t. It can be shown that M t  is given by the matrix exponential 

exp(tA): = ∑k = 0
∞ tk

k!Ak [35]. Note that A and M t  depend on the birth rates b and the death 

rates d only through the net birth rates λ.

3.1.3 Long-run behavior—In the branching process model with irreducible switching 

dynamics, all subpopulations eventually grow at the same exponential rate σ. This applies 

both to individual trajectories of the model (when the population does not go extinct) and 

its mean behavior. In mathematical terms, if the process is started by a single type-j cell, 

there exists a real number σ, positive 1 × K vectors β = β1, …, βK  and γ = γ1, …, γK , and a 

nonnegative random variable W  with mean E[W ] = βj, so that
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limt ∞e−σtZ(j)(t) = W γ,  almost surely, (4)

and

limt ∞e−σtm(j)(t) = βjγ . (5)

See e.g. Sections V.7.1-V.7.4 and Theorem 2 in Section V.7.5 of [35]. In other words, the 

number of type-k cells at time t is approximately W γkeσt almost surely when t is large, and 

the mean number of type-k cells is approximately βjγkeσt. It follows that if we define

γk: = γk/ ∑
m = 1

K
γm , k = 1, …, K, (6)

then given that the population does not go extinct, γk is the long-run proportion of type-k
cells in the population, independently of the initial condition. Thus, in the long run, cell 

proportions tend towards an equilibrium distribution given by γ, which is consistent with the 

experimental observations discussed in the introduction.

3.2 Experimental assumptions and notation for experimental data

In the development of our estimation framework, we assume that each experiment returns 

measurements from a single time point only, meaning that the experimental sample is 

discarded once measurements are taken (endpoint data). In this case, techniques such as flow 

cytometry or fluorescence-activated cell sorting (FACS) can be used to identify phenotypes 

at the experimental endpoints. Sometimes, the data collected is sequential, meaning that a 

single experiment returns measurements from multiple time points. This can for example 

be the case when phenotypes are tagged with fluorescent dyes and tracked over time using 

time-lapse microscopy (live-cell imaging) [36, 37]. In Section 4.2.4, we show that our 

endpoint-data statistical framework can also yield reasonable estimates for sequential data. 

In Appendix A.2, we discuss what would be required to rigorously extend the framework to 

sequential data.

In the main text, we assume that each experiment is started by an isolated subpopulation, 

and we let Nj be the number of starting cells for the experiment started only by type-j cells. 

We assume that Nj is large, which is generally the case for the experiments discussed in 

the introduction (Section 1). Furthermore let 0 < t1 < t2 < ⋯ < tL with L ≥ 1 denote the time 

points at which data is collected, and let R ≥ 1 be the number of experimental replicates 

performed. The data collected in each experiment is either a vector nj, ℓ, r = nj, ℓ, r, 1, …, nj, ℓ, r, K  of 

cell numbers or a vector f j, ℓ, r = fj, ℓ, r, 1, …, fj, ℓ, r, K  of cell fractions. Here, nj, ℓ, r, k is the number 

of type-k cells in the r-th replicate of the experiment started only by type-j cells and ended at 

the l-th timepoint, and fj, ℓ, r, k is the corresponding cell fraction.

3.3 Estimation for cell number data

Our statistical framework for cell number data is rooted in a central limit theorem for the 

vector Z j t; N  of cell numbers at time t. More precisely, by decomposing the branching 
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process Z(j)(s; N)
s ≥ 0

 into i.i.d. processes started by single type-j cells, we can show that as 

N ∞,

N−1/2 Z(j)(t; N) − Nm(j)(t) d N 0, Σ(j)(t) . (7)

The details are provided in Appendix C.1, where we also show that the covariance matrix 

Σ j t  is given by

Σ(j)(t) = 2∫
0

t

(M(t − τ))Tdiag b ⊙ m(j)(τ) (M(t − τ))dτ

+diag m(j)(t) − m(j)(t) Tm(j)(t) .
(8)

When the starting cell number N is large, the central limit theorem (7) allows us to 

approximate the distribution of Z j t; N  by a multivariate normal distribution as follows:

Z(j)(t; N) ≈ Nm(j)(t) + N 0, NΣ(j)(t) . (9)

Based on this approximation, we propose the following statistical model for the 

experimental data nj, ℓ, r:

nj, ℓ, r ∼ Njm(j) tℓ

mean
behavior

+ N 0, NjΣ(j) tℓ

variability in
population dynamics

+ N 0, Ej, ℓ
num

measurement
error

.
(10)

The first two terms capture the mean and variance of the branching process model dynamics, 

while the final term captures experimental measurement error, which is independent of 

the branching process. We assume that the K × K covariance matrix Ej, ℓ
num associated with 

measurement error can be written as a function of the branching process model parameters 

and additional error parameters ωnum = ω1, …, ωMnum  for some Mnum ≥ 0. A simple example is 

Ej, ℓ
num = ω2I for some ω > 0, where the measurement error is assumed to be of equal magnitude 

for all data points, and to be uncorrelated between cell types. Another simple example 

is Ej, ℓ
num = ω2 diag Njm(j) tℓ

2, where the measurement error is assumed to scale with mean 

experimental outcomes.

To compute parameter estimates from the statistical model (10), we use a maximum 

likelihood approach, due to its simplicity and desirable large-sample properties like 

consistency and asymptotic efficiency [38]. More precisely, the statistical model (10) is used 

to derive a likelihood function, which is the probability of observing the experimental data 

as a function of the model parameters, and point estimates for the parameters are computed 

by maximizing the likelihood function. We also derive a likelihood-based confidence 

interval for each model parameter θ, which is obtained by inverting the likelihood-ratio 
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test for the given parameter, i.e. collecting all values θ0 for which the null hypothesis θ = θ0

is accepted under the likelihood-ratio test [39, 40, 41, 42, 43]. The confidence interval is 

determined by the profile log-likelihood for θ, as is further discussed in Appendix A.2.

3.4 Estimation for cell fraction data

For cell fraction data, we propose a similar maximum likelihood estimation framework, 

rooted in a central limit theorem for the vector Δ j t; N  of cell fractions at time t. To state 

the central limit theorem, we define the 1 × K vector p(j) t  and the K × K matrix S(j) t  by

p(j)(t): = m(j)1T −1m(j)(t),

S(j)(t): = m(j)(t)1T −2 I − 1Tp(j)(t) TΣ(j)(t) I − 1Tp(j)(t) .
(11)

Using arguments of Yakovlev and Yanev [44], we can show that as N ∞,

N1/2 Δ(j)(t; N) − p(j)(t) d N 0, S(j)(t) . (12)

The details are provided in Appendix C.2, where we also show that the mean function p(j) t
can be written solely as a function of the switching rates νik k ≠ i and the relative net birth 

rates λ[ − 1]. The choice of type-1 as a reference phenotype is arbitrary. Based on the central 

limit theorem (12), we propose the following statistical model for the experimental data f j, ℓ, r:

f j, ℓ, r ∼ p(j) tℓ + N 0, Nj
−1S(j) tℓ + N 0, Ej, ℓ

frac . (13)

As for cell number data, we assume that the K × K covariance matrix Ej, ℓ
frac associated with 

measurement error can be written as a function of the branching process model parameters 

and additional error parameters ωfrac = ω1, …, ωMfrac  for some Mfrac ≥ 0.

Note that in the statistical model (13), the variability term Nj
−1S(j) tℓ  decreases with the 

initial population size Nj. Thus, if a large Nj is coupled with a large measurement error, the 

third term in (13) will dominate the second term. When applying the framework to real cell 

fraction datasets, this can potentially allow us to simplify the model in (13) so that it only 

includes the first and third term:

f j, ℓ, r ∼ p(j) tℓ + N 0, Ej, ℓ
frac . (14)

We discuss this point further in Section 4.3 and the discussion section (Section 5).

As for cell number data, from the statistical model (13) (and the simpler version (14)), 

it is straightforward to derive a likelihood function, maximum likelihood estimates and 

likelihood-based confidence intervals, as is discussed in more detail in Appendix A.3.
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4 Results

4.1 Structural identifiability analysis

We begin by analyzing the structural identifiability of the statistical models (10) and 

(13). Informally, structural identifiability refers to whether a parameter can be estimated 

accurately given an infinite amount of noise-free data. More precisely, a parameter 

is structurally identifiable if complete knowledge of the model distribution uniquely 

determines the value of the parameter, in the absence of any measurement noise [45, 46].

To demonstrate the structural identifiability of a parameter, it is sufficient to show that 

knowledge of the statistical moments of the model distribution implies knowledge of the 

parameter. By considering the moments, we can adopt techniques from systems biology 

used for the analysis of deterministic models based on ordinary differential equations [47]. 

In particular, we will assume that we know the behavior of the mean functions m(j) t  and 

p(j) t  and the covariance functions Σ(j) t  and S(j) t  close to time 0 (more precisely, their 

derivatives at 0), and we will analyze to what extent the model parameters can be extracted 

from this information. In other words, we are interested in the following question: If we 

conduct experiments started from isolated subpopulations, and perfect observations are made 

of the first two statistical moments of the model close to time 0, can we identify the model 

parameters?

This analysis serves two purposes. First, it ascertains whether in this idealized setting, the 

model parameters can be extracted uniquely from short-term observations of the population 

dynamics. Second, the analysis indicates how much information is required to estimate each 

model parameter accurately, which yields valuable insights into how comparatively difficult 

it is to estimate the parameters from more limited data.

4.1.1 Cell number data—In the following proposition, we show that for cell number 

data, the switching rates νik k ≠ i and the net birth rates λ can be recovered uniquely from 

knowledge of the mean functions m(j) t  close to time 0, while the birth rates b can be 

recovered from the covariance matrices Σ(j) t .

Proposition 1.

1. For each j = 1, …, K, the switching rates νjk, k ≠ j, and the net birth rate λj are 

uniquely determined by d
dtm(j)(t)

t = 0
.

2. For each j = 1, …, K, if the switching rates νjk, k ≠ j, and the net birth rate λj are 

known, the birth rate bj is uniquely determined by d
dtΣ(j)(t)

t = 0 jj
.

Proof. Appendix D. □

Proposition 1 establishes the structural identifiability of all model parameters for cell 

number data. The process of extracting the parameters as suggested by Proposition 1 can be 

thought of as follows: If we want to know νjk for some k ≠ j, we can simply plot the mean 
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function Mjk(t) = E Zk
(j)(t)  and compute its slope at 0. If we want to know the birth rate bj, we 

can plot the variance function Σ(j)(t)
jj

= Var Zj
(j)(t)  and compute its slope at 0.

It is important to note that we are not suggesting to use this approach to estimate parameters 

from real data. Instead, we are establishing theoretically that there is sufficient information 

in the distribution of the data close to time 0 to determine all model parameters uniquely. In 

particular, we can in theory predict the entire evolutionary trajectory of the population from 

short-term observations of the initial population dynamics.

4.1.2 Cell fraction data—In the following proposition, we show that for cell fraction 

data, only the switching rates νik k ≠ i can be recovered from the slopes of the mean functions 

p(j) t  at time 0. The net birth rate differences λ[ − 1] can be recovered from the curvatures of 

the mean functions at time 0 or from the equilibrium proportions γ between cell types if they 

are known. We are not able to learn any more parameters from the mean functions, since 

p(j) t  can be written solely as a function of νik k ≠ i and λ[ − 1]. The slopes of the covariance 

functions S(j) t  depend only on νik k ≠ i, meaning that they provide no extra information on 

the model parameters.

Proposition 2.

1. F.or j = 1, …, K, the switching rates νjk, k ≠ j, are uniquely determined by 
d
dtp

(j)(t)
t = 0

.

2. If the switching rates νik k ≠ i are known, the net birth rate differences λ[ − 1] are 

uniquely determined by (i) d2

dt2
p(j)(t)

t = 0

 for j = 1, …, K or (ii) the equilibrium 

proportions γ.

3. For j = 1, …, K, d
dtS

(j)(t)
t = 0

.only depends on the switching rates νjk for k ≠ j.

Proof. Appendix E. □

As for the remaining model parameters, the net birth rate λ1 and the birth rates b, they 

require information on the curvatures of the covariance functions S j t  at time 0 at the least. 

We will not analyze the structural identifiability of these parameters further. Proposition 2 

indicates that one should not expect to be able to estimate these parameters accurately from 

cell fraction data, which is confirmed by numerical experiments in Section 4.2.2.

4.1.3 Comparison—The results of our identifiability analysis are summarized in Table 

2. Our analysis indicates that the switching rates νik k ≠ i and net birth rates λ are easy 

to estimate for cell number data, using information only on the mean behavior of the 

population. The birth rates b are harder to estimate, since they require second moment 

information, but they may still be obtainable with sufficient data, as we discuss further in 

Section 4.2.3. For cell fraction data, the switching rates νik k ≠ i are easy to estimate using the 

mean behavior of the population. The net birth rate differences λ[ − 1] can also be estimated 
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from the mean, but they require more information. The remaining model parameters are 

unlikely to be obtainable from real datasets.

4.2 Numerical experiments

Next, we apply our maximum likelihood framework to computer-generated data. In all 

cases, we assume that experiments are conducted from isolated initial conditions, and we 

assume no measurement noise, i.e. Ej, ℓ
num = 0 and Ej, ℓ

frac = 0. For simplicity, we only consider a 

model with two cell types, K = 2. Our goal is to assess how comparatively difficult it is to 

estimate the different model parameters depending on what data is collected.

4.2.1 Implementation in MATLAB—Our estimation framework has been 

implemented in MATLAB codes which are available at https://github.com/egunnars/

phenotypic_switching_inference/. The framework returns (i) a maximum likelihood estimate 

and (ii) a likelihood-based confidence interval for each parameter, using the sequential 

quadratic programming (sqp) solver in MATLAB. Before solving the maximum likelihood 

problem, we compute initial parameter estimates from a simpler model, which we use to 

initialize the optimization and to rescale the model parameters so that they are of similar 

magnitude. In most cases, we have found it sufficient to solve the maximum likelihood 

problem once, starting from the simple estimates. However, our MATLAB codes provide 

the option to solve the problem several times using different initial guesses. Details of the 

implementation are provided in Appendix F.

4.2.2 Estimation across a wide range of biologically realistic regimes—In 

Appendix G.1, we provide a simple illustration of the output of our estimation framework 

for a single artifical dataset. For a more thorough evaluation of estimation accuracy, we 

generated 10,000 artificial datasets for K = 2 cell types. We first generated 100 biologically 

realistic parameter regimes and then generated 100 datasets for each regime. To generate 

the parameter regimes, we sampled birth and death rates uniformly between 0 and 1, and 

sampled switching rates log-uniformly between 10−1 and 10−3. We considered both regimes 

where the two phenotypes have positive net birth rates λ1, λ2 > 0  and regimes where one 

phenotype has a negative net birth rate λ1 < 0, λ2 > 0 . The latter regimes are relevant to the 

dynamics of anti-cancer treatment response, where one phenotype is drug-sensitive and the 

other is drug-tolerant. We assumed I = 2 isolated initial conditions, L = 6 time points and 

R = 3 replicates. Further details of the data generation are provided in Appendix H.

For each dataset, we used our framework to compute MLE estimates for all model 

parameters. In this way, we obtained 100 estimates of each parameter under each parameter 

regime, which we used to compute the coefficient of variation (CV) for the MLE estimator 

of the parameter. The CV is the sample standard deviation of the MLE estimator as a 

proportion of its sample mean, and it measures the percentage error in the estimation.

The results are shown in Figure 3. A horizontal line is drawn at 25% CV to indicate whether 

parameters can be estimated with reasonable accuracy. Note that for the switching rates 

νik k ≠ i, the median CV for cell fraction data is about twice as large as for cell number data. 

The median CV for the net birth rate difference λ2 − λ1 is an order of magnitude larger for 
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cell fraction data than cell number data, and it is two orders of magnitude larger for the 

net birth rate λ1. The birth rates b can in many cases be estimated reasonably well for cell 

number data, whereas they are never estimated accurately for cell fraction data. These results 

are very much in line with our identifiability analysis in Section 4.1.

Note that for cell fraction data, the estimation error for the net birth rate difference λ2 − λ1

exceeds the 25% threshold CV for several parameter regimes. This occurs when λ2 − λ1 is 

small in magnitude, more precisely when it is smaller than 0.1 in regimes where the birth 

rates lie between 0.1 and 1. Note in contrast that for cell number data, the estimation error 

for λ2 − λ1 never exceeds the 25% threshold. This indicates that for cell fraction data, it may 

be difficult to distinguish the net birth rate difference λ2 − λ1 from 0 unless it is relatively 

pronounced. We discuss this point further in Section 4.3 below.

In Appendix G.2, we show how our framework can be used to investigate questions related 

to experimental design. In particular, we consider the question of whether experimental 

efforts should be prioritized to collect data from more time points (either in between or after 

the previous time points) or to perform more experimental replicates.

4.2.3 Improving identifiability of the rates of cell division and cell death—For 

cell number data, even though the birth rates b can be estimated reasonably well in many 

cases by Section 4.2.2, they are estimated much less accurately than the net birth rates λ
and the switching rates νik k ≠ i. In Figure 4a, we show that as the number of replicates is 

increased from 3 to 20 or above, the accuracy in the estimation becomes more acceptable. 

However, even with 100 replicates, the birth rates b are estimated less accurately than the net 

birth rates λ with 3 replicates (see Figure 3).

As we mentioned in the introduction, data on the number of cells in each state at each time 

point can be obtained by measuring the fraction of cells in each state and the total number of 

cells at each time point. In addition, it is often possible to measure the number of dead cells 

at each time point, see e.g. [30]. If this data is obtained, we can augment our mathematical 

model by introducing a new cell state, which cells transition into upon death (Figure 5). 

In Figure 4b, we show that if we apply our estimation framework to this model, the birth 

rates b become as easy to estimate as the net birth rates λ. Thus, if data is collected on the 

number of live and dead cells at each time point, it becomes possible to estimate all model 

parameters accurately using our framework.

It should be noted that data collection on the number of dead cells is confounded by the 

fact that dead cells are eventually cleared from the system. This can potentially be addressed 

by introducing a clearance rate for dead cells in the augmented model, i.e. by introducing a 

death rate for the type-3 cells in the right panel of Figure 5.

4.2.4 Estimation using endpoint data vs. sequential data—We conclude by 

examining how well our estimation framework applies to sequential data, when data is 

collected at multiple time points in the same experiment (Section 3.2). In Figure 6, we 

see that for cell number data, the CV for each parameter approximately doubles when 

applying our framework to sequential data vs. endpoint data. However, it remains true 
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that the switching rates νik k ≠ i and net birth rates λ can be estimated with good accuracy. 

For cell fraction data, the difference in the estimation error for νik k ≠ i and λ2 − λ1 is even 

smaller. Together, these results indicate that our framework can yield reasonable estimates 

for sequential data. At the same time, for cell number data in particular, there can be a 

significant benefit to developing a method tailored to sequential data, both in terms of 

deriving reliable point estimates and robust confidence intervals.

4.3 Application: Transition between stem and non-stem cell states in SW620 colon 
cancer

To give an example of how our estimation framework can be used to analyze real 

experimental data, we conclude by applying it to a publicly available cell fraction dataset. 

We use data collected by Yang et al. [17] and made available in Tables S2 and S3 of Wang et 

al. [20], on the dynamics between stem-like (type-1) and non-stem (type-2) cells in SW620 

colon cancer. In Yang et al. [17], the two cell types were sorted based on expression of the 

CD133 cell-surface antigen marker. Isolated subpopulations were expanded and phenotypic 

proportions were tracked for 24 days, with data collected every other day. This dataset has 

previously been analyzed using the CellTrans estimation method [26] (Section 2).

Since data on individual experimental replicates is not available, we use data on the mean 

cell fraction across replicates as input to our estimation framework. We first consider the 

statistical model (13) and the simpler version (14) with Ej, ℓ
frac = ω2I for all j, l, which we refer 

to as Models I and Ia, respectively:

• Model I:f j, ℓ p(j) tℓ + N 0, Nj
−1S(j) tℓ + N 0, ω2I .

• Model Ia:f j, ℓ p(j) tℓ + N 0, ω2I .

Note that Model I has seven parameters (d1, d2, λ1, λ2 − λ1, ν12, ν21, ω), while Model Ia has four 

parameters (λ2 − λ1, ν12, ν21, ω). In Table 3, we show parameter estimates and 95% confidence 

intervals for the two models, which turn out to be very similar. By the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC), which assess the quality of 

model fit relative to model complexity, the simpler Model Ia is preferred for this dataset 

(Appendix I). The codes used to compute the estimates in Table 3 are available at https://

github.com/egunnars/phenotypic_switching_inference/.

The CIs under Model Ia show that while the point estimates for ν21 and ν12 are 0.157 and 

0.057, respectively, the true value of ν21 may range between 0.115 and 0.213, and the true 

value of ν12 may range between 0.037 and 0.088. Since the two CIs do not overlap, ν21 >   ν12

at the 5% level of significance, but there is considerable uncertainty as to the true values. 

The CI for λ2 − λ1 is even wider, which is in line with our earlier observations that this 

parameter is more difficult to estimate from cell fraction data than the switching rates, 

especially when λ2 − λ1 is relatively small in magnitude (Sections 4.1.2 and 4.2.2). In fact, the 

CI for λ2 − λ1 includes zero, meaning that it is plausible that λ1 = λ2.

In the CellTrans paper [26], it is assumed that the two phenotypes have the same growth 

rate, based on data from Wang et al. [20]. We can build this assumption into the estimation 
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by solving the MLE problem for Models I/Ia under the constraint λ2 − λ1 =   0 (Appendix F). 

We refer to this as Models II/IIa:

• Model II:f j, ℓ p(j) tℓ + N 0, Nj
−1S(j) tℓ + N 0, ω2I , λ2 − λ1 = 0.

• Model IIa:f j, ℓ p(j) tℓ + N 0, ω2I , λ2 − λ1 = 0.

Estimation results for Models II/IIa are shown in Table 4, and a visual comparison between 

the estimates for Models Ia and IIa is shown in Figure 7. The assumption λ1 = λ2 has a 

noticeable effect on both the point estimates of ν21 and ν12 and their confidence intervals. For 

example, the ratio ν21/ν12 is 2.7 under Model Ia, while it is 1.9 under Model IIa. In other 

words, switching from type-2 to type-1 happens about three times as often as switching from 

type-1 to type-2 under Model Ia, while it happens about two times as often under Model IIa. 

Furthermore, under Model IIa, the length of the CI for ν21 is reduced by a half compared to 

Model Ia, meaning that Model IIa significantly restricts the plausible values of ν21.

In the CellTrans paper [26], the same dataset is used to estimate switching probabilities of 

p21 =   0.1030 and p12 =   0.0545, based on a discrete-time Markov model with a time step of 

Δt = one day. We also solved the TRANSCOMPP problem (2) (see Section 2) with Δt =
one day to obtain the estimates p21 =   0.136 and p12 =   0.054 for the switching probabilities 

and Λ22/Λ11 = 1.079 for the ratio between the growth factors of the two phenotypes, which 

translates to a growth rate difference of r2 − r1 =   0.076 if we set Λ22 = er2Δt and Λ11 = er1Δt. 
In the CellTrans and TRANSCOMPP models, type switches are synchronized between all 

cells in the population, and they occur at discrete time steps. In our continuous-time model, 

the time steps are infinitesimally small, and each cell has a certain probability of switching, 

proliferating and dying during each step, independently of other cells (Section 3.1.1). If we 

shorten the time step to Δt = 1/10 day, the switching probabilities become 0.0111 and 0.0059 

under CellTrans, which translates to continuous-time rates of p21 = 0.111 and p12 = 0.059. 

These estimates fall at the lower limits of our CIs for ν21 and ν12 under Models II/IIa 

(Table 4). Under TRANSCOMPP, the switching probabilities become 0.0154 and 0.0057 for 

Δt = 1/10 day, which translates to continuous-time rates of p21 = 0.154 and p12 = 0.057, and 

the difference in growth rates becomes r2 − r1 = 0.083. These estimates are very similar to the 

point estimates of Models I/Ia (Table 3).

The estimates of CellTrans and TRANSCOMPP are consistent with our estimates in that 

they fall within the 95% confidence intervals produced by our framework, if the time 

step is taken to be sufficiently small. Our framework complements these methods for cell 

fraction data by providing continuous-time estimates and enabling a rigorous analysis of the 

estimates and the uncertainty involved. For example, the CIs provided by our framework 

reveal how uncertain the value of λ2 − λ1 is compared to ν21 and ν12, and that λ2 − λ1 cannot 

be distinguished from zero using this dataset. If assumptions such as λ1 = λ2 or ν12 = ν21 can 

be made, it is easy to incorporate them into the estimation and to assess their effect on 

point estimates and confidence intervals (Appendix F). In this case, our analysis shows that 

the assumption λ1 = λ2 significantly restricts the plausible values of ν21 and ν12, which may 

underestimate the true uncertainty in the estimation, given that the claim λ1 = λ2 is subject 
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to statistical error. We discuss the differences between our approach and these two methods, 

and the importance of quantifying the uncertainty in the estimation, in more detail in the 

following section.

5 Discussion

In this work, we have proposed a maximum likelihood framework for estimating the rates 

of cell proliferation and phenotypic switching in cancer. In contrast to previous approaches, 

the framework explicitly models the stochastic dynamics of cell division, cell death and 

phenotypic switching, it provides likelihood-based confidence intervals for the model 

parameters, and it enables estimation from data on the fraction of cells or the number of cells 

in each state at each time point. An implementation of the framework in MATLAB with 

sample scripts is available at https://github.com/egunnars/phenotypic_switching_inference/.

We have also used our framework to analyze the identifiability of model parameters. 

Through a combination of theoretical and numerical investigation and application to real 

data, we have seen that when cell fraction data is used, the switching rates νik k ≠ i may be 

the only parameters that can be estimated accurately, while the net birth rate differences 

λ[ − 1] can also be estimated reasonably accurately if they are sufficiently large. Including 

information on the total size of the population at each time point yields significantly better 

estimates of λ[ − 1], and it also enables accurate estimation of the net birth rates λ. Finally, if 

enough experimental replicates are performed, or if data is collected on the number of dead 

cells at each time point, it even becomes possible to estimates the birth rates b and death 

rates d accurately.

In a previous work, we discussed how knowledge of the model parameters νik k ≠ i, λ, b
can enhance our understanding of resistance evolution in cancer and inform the design of 

combination treatments of anti-cancer agents and epigenetic drugs [25]. Together, these 

parameters shape the evolution of phenotypic proportions and the total tumor burden over 

time, each of which is relevant to the dynamics of tumor recurrence. Our current work shows 

that it is not possible to estimate the net birth rates λ or the birth rates b accurately from 

cell fraction data, it indicates what data is required to obtain these parameters, and it offers 

a rigorous approach to parameter estimation and uncertainty quantification once the data 

has been acquired. In the context of anti-cancer drug response, uncertainty quantification 

is crucial for assessing how treatment affects the model parameters and for evaluating the 

robustness of any treatment recommendations. For example, there is evidence that both 

chemotherapies and targeted agents can induce phenotypic switching from drug-sensitivity 

to drug-tolerance [22, 12, 48], where the level of induction determines the optimal dose 

under continuous drug treatment [49, 50, 51]. In this context, it is important to confirm 

that an estimated induction of drug-tolerance is statistically significant, and to assess 

how accurately the induction level can be estimated, before dose changes for established 

treatment protocols can be recommended.

In our application to a publicly available cell fraction dataset, we compared estimates 

from our framework to estimates produced by CellTrans [26] and TRANSCOMPP [27]. 

CellTrans is based on a discrete-time Markov chain model, and it provides estimates for 
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the probabilities of switching between phenotypes during a single time step, for the case 

where all types grow at the same rate. TRANSCOMPP is based on a similar model, except 

it also provides estimates of the relative growth rates of the different phenotypes, and 

it includes a stochastic resampling method for estimating the distributions of transition 

probability estimates using single-cell measurements. Each method can only be applied to 

cell fraction data. For the dataset studied in Section 4.3, CellTrans and TRANSCOMPP 

produce estimates similar to our framework, when the time step is taken to be sufficiently 

small. We expect that this will usually be the case for datasets with few experimental 

replicates or a large measurement error, since our baseline statistical model (13) incorporates 

second moment information which is likely to be distorted in such datasets. However, 

we believe that even for these datasets, the continuous-time estimates provided by our 

framework better reflect the asynchronous nature of cell state switching, division and 

death, and they have the benefit of not being affected by an arbitrary choice of time step. 

More importantly, our framework provides likelihood-based confidence intervals for the 

parameters νik k ≠ i and λ[ − 1], which is crucial to assess the quality of the estimation. Finally, 

our framework is unique in that it enables estimation from cell number data. It should be 

noted that for cell number data in particular, the appropriate measurement error model may 

vary between specific applications, as is discussed below.

There are several limitations of the estimation framework, which represent avenues for 

future development and improvement. First, our framework assumes that the cell population 

can be decomposed into discrete phenotypes, which can be identified using known 

biomarkers. Second, our multitype branching process model assumes that the lifetime of 

a cell is exponentially distributed, meaning that the rate at which a cell divides or dies 

is independent of its age. It is possible to model non-exponential lifetimes using our 

framework by assuming that each phenotype transitions through a number of internal states, 

each at an exponential rate, before dividing or dying. This will however increase the number 

of parameters in the model, which will require more data to obtain accurate estimates. 

Another approach would be to employ age-dependent branching processes, which would 

also add parameters to the model [35]. A third limitation of our framework is that it 

ignores any potential cell-to-cell interactions. Incorporating such interactions likely requires 

estimation methods tailored to specific applications, depending on the specific nature of the 

interactions.

Fourth, the branching process model assumes that cells are allowed to grow uninterrupted 

for the duration of the experiments. This does not address the effect of passaging in longer-

duration experiments. One potential way to address passaging is to keep track of cell state 

proportions and seeding densities for each passage, and to consider each passage as a new 

experiment with new initial conditions. In other words, instead of viewing a long experiment 

involving serial passaging as a single experiment with a single initial condition, it can be 

viewed as a collection of shorter experiments with different initial conditions. However, our 

framework currently assumes that initial conditions are known, while uncertainty is assigned 

to all subsequent time points. In reality, the initial conditions are subject to measurement 

error, and it may become important to model this error for the case of repeated passaging.
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Fifth, our framework currently models measurement error as an additive Gaussian noise with 

a general covariance matrix. We have suggested simple ways of choosing the covariance 

matrix both for cell number and cell fraction data, but further exploration of appropriate 

choices is warranted. Ideally, the determination of an appropriate measurement error model 

should be driven by the particular dataset being analyzed [52]. Depending on the application, 

it may also become necessary to develop a more sophisticated error model than the additive 

Gaussian model. For example, for cell number data, if the measurement error is proportional 

to the population size, it may become necessary to model it as a multiplicative term rather 

than an additive term, or to build the experimental cell counting procedure more explicitly 

into the statistical model. We plan to address this in future work.

Sixth, we have focused on estimation from experiments started with isolated subpopulations 

of each phenotype, as this is a common experimental design, and we have analyzed 

parameter identifiability in this setting. Understanding to what extent the model parameters, 

or some combinations of the parameters, can be estimated from more limited data is an 

interesting avenue for future investigation. For example, if we are interested in estimating 

parameters from clinical data, the data will likely contain much less information than we 

have assumed here, and it will become necessary to analyze what parameters are identifiable 

and how identifiability can be improved, e.g. by combining data from similar patients.

Finally, we believe our framework can be useful for the design of cell line experiments 

aimed at deciphering the dynamics of phenotypic switching. For example, preliminary 

experiments can first be conducted, from which initial parameter estimates and confidence 

intervals can be derived. Based on the confidence intervals, one can construct a set of 

likely values for the parameters, which can be used to evaluate the expected improvement 

in estimation accuracy depending on the experimental design (see e.g. [53]). Once 

good experimental designs have been identified, one can evaluate whether the expected 

improvement in estimation accuracy justifies the additional experimental resources. If this 

is the case, additional experiments can be performed and the process can be repeated. In a 

future work, we plan to develop a tool for the optimal selection of experimental designs, to 

facilitate more efficient utilization of experimental resources.
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A: Estimation framework

In Sections 3.3 and 3.4 of the main text, we described our estimation framework for the 

simple case where all experiments are started from isolated subpopulations. We also omitted 

the details regarding the computation of point estimates and confidence intervals. In this 

section, we develop the estimation framework in full detail for general starting conditions.
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A.1 Notation for experimental data

For the general case, we assume that each experiment is started with a known initial 

condition, encoded by the 1 × K vector n = (n1, …, nK) of starting cell numbers of each type. 

We let I ≥ 1 denote the number of distinct initial conditions and ni = (ni1, …, niK) denote 

the i-th initial condition. We assume that for each i = 1, …, I and j = 1, …, K, either nij = 0 

or nij is large, which is generally the case for the experiments discussed in the introduction 

(Section 1).

We define Ni: = ∑k = 1
K nik as the total number of starting cells in the i-th condition, and 

f i = fi1, …, fiK  as the vector of starting cell fractions, with fij: = nij/Ni. As in Section 3.2 of 

the main text, we let L ≥ 1 be the number of time points at which data is collected, and 

we let 0 < t1 < t2 < ⋯ < tL denote the time points. Finally, we let R ≥ 1 be the number of 

experimental replicates performed.

The data collected in each experiment is either a vector ni, ℓ, r = ni, ℓ, r, 1, …, ni, ℓ, r, K  of cell 

numbers or f i, ℓ, r = fi, ℓ, r, 1, …, fi, ℓ, r, K  of cell fractions. Here, ni, ℓ, r, k is the number of type-k cells 

in the r-th replicate of the experiment started by the i-th initial condition and ended at the 

l-th timepoint, and fi, ℓ, r, k is the corresponding cell fraction.

A.2 Estimation for cell number data

We now develop the estimation framework for cell number data. For the general case, the 

starting vector f i of cell fractions can be any 1 × K vector α with αk ≥ 0 for k = 1, …, K and 

∑k = 1
K αk = 1. In expression (3) of the main text, we defined the mean function m j t  and the 

covariance matrix Σ j t  for an isolated initial condition. We extend these definitions to a 

general vector α of starting cell fractions as follows:

mα(t): = αM(t) = ∑j = 1

K
αjm(j)(t),

∑α (t): = ∑j = 1

K
αj∑(j) (t) .

(15)

Then, based on a generalized version of the central limit theorem (7), which is stated 

and proved as Proposition 3 in Appendix C.1, we propose the following extension of the 

statistical model (10) in the main text:

ni, ℓ, r ∼ Nimfi tℓ

mean
behavior

+ N 0, NiΣfi tℓ

variability in
population dynamics

+ N 0, Ei, ℓ
num

measurement
error

.
(16)

The vectors ni, ℓ, r and nj, m, s are assumed independent for (i, ℓ, r) ≠ (j, m, s), and they are 

assumed i.i.d. for (i, ℓ) =   (j, m) and r ≠ s. This implies that data from distinct time points 

come from distinct experiments (endpoint data). We assume endpoint data since the central 

limit theorem (CLT) in Proposition 3 holds for the distribution of cell numbers at a 
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fixed time point t. Developing an analogous statistical model for sequential data requires 

extending the CLT to a process-level or functional CLT. We plan to address this in future 

work.

Note that in the statistical model (16), the mean behavior Nimfi tℓ  of the model depends 

only on the switching rates νik k ≠ i and the net birth rates λ, while the variance term NiΣfi tℓ

depends on νik k ≠ i, λ and also the birth rates b by (8). It is therefore natural to parametrize 

the first two terms in (16) by b, λ, νik k ≠ i instead of the primary parameters b, d, νik k ≠ i. 

As stated in the main text, we assume that the K × K covariance matrix Ej, ℓ
num associated with 

measurement error can be written as a function of b, λ, νik k ≠ i and added error parameters 

ωfrac = ω1, …, ωMnum  for some Mnum ≥ 0. We let θnum be the complete 1 × K(K + 1) + Mnum

vector of model parameters including the error parameters.

From the statistical model (16), it is straightforward to derive the following likelihood 

function:

Lnum θnum ni, ℓ, r

= ∏
i = 1

I
∏

ℓ = 1

L
∏
r = 1

R
(2π)Kdet NiΣfi tℓ + Ei, ℓ

num −1/2

⋅ exp − 1
2 ni, ℓ, r − Nimfi tℓ NiΣfi tℓ + Ei, ℓ

num −1 ni, ℓ, r − Nimfi tℓ
T .

(17)

We next define the negative double log-likelihood,

lnum θnum : = − 2logLnum θnum ni, ℓ, r . (18)

The maximum likelihood estimate θnum for the parameter vector θnum is obtained by 

minimizing lnum θnum  over a set of feasible parameters Θnum:

θnum: = argminθnum ∈ Θnumlnum θnum . (19)

In the feasible set Θnum, we restrict the parameter values so that νik ≥ 0, b≥0 and λ ≤ b. Further 

restrictions can be made depending on the context, see e.g. Appendix B.

A 1 − α likelihood-based confidence interval θnum, i
− , θnum, i

+  for the i-th model parameter θnum, i

can be obtained by collecting all values θ for which the null hypothesis θnum, i = θ is accepted 

under the likelihood-ratio test. To describe how the confidence interval is obtained, we 

define the negative double profile log-likelihood for θnum, i as

l num, i(θ): = min
θnum ∈ Θnum:θnum, i = θ

lnum θnum .
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Note that l num, i(θ) is computed by fixing the i-th parameter to the value θ and minimizing 

the negative double log-likelihood (18) over the remaining parameters. The 1 − α confidence 

interval for θnum, i derived from the likelihood-ratio test is given by

θnum, i
− , θnum, i

+ = θ:l num, i(θ) − lnum θnum ≤ χ1, 1 − α
2 , (20)

where θnum is the MLE estimator defined by (19) and χ1, 1 − α
2  is the (1 − α)-th quantile of the 

χ2-distribution. Instead of computing the endpoints θnum, i
−  and θnum, i

+  directly using (20), they 

can be computed by solving the following two constrained optimization problems:

θnum, i
− = minθnum ∈ Θnum θnum, i: lnum θnum ≤ lnum θnum + χ1, 1 − α

2 ,

θnum, i
+ = maxθnum ∈ Θnum θnum, i: lnum θnum ≤ lnum θnum + χ1, 1 − α

2 .
(21)

We refer to e.g. [39, 40, 41, 42, 43] for further details.

Our estimation framework is based on solving the optimization problems in (19) and (21) 

using the sqp solver in MATLAB. The implementation is described in Appendix F.

A.3 Estimation for cell fraction data

For cell fraction data, we begin by extending the definitions p(j) t  and S(j) t  from (11) in the 

main text to a general vector α of starting cell fractions:

pα(t): = mα(t)1T −1mα(t),

Qα(t): = I − 1Tpα(t),

Sα(t): = mα(t)1T −2 Qα(t) TΣα(t)Qα(t) .

(22)

Then, based on a generalized version of the central limit theorem (12), which is stated 

and proved as Proposition 4 in Appendix C.2, we propose the following extension of the 

statistical model (13) in the main text:

f i, ℓ, r ∼ pfi tℓ + N 0, Ni
−1Sfi tℓ + N 0, Ei, ℓ

frac . (23)

Note that the mean behavior pfi tℓ  depends only on νik k ≠ i and λ[ − 1], while the variance 

term Ni
−1Sfi tℓ  depends on all model parameters νik k ≠ i, λ[ − 1], λ1, d. The choice of type-1 as 

a reference phenotype is arbitrary, and we use d as opposed to b as we found it to perform 

well numerically. As stated in the main text, we assume that the K × K covariance matrix Ei, ℓ
frac

associated with measurement error can be written as a function of d, λ1, λ[ − 1], νik k ≠ i and 

added error parameters ωfrac = ω1, …, ωMfrac  for some Mfrac ≥ 0. We let θfrac denote the complete 

1 × K(K + 1) + Mfrac  vector of model parameters including the error parameters.
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When deriving a likelihood function for the statistical model (23), we note that the last 

coordinate of f i, ℓ, r provides no new information over the first K − 1 coordinates, since the 

coordinates always sum to one. In the likelihood function, we therefore only consider the 

first K − 1 coordinates, which we can accomplish by multiplying f i, ℓ, r by the K × (K − 1)
matrix B with 1 on the diagonal and 0 off it. In this way, we obtain the following likelihood:

Lfrac θfrac ∣ f i, ℓ, r

= ∏
i = 1

I
∏

ℓ = 1

L
∏
r = 1

R
(2π)K − 1det BT Ni

−1Sfi tℓ + Ei, ℓ
frac B −1/2

⋅ exp − 1
2 f i, ℓ, r − pfi tℓ B BT Ni

−1Sfi tℓ + Ei, ℓ
frac B −1BT f i, ℓ, r − pfi tℓ

T .

(24)

As for cell number data, we define the negative double log-likelihood,

lfrac θfrac : = − 2logLfrac θfrac f i, ℓ, r , (25)

and obtain the maximum likelihood estimate for θfrac by solving

θ frac: = argminθfrac ∈ Θfraclfrac θfrac . (26)

In the feasible set Θfrac, we restrict the parameter values so that νik ≥ 0, d≥0, λ1 ≥   − d1

and (λj − λ1) + dj + λ1 ≥ 0 for j = 2, …, K. Further restrictions can be made depending on the 

context, see e.g. Section 4.3 and Appendix F. The computation of confidence intervals 

proceeds as described for cell number data.

For the simplified model (14), we proceed as above except we remove all terms involving 

Ni
−1Sfi tℓ .

B: Estimation for reducible switching dynamics

In the main text, we have assumed that the switching dynamics are irreducible, meaning 

that it is possible to switch between any pair of phenotypes, possibly through intermediate 

types. In this section, we show how our framework can be applied to the case of reducible 

switching dynamics. For simplicity, we will consider one particular model shown in Figure 

8. This model has been applied e.g. to the dynamics of epigenetic gene silencing under 

recruitment of chromatin regulators [36] and the evolution of epigenetically-driven drug 

resistance in cancer, where drug-sensitive cells (type-1) first acquire a transiently resistant 

phenotype (type-2) and then evolve to stable epigenetic resistance (type-3) [25].

Say that experiments are conducted from isolated initial conditions, and say first that cell 

number data is collected. For the model in Figure 8, the distribution of the data vector n3, ℓ, r is 

degenerate, since n3, ℓ, r, j = 0 for j = 1, 2. As a result, the covariance matrix Σ(3) tℓ  is singular 

for all ℓ = 1, …, L, and the likelihood function in (17) is not defined. To resolve this issue, 

we set C1 = C2 = I   and C3 = e3
T, where e3 is the 1 × K third unit vector. By Proposition 3, 
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n3, ℓ, rC3 = n3, ℓ, r, 3 has a normal distribution, which is nondegenerate. We therefore modify the 

likelihood function in (17) to

Lnum θnum ni, ℓ, r i, ℓ, r

= ∏
i = 1

3
∏

ℓ = 1

L
∏

r = 1

R
(2π)Kdet Ci

T NiΣ(i) tℓ + Ei, ℓ
num Ci

−1/2

⋅ exp − 1
2 ni, ℓ, r − Nim(i) tℓ Ci Ci

T NiΣ(i) tℓ + Ei, ℓ
num Ci

−1Ci
T ni, ℓ, r − Nim(i) tℓ

T .

From this likelihood function, MLE estimates and confidence intervals can be computed 

as described in Appendix A, where we restrict the set of feasible parameters Θnum so that 

ν13 = ν31 = ν32 = 0. By our analysis in Section 4.1.1, all model parameters are structurally 

identifiable for this example.

To accommodate model structures such as the one discussed here, the above modified 

likelihood function is implemented in our MATLAB codes (Appendix F). By taking Ci = I
for each i = 1, …, I, we recover the original likelihood function in (17).

If cell fraction data is collected, there is no value in conducting experiments starting only 

from type-3 cells. We therefore use the likelihood function

Lfrac θfrac fi, ℓ, r i, ℓ, r

= ∏
i = 1

2
∏

ℓ = 1

L
∏

r = 1

R
(2π)K − 1det BT Ni

−1S(i) tℓ + Ei, ℓ
frac B −1/2

⋅ exp − 1
2 fi, ℓ, r − p(i) tℓ B BT Ni

−1S(i) tℓ + Ei, ℓ
frac B −1BT fi, ℓ, r − p(i) tℓ

T ,

where we only include experiments started by type-1 and type-2 cells, respectively. By our 

analysis in Section 4.1.2, the switching rates ν12, ν21 and ν23, and the net birth rate differences 

λ2 − λ1 and λ3 − λ2, are structurally identifiable in this case. An example of a model structure 

where it becomes necessary to modify the above likelihood function for cell fraction data is 

given in Appendix F.

C: Central limit theorems

In the main text, we stated the central limit theorems (CLTs) (7) and (12) for cell number 

and cell fraction data, respectively, for the simple case where all experiments are started 

from isolated subpopulations. Here, we state and prove the CLTs for general starting 

conditions.

C.1 Cell number data

For cell number data, we begin by modifying the notation developed for the branching 

process model in Section 3.1.2 to facilitate analysis of general starting conditions. In 

particular, for a general 1 × K vector n = n1, …, nK  of starting cell numbers of each type, we 

let Zn(t) = Z1
n(t), …, ZK

n(t)  denote the random vector of cell numbers at time t. We state and 
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prove a CLT for Zn(t) when the total number of starting cells is sent to infinity (Proposition 

3). More precisely, we fix a vector α of starting cell fractions with αi ≥ 0 for i = 1, …, K and 

∑i = 1
K αi = 1, write the vector of starting cell numbers as n = Nα , and send N ∞. Note 

that some coordinates of the vector α are allowed to be 0. In the N ∞ regime, the starting 

condition n = Nα  will therefore either include no cell or a large number of cells of any 

given type. This is consistent with our assumptions on the vectors n1, …, nI of experimental 

starting conditions (Appendix A.1).

We establish Proposition 3 more generally for linear transformations Zn t C of Zn(t), which 

gives a CLT for Zn(t) by taking C = I. The more general version allows us to obtain a CLT 

for cases where we do not observe the full vector Zn(t). For example, if we set C: = 1T , 

then Zn(t)C = ∑k = 1
K Zk

n(t) is the total number of cells at time t. The more general version also 

becomes useful when estimating from models with reducible switching dynamics, as we 

discuss in Appendix B.

Proposition 3.

Let α be 1 × K with αi ≥ 0 for i = 1, …, K and ∑i = 1
K αi = 1. Let J ≥ 1 be any integer. For any 

K × J matrix C, then as N ∞,

N−1/2 Z Nα (t)C − Nmα(t)C d N 0,CTΣα(t)C .

Here, the covariance matrix Σ(j) t  is given by

Σ(j)(t) = 2∫
0

t
(M(t − τ))Tdiag b ⊙ m(j)(τ) (M(t − τ))dτ

+diag m(j)(t) − m(j)(t) Tm(j)(t) .

Proof. First note that we can write

Z Nα (t) = ∑j = 1

K Z Nαj ej(t), (27)

where Z Nαj ej(s)
s ≥ 0

 for j = 1, …, K are independent branching processes started with Nαj

cells of type-j, respectively. For each process, we can write

Z Nαj ej(t) = ∑m = 1
Nαj Z(j), m(t),

where Z(j), m(s)
s ≥ 0

 for m = 1, …, Nαj  are i.i.d. copies of the branching process Z(j)(s)
s ≥ 0

started by a single type-j cell. Set

W Nαj ej(t): = N−1/2 Z Nαj ej(t) − Nαjm(j)(t) . (28)
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Let J ≥ 1 and let C be a K × J matrix. By the standard (multivariate) central limit theorem, 

as N ∞,

W Nαj ej(t)C d N 0, αjCTΣ(j)(t)C .

where Σ(j) t  is the covariance matrix for Z(j)(t). We can then conclude from (27) that as 

N ∞,

N−1/2 Z Nα (t)C − Nmα(t)C d N 0,CTΣα(t)C .

It remains to derive the given expression for the covariance matrix Σ(j) t . To that end, let 

D(j)(t) be the matrix of second factorial moments of Z(j)(t),

Dkℓ
(j)(t): = E Zk

(j)(t) Zℓ
(j)(t) − δkℓ ,

where δkℓ is the Kronecker delta. Let s = s1, …, sK  be a K-dimensional vector of real 

numbers and set ℎj: = bj + dj + ∑k ≠ j νjk for j = 1, …, K. Furthermore, let

u(j)(s): = bjsj
2 + dj + ∑

k ≠ j
νjksk − ℎjsj, 0 ≤ s ≤ 1

be the infinitesimal generating function for Z(j)(t), and let

F(j)(s, t): = E sZ
(j)(t) = E ∏

k = 1

K
sk

Zk
(j)(t) , 0 ≤ s ≤ 1, t ≥ 0,

be the probability generating function for Z(j)(t). With this notation, we can write the 

Kolmogorov forward equation for Z(j)(t) as

∂
∂t F

(j)(s, t) = ∑
i = 1

K
u(i)(s) ∂

∂si
F(j)(s, t) .

Then, for k, ℓ = 1, …, K,

∂
∂t

∂
∂sk

∂
∂sℓ

F (j)(s, t)

= ∑i = 1

K ∂
∂sk

∂
∂sℓ

u(i)(s) ∂
∂si

F (j)(s, t) + ∂
∂sℓ

u(i)(s) ∂
∂sk

∂
∂si

F (j)(s, t)

+ ∂
∂sk

u(i)(s) ∂
∂sℓ

∂
∂si

F (j)(s, t) + u(i)(s) ∂
∂sk

∂
∂sℓ

∂
∂si

F (j)(s, t) .

(29)

Now,
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∂
∂sk

u(i)(s) =
2bisi − ℎi, k = i,
νik, k ≠ i,

∂
∂sk

∂
∂sℓ

u(i)(s) = δkiδℓi2bi .

Let A be the infinitesimal generator and M t  be the mean matrix as defined in Sections 3.1.1 

and 3.1.2. Since

aik = ∂
∂sk

u(i)(s)
s=1

,

Mjk(t) = ∂
∂sk

F(j)(s, t)
s=1

,

Dkℓ
(j)(t) = ∂

∂sk

∂
∂sℓ

F(j)(s, t)
s = 1

,

and u(i) 1 = 0, we can conclude from (29) that

d
dtDkℓ

(j)(t) = ∑
i = 1

K
δkiδℓi2biMji(t) + aiℓDki

(j)(t) + aikDℓi
(j)(t)

= ∑
i = 1

K
aikDiℓ

(j)(t) + ∑
i = 1

K
Dki

(j)(t)aiℓ + δkℓ2bkMjk(t) .

In the second step, we use that Diℓ
(j)(t) = Dℓi

(j)(t). This yields a Lyapunov matrix differential 

equation,

d
dtD

(j)(t) = ATD(j)(t) + D(j)(t)A + 2diag b ⊙ m(j)(t) , (30)

with initial condition D(j)(0) = 0. The solution is

D(j)(t) = 2exp tAT ∫
0

t
exp −τAT diag b ⊙ m(j)(τ) exp( − τA)dτ exp(tA)

= 2∫
0

t
(M(t − τ))Tdiag b ⊙ m(j)(τ) (M(t − τ))dτ,

and the expression (8) for Σ(j) t  follows from the fact that

Σ(j)(t) = D(j)(t) + diag m(j)(t) − m(j)(t) Tm(j)(t) . (31)

□

C.2 Cell fraction data

For cell fraction data, we similarly begin by modifying the notation developed for the 

branching process model in Section 3.1.2. In particular, for the 1 × K vector n = n1, …, nK  of 
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starting cell numbers of each type, then on the event ∑k = 1
K Zk

n(t) ≠ 0 , we let Δn t  denote 

the random vector of cell fractions at time t, i.e.

Δi
n(t): = Zi

n(t)/ ∑k = 1
K Zk

n(t) , i = 1, …, K .

We now state and prove a central limit theorem for Δn t  (Proposition 4). As for cell number 

data, the CLT is established for linear transformations Δn t C of Δn t . We note that the CLT 

has already been established for the case of an isolated large starting population by Yakovlev 

and Yanev [44]. We extend their argument to more general starting conditions by fixing the 

vector α of starting cell proportions and sending the total population size N to infinity. We 

also provide a simplified expression for the covariance matrix Sα(t) and show that the mean 

function pα t  can be written solely in terms of νik k ≠ i and λ[ − 1].

Proposition 4.

Let α be 1 × K with αi ≥ 0 for i = 1, …, K and ∑i = 1
K αi = 1. Let J ≥ 1 be any integer. For any 

K × J matrix C, then as N ∞,

N1/2 Δ Nα (t)C − pα(t)C d N 0,CTSα(t)C .

Here, the mean function pα t  can be written solely as a function of the switching rates 

νik k ≠ i and the relative net birth rates λ[ − 1].

Proof. Recall from (27) that we can write

Z Nα (t) = ∑j = 1
K Z Nαj ej(t),

where Z Nαj ej(s)
s ≥ 0

 for j = 1, …, K are independent branching processes started with Nαj

cells of type-j, respectively. Define

U Nα (t): = ∑
k = 1

K
Zk

Nα (t) = ∑
j = 1

K
∑

k = 1

K
Zk

Nαj ej(t)

as the total population size at time t and note that

Δi
Nα (t) = Zi

Nα (t)
U Nα (t)

=
∑j = 1

K Zi
Nαj ej(t)

U Nα (t)
.

We can therefore write
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N Δi
Nα (t) − pi

α(t)

= N
U Nα (t) ∑

j = 1

K
1 − pi

α(t) Zi
Nαj ej(t) − pi

α(t)∑k ≠ i Zk
Nαj ej(t) .

Note that by definition,

pα(t) = mα(t)1T −1mα(t) = ∑
j = 1

K
∑

k = 1

K
αjmk

(j)(t)
−1

∑
j = 1

K
αjm(j)(t) .

It follows that

∑
j = 1

K
Nαj 1 − pi

α(t) mi
(j)(t) − pi

α(t) ∑
k ≠ i

mk
(j)(t)

= N ∑
j = 1

K
αjmi

(j)(t) − pi
α(t) ∑

j = 1

K
∑

k = 1

K
αjmk

(j)(t)

= 0.

We can therefore write

N Δi
Nα (t) − pi

α(t)

= N
U Nα (t) ∑

j = 1

K
1 − pi

α(t) W i
Nαj ej(t) − pi

α(t) ∑
k ≠ i

W k
Nαj ej(t) ,

where the vector W Nαj ej t  is defined as in (28). In vector form, this becomes

N Δ Nα (t) − pα(t) = N
U Nα (t) ∑

j = 1

K
W Nαj ej(t)Qα(t),

where Qα(t) is defined as in (22). By the strong law of large numbers, U Nα (t)/N mα t 1T

almost surely as N ∞. Let J ≥ 1 and let C be a K × J matrix. By the standard 

(multivariate) central limit theorem, as N ∞,

W Nαj ej(t)Qα(t)C d N 0, αjCT Qα(t) TΣ(j)(t)Qα(t)C

Writing Σα(t) = ∑j = 1
K αjΣ(j)(t), it finally follows from Slutsky’s theorem that

N Δ Nα (t)C − pα(t)C d N 0, mα(t)1T −2CT Qα(t) TΣα(t)Qα(t)C .
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It remains to show that pα t  can be written solely as a function of the switching rates νik k ≠ i

and the net birth rate differences λ[ − 1]. To this end, we define for any j = 1, …, K:

A[ − j]: = A − λjI, (32)

where I is the K × K identity matrix, and

M[ − j](t): = exp tA[ − j] = ∑
k = 0

∞
tk/k! A[ − j] k, t ≥ 0. (33)

Note that A[ − j] and M[ − j](t) only depend on νik k ≠ i and λ[ − j]. It is easy to see that

M(t) = eλjtM[ − j](t),

for j = 1, …, K, from which it follows that

pα(t) = αM(t)1T −1αM(t)

= αM[ − 1](t)1T −1 αM[ − 1](t) , t ≥ 0.
(34)

This completes the proof. □

D: Proof of Proposition 1

Proof of Proposition 1.

1. Since M(t) = exp(tA) = ∑k = 0
∞ (1/k!)tkAk, we have d

dtM(t) = AM t . By taking 

t = 0 and noting that M 0 = I, we obtain

d
dtM(t)

t = 0
= A .

If d
dtM(t)

t = 0
.is known, we can recover the switching rate νjk for k ≠ j by 

recalling that ajk = νjk. We can then recover λj for j = 1, …, K by recalling that 

ajj = λj − ∑k ≠ jνjk.

2. Recall that m(j)(t) = ejM(t). By (31) in the proof of Proposition 3, we can write

d
dtΣ(j)(t)

= d
dtD

(j)(t) + diag ejAM(t) − AT(M(t))Tej
TejM(t) − (M(t))Tej

TejAM(t),
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where D(j)(t) is the matrix of second factorial moments of Z(j)(t). Next, by taking 

t = 0 in (30) and noting that D(j)(0) = 0 and m(j)(0) = ej for all j = 1, …, K, we see 

that

d
dtD

(j)(t)
t = 0

= 2bjej
Tej .

It follows that

d
dtΣ(j)(t)

t = 0
= 2bjej

Tej + diag ejA − ej
TejA T − ej

TejA . (35)

For each j = 1, …, K, if the switching rates νjk for k ≠ j and the net birth rate λj are known, the 

birth rate bj can be recovered from d
dtΣ(j)(t)

t = 0 jj
 using this expression. □

E: Proof of Proposition 2

Proof of Proposition 2. We begin by establishing some notation. First, define Q(j)(t): = Qej(t)
and Q(j): = Q(j)(0) = I − 1Tej, with Qej t  defined as in (22). Also define

V: = A − diag(λ) (36)

as the infinitesimal generator A with the net birth rates λ removed from the diagonal. Let v(j)

denote the j-th row vector of V with coordinates vk
(j) = νjk for k ≠ j and vj

(j) = − ∑k ≠ jνjk, and 

note that

v(j) = ejV = ejA[ − j], (37)

where A[ − j] is defined as in (32). Also note that v(j)1T = 0. In the proof, we will rely on the 

following basic facts:

ejQ(j) = ej I − 1Tej = 0,

v(j)Q(j) = v(j) I − 1Tej = v(j) .
(38)

1. Since p(j)(t) = ejexp(tA)1T −1 ejexp(tA) , we can write

d
dtp

(j)(t) = ejexp(tA)1T −1 ejAexp(tA)

− ejexp(tA)1T −2 ejAexp(tA)1T ejexp(tA) .
(39)

Since exp(0) = I, ej1T = 1 and ejA1T = λj, we obtain by (37),
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d
dtp

(j)(t)
t = 0

= ej A − λjI = ejA[ − j] = v(j) . (40)

Since the k-th coordinate of v(j) is νjk for k ≠ j, we can recover νjk from the k-th 

coordinate of d
dtp

(j)(t)
t = 0

.

2. (i) Using (39), we begin by writing

d2

dt2
p(j)(t) = ejexp(tA)1T −1 ejA2exp(tA)

− ejexp(tA)1T −2 ejAexp(tA)1T ejAexp(tA)

+ 2 ejexp(tA)1T −3 ejAexp(tA)1T 2 ejexp(tA)

− ejexp(tA)1T −2 ejA2exp(tA)1T ejexp(tA)

− ejexp(tA)1T −2 ejAexp(tA)1T ejAexp(tA) .

Since exp(0) = I, ej1T = 1, ejA1T = λj, v(j) = ejA[ − j] and Q(j) = I − 1Tej,

d2

dt2
p(j)(t)

t = 0

= 2λjej λjI − A + ejA2 I − 1Tej

= − 2λjv(j) + ejA2Q(j) .

Recalling that A = A[ − j] + λjI by (32), we can write

ejA2 = ej A[ − j] 2 + 2λjejA[ − j] + λj
2ej

= v(j)A[ − j] + 2λjv(j) + λj
2ej .

(41)

Since ejQ j = 0 and v(j)Q(j) = v(j) by (38), it follows that

ejA2Q(j) = v(j)A[ − j]Q(j) + 2λjv(j)Q(j) = v(j)A[ − j]Q(j) + 2λjv(j), (42)

which implies

d2

dt2p
(j)(t)

t = 0

= v(j)A[ − j]Q(j) . (43)

It is straightforward to verify that for i ≠ j,

v(j)A[ − j]Q(j)
i

= νji λi − λj − νij ∑
k ≠ j

νjk − νji ∑
ℓ ≠ i

νiℓ + ∑
m ≠ j, m ≠ i

νjmνim .
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If νik k ≠ i and d2

dt2
p(j)(t)

t = 0

 are known, we can therefore use (43) to get an 

equation for λi − λj of the form νji(λi − λj) = C for some constant C. If νji ≠ 0, 

we immediately obtain the value of λi − λj. If νji = 0, then by our assumption of 

irreducibility, there exist integers n1, …, nk so that νn0n1νn1n2⋯νnknk + 1 > 0, where n0 = j
and nk + 1 = i. For each ℓ = 0, …, k, we can use the fact that νnℓnℓ + 1 > 0 to obtain the 

value of λnℓ + 1 − λnℓ. Since λnk + 1 − λn0 = ∑ℓ = 0
k λnℓ + 1 − λnℓ , we also obtain the value 

of λi − λj.

(ii) We know from (39) that

d
dtp

(j)(t) = ejexp(tA)1T −1 ejAexp(tA)

− ejexp(tA)1T −2 ejAexp(tA)1T ejexp(tA) .

We also know from (5) that

limt ∞e−σtexp(tA) = βTγ,

where β and γ are positive vectors. It follows that as t ∞,

d
dt p(j)(t) ejβTγ1T −1 ejAβTγ − ejβTγ1T −2 ejAβTγ1T ejβTγ

= ejβTγ1T −1 ejAβTγ − ejβTγ1T −2 ejAβTγ1T ejβTγ ,

where γ is the normalized version of γ, see (6). Since ejβT = βj > 0 and γ1T = 1, 

we obtain

d
dtp

(j)(t) βj
−1 ejAβTγ − ejAβTγ = 0 . (44)

On the other hand, by noting that A and exp tA  commute, we can rewrite the 

expression (39) for d
dtp

(j)(t) as

d
dtp

(j)(t) = ejexp(tA)1T −1 ejexp(tA)A

− ejexp(tA)1T −2 ejexp(tA)A1T ejexp(tA) .

Since A1T = λT , A = V + diag(λ) by (36), γdiag(λ) = λdiag(γ) and γλT = λγT , we 

get as t ∞,

d
dtp

(j)(t) γA − γA1Tγ = γ A − λTγ = γV + λdiag(γ) − λγTγ . (45)
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Combining (44) and (45), we obtain the following linear system for λ:

λ diag(γ) − γTγ = − γV .

It is straightforward to verify that this system is solved by

λ = a + x1, x ∈ ℝ,

for some vector a, which can be used to extract λ[ − 1].

3. By the definition of S(j) t  in (11),

d
dtS

(j)(t) = d
dt ejM(t)1T −2 Q(j)(t) TΣ(j)(t)Q(j)(t)

+ ejM(t)1T −2 d
dt Q(j)(t) TΣ(j)(t)Q(j)(t)

+ ejM(t)1T −2 Q(j)(t) T d
dtΣ(j)(t)Q(j)(t)

+ ejM(t)1T −2 Q(j)(t) TΣ(j)(t) d
dtQ(j)(t) .

(46)

Since Σ(j)(0) = 0 and ejM(0)1T = 1, we obtain

d
dtS

(j)(t)
t = 0

= Q(j) T d
dtΣ(j)(t)

t = 0
Q(j) .

From (35) in the proof of Proposition 1, we know that

d
dtΣ(j)(t)

t = 0
= 2bjej

Tej + diag ejA − ej
TejA T − ej

TejA

= diag ejA[ − j] − ej
TejA T − ej

TejA + 2bj + λj ej
Tej,

(47)

where in the second step, we write A = A[ − j] + λjI. Since ejQ(j) = 0 and ejA[ − j] = v(j), we 

obtain

d
dtS

(j)(t)
t = 0

= Q(j) Tdiag ejA[ − j] Q(j) = Q(j) Tdiag v(j) Q(j) . (48)

It is straightforward to verify that the j, k -th coordinate of Q(j) Tdiag v(j) Q(j) is −νjk. 

Thus, knowledge of the switching rates νik k ≠ i follows immediately from knowledge of 
d
dtS

(j)(t)
t = 0

.for j = 1, …, K, but no other parameters can be extracted. □
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F: Implementation in MATLAB

In this section, we give details on how our estimation framework is implemented in 

MATLAB.

F.1 Cell number data

The first step in the implementation for cell number data is to compute simple parameter 

estimates for the switching rates νik k ≠ i and the net birth rates λ based on a deterministic 

population model. This model is obtained by ignoring the stochastic terms in the statistical 

model (10), i.e. by equating the data vector ni, ℓ, r with the mean prediction of (10):

ni, ℓ, r = Nimfi tℓ = niM tℓ . (49)

Let N be the I × K matrix with the initial conditions ni as row vectors, and let Nℓ, r be the 

I × K matrix with the data vectors ni, ℓ, r as row vectors. We can then write (49) in matrix form 

as

Nℓ, r = NM tℓ = Nexp tℓA . (50)

Assuming N has rank K, we can solve for A in (50) by first multiplying both sides by NT , 

then multiplying both sides by the inverse of NTN, and finally taking a matrix logarithm. We 

can thus obtain an estimate for the infinitesimal generator A,

Aℓ, r
∗ : = 1/tℓ log NTN −1NTNℓ, r .

We then compute a final estimate A∗ by averaging across time points and replicates:

A∗: = (1/(LR)) ∑
ℓ = 1

L
∑

r = 1

R
Aℓ, r

∗ . (51)

From A∗, we can obtain estimates of the switching rates νik k ≠ i and the net birth rates λ. As 

indicated in Appendix B, we implement the following likelihood function in our codes:

Lnum θnum ∣ ni, ℓ, r i, ℓ, r

= ∏
i = 1

I
∏

ℓ = 1

L
∏

r = 1

R
(2π)Kdet Ci

T NiΣfi tℓ + Eiℓ
num Ci

−1/2

⋅ exp − 1
2 ni, ℓ, r − Nimfi tℓ Ci Ci

T NiΣfi tℓ + Ei, ℓ
num Ci

−1Ci
T ni, ℓ, r − Nimfi tℓ

T .

For each i = 1, …, I, Ci is a K × Ji matrix for some 1 ≤ Ji ≤ K, which can be used to reduce 

the dimension of the data vector ni, ℓ, r when necessary. This option can e.g. be useful for 

models with reducible switching dynamics, see Appendix B.
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From the above likelihood function, we compute a negative double log-likelihood as in (18), 

and solve the MLE problem (19) using the sequential quadratic programming (sqp) solver 

in MATLAB. For the optimization, one must supply an initial guess θnum
(0)  for the parameter 

vector θnum, and a set of feasible parameters Θnum of the form

Θnum = θnum: l ≤ θnum ≤ u,Gθnum ≤ h,Geqθnum = heq .

By default, we assume lower bounds of 0 for the switching rates νik k ≠ i and the birth rates b, 

and we impose the inequality constraint λ ≤ b. The user is expected to provide lower bounds 

for the net birth rates λ and upper bounds for all parameters, and they have the option to 

provide further inequality or equality constraints as necessary. This provides the opportunity 

to impose constraints such as λ1 = λ2 (Section 4.3) or ν13 = ν31 = ν32 = 0 (Appendix B).

For the initial guess θnum
(0) ,, we use the simple estimates for νik k ≠ i and λ computed from (51). 

An initial guess for the birth rate bi is generated as λi /U, where U is uniformly distributed 

between 0 and 1. The idea is that if λi > 0, then in the absence of phenotypic switching, the 

survival probability of a single-cell derived clone of type i is qi = λi/bi [54]. Since we do not 

assume any information on qi, we sample it uniformly between 0 and 1, and then use the 

initial guess for λi to compute an initial guess for bi.

If data on the number of dead cells at each time point is available, the initial guesses for the 

birth rates can be improved as follows. As before, let nij be the number of starting cells of 

type-j under the i-th initial condition. In the absence of phenotypic switching, the expected 

number of type-j cells at time t under the i-th initial condition is given by nijexp λjt . If we 

assume that type-j cells grow deterministically according to this function, the number of 

dead cells of type-j that accumulate up until the first experimental timepoint t1 is given by

dj∫
0

t1
nijexp λjt dt = djλj

−1nij exp λjt1 − 1 .

Set Dij: = λj
−1nij exp λjt1 − 1  and let D = Dij  denote the corresponding I × K matrix. Also, 

let c denote the 1 × I vector of the experimentally measured number of dead cells at time t1, 

averaged across the R experimental replicates. We should then have

dDT = c .

Assuming D has rank K, we can solve this equation for d as follows:

d = cD DTD −1,

which gives an estimate for the vector of death rates d. An estimate for the birth rates b can 

then be computed as b = λ + d.
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In addition to being used to initialize the optimization, the initial guess θnum
(0)  is used to 

estimate the relative scales of the parameters νik k ≠ i, λ and b. In particular, for the i-th 

coordinate of the initial guess, we define the corresponding scale variable

si
(0): = 10 log10 θnum, i

(0)
,

with si
(0): = 1   if θnum, i

(0) = 0. For example, if the initial guesses are b(0) = (1.5, 1.2) for the birth 

rates, λ(0) = (0.3, 0.4) for the net birth rates, and ν12
(0), ν21

(0) = (0.05, 0.002) for the switching rates, 

the corresponding scale variables are (1, 1), (0.1, 0.1) and (0.01, 0.001), respectively. For a 

given parameter vector θnum, we define the transformed vector

θnum: = θnum ⊘ s 0 ,

where ⊘ denotes elementwise division. For the initial guesses b 0   =   1.5, 1.2 , 

λ 0   = (0.3, 0.4) and ν12
(0), ν21

(0) = (0.05, 0.002), the corresponding transformed values are 

b(0) = (1.5, 1.2), λ(0) = (3, 4) and λ(0) = (5, 2). With this transformation, all nonzero parameters 

take values in [1, 10]. When we solve the MLE problem (19), we treat θnum as the parameter 

vector instead of θnum, and solve

minθnum ∈ Θnumlnum θnum ⊙ s(0) , (52)

where Θnum is the transformed set of feasible parameters. The parameter scaling is applied to 

ensure that all model parameters are of a similar magnitude in the optimization.

In most cases, we have found it sufficient to solve the optimization problem (52) once. 

However, in our codes, we provide an option to solve the problem multiple times, using (i) 

user-supplied initial guesses, (ii) initial guesses based on the simple estimates from (51), 

with new birth rates selected randomly each time, or (iii) randomly sampled initial guesses, 

using the parameter generation procedure described in Appendix H below.

The optimization problems (21) for the endpoints of the confidence intervals are solved in a 

similar way, except the initial guess is taken to be the maximum likelihood estimate.

F.2 Cell fraction data

The implementation for cell fraction data is similar with the following modifications. First of 

all, we parametrize the model in terms of the death rates d, the net birth rate λ1 and the net 

birth rate differences λ[ − 1], instead of the birth rates b and net birth rates λ (Section 3.4). 

Second, the initial guess for the MLE problem (26) is based on solving the following least 

squares problem, which minimizes the sum of squared errors between the mean prediction 

of the statistical model (13) and the data:
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λ[ − 1], ν ik k ≠ i = argminλ[ − 1], νik k ≠ i ∑
i = 1

I
∑

ℓ = 1

L
∑

r = 1

R
f i, ℓ, r − pfi tℓ

2 . (53)

Note that this is a continuous-time version of the TRANSCOMPP problem (2). When 

solving (53), we need to supply an initial guess. If experiments are conducted from isolated 

initial conditions, we compute initial guesses for the switching rates νik k ≠ i based on part 

(1) of Proposition 2, which shows how νik k ≠ i can be estimated from the slopes of the 

mean functions p(j) t  at time zero. We approximate the slopes of p(j) t  at time zero using 

experimentally observed cell fractions at the first time point. The initial guesses for the 

remaining parameters are set to 0. If experiments are not conducted from isolated initial 

conditions, we randomly sample initial guesses as described in Appendix H below. The 

simple problem (53) returns estimates for νik k ≠ i and λ[ − 1], which we supply as initial 

guesses to (26).

In our codes, we implement the following likelihood function for cell fraction data:

Lfrac θfrac fi, ℓ, r i, ℓ, r

= ∏
i = 1

I
∏

ℓ = 1

L
∏

r = 1

R
(2π)K − 1det Ci

TBT Ni
−1Sfi tℓ + Ei, ℓ

frac BCi
−1/2

⋅ exp − 1
2 fi, ℓ, r − pfi tℓ BCi Ci

TBT Ni
−1Sfi tℓ + Ei, ℓ

frac BCi
−1

Ci
TBT fi, ℓ, r − pfi tℓ

T .

Recall from (24) that the matrix B is applied to reduce the data vector f i, ℓ, r to a (K − 1)-

dimensional vector. To accommodate reducible switching dynamics, the user is allowed to 

implement a further reduction in the data by specifying a (K − 1) × Ji matrix Ci for each 

initial condition i. This can for example be useful for the four-type model (K = 4) displayed 

in Figure 9, in which case we would take I = 3, C1 = C2 = I and C3 = e3
T, and we would 

restrict the set of feasible parameters Θfrac so that ν13 = ν14 = ν24 = ν31 = ν32 = ν41 = ν42 = ν43 = 0. 

Note that here, I refers to the (K − 1) × (K − 1) = 3 × 3 identity matrix.

G: Additional numerical results

This section contains additional numerical results to those discussed in Section 4.2 of the 

main text.

G.1 Illustrative example

For illustrative purposes, we show here a graphical depiction of the output of our estimation 

framework for a single dataset. We generated artificial cell number and cell fraction 

data by performing a stochastic simulation of the branching process model from Section 

3.1. We then used the data to compute MLE estimates and confidence intervals for the 

model parameters. The data was generated assuming K = 2 cell types, I = 2 isolated initial 
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conditions, L = 6 time points, and R = 3 replicates. Estimation results are shown in Figure 

10.

Note first the difference in scale between the switching rates and the rates involving cell 

division and death. This is typically the case, since epigenetic modifications can generally be 

retained for 10–105 cell divisions [55, 3]. Also note that all model parameters are estimated 

more accurately for cell number data than cell fraction data, in that their confidence intervals 

are narrower for cell number data. Otherwise, the relative accuracy with which different 

model parameters can be estimated is in line with our identifiability analysis in Section 4.1.

G.2 Experimental design: Adding replicates vs. adding time points

In this section, we discuss how our framework can be used to evaluate to what extent 

additional data can improve parameter estimates and to identify experimental designs that 

best accomplish this goal. To illustrate this point, we compared the effect of (i) doubling the 

number of replicates from R = 3 to R = 6 (design 1), (ii) doubling the number of time points 

from T = 6 to T = 12, adding time points in between the previous time points (design 2), and 

(iii) doubling the number of time points, adding time points after the previous points (design 

3) (Appendix H). We generated 10 parameter regimes and 100 datasets for each regime. The 

results are shown in Figure 11.

For cell number data, the median CV for the switching rate ν21 and the net birth rate λ2

reduces by 26% and 27%, respectively, when the number of replicates is doubled (design 1) 

(Fig. 11a). This is consistent with the fact that the standard deviation of an MLE estimator 

can be expected to decrease with 1/ n, where n is the number of datapoints (1 − 1/ 2 = 0.29)
[38]. Adding data from time points in between the previous time points (design 2) has a 

similar effect on the median CV. However, adding time points after the previous points 

(design 3) reduces the median CV of ν21 and λ2 by 23% and 16%, respectively, over adding 

replicates (design 1). We also note that the 10th percentile of the CV for ν21 and λ2 reduces by 

26% and 42%, respectively, between design 1 and design 3, which indicates that the degree 

of improvement between design 1 and design 3 depends very much on the parameter regime.

For cell fraction data, the relative attractiveness of the three experimental designs is similar 

(Fig. 11b). However, in this case, the estimate for the net birth rate difference λ2 − λ1

benefits significantly more from using design 3 than the estimate for the switching rate 

ν21. For example, the median CV for ν21 reduces by 16% and the 10th percentile by 30% 

between design 1 and design 3, while the analogous reduction for λ2 − λ1 is 59% and 53%, 

respectively.

In our structural identifiability analysis for cell fraction data (Section 4.1.2), we observed 

that it is more difficult to estimate λ2 − λ1 than ν21 from the initial population dynamics, and 

that λ2 − λ1 can be identified from the equilibrium proportions γ if the switching rates νik k ≠ i

are known. The fact that adding more information on the long-run behavior of the population 

benefits the estimation of λ2 − λ1 more than ν21 is consistent with these insights. Of course, the 

results of Section 4.2.2 indicate that the estimation of λ2 − λ1 can be improved even further 

by using cell number data as opposed to cell fraction data.
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In general, Sections 4.2.2 and G.2 show how our framework can be used to evaluate the 

estimation accuracy that can be achieved by different experimental designs, depending e.g. 

on what data is collected, when it is collected, how many replicates are performed, etc.

H: Generation of artificial data

Here, we discuss how the artificial data was generated for the numerical experiments in 

Section 4.2. First, to generate each parameter regime, we sampled the birth rates b and death 

rates d uniformly at random on (0, 1), with the following caveats: The birth rates b and net 

birth rates λ were required to be larger than 0.01 in absolute value, and at least one of the 

net birth rates λ1, …, λK was required to be positive. Each switching rate νij was sampled as 

10−3 + 2U, where U is uniform between 0 and 1, meaning that it was sampled log-uniformly 

between 10−3 and 10−1. The starting number of cells Ni was chosen as Ni = 10−3, Ni = 10−4

or Ni = 10−5 for i = 1, …, K based on the order of magnitude of the smallest switching rate. 

The experimental time points were selected as t = 1, …, 6.

In Section G.2, where the number of time points was doubled, the time points were taken 

as either t = 0.5, 1, 1.5, 2, …, 6 or t = 1, 2, 3, …, 12, depending on whether the new time points 

were added in between or after the previous time points.

Once the parameters were set, we performed stochastic simulations of the model in 

Section 3.1 to obtain the artificial datasets. The parameter regimes used to perform the 

simulations are available in the Github repository for the paper (https://github.com/egunnars/

phenotypic_switching_inference/). The background MATLAB codes used to generate the 

parameter regimes and the artificial datasets, and to perform estimation on the artificial 

datasets, are also available in the same repository.

I: AIC and BIC

To evaluate model fit relative to model complexity in Section 4.3, we use the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). For a statistical 

model with parameters θ and negative double log-likelihood l θ , the AIC and BIC are given 

by

AIC = l(θ) + 2p,

BIC = l(θ) + plog(n),

where θ is the MLE estimate, p is the number of parameters in the statistical model, and n
is the number of datapoints. When comparing two models, the model with the lower AIC or 

BIC is preferred, depending on which criterion is used. The BIC criterion generally favors 

simpler models, i.e. models with fewer parameters, to a greater extent than the AIC criterion.

Gunnarsson et al. Page 39

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/egunnars/phenotypic_switching_inference/
https://github.com/egunnars/phenotypic_switching_inference/


References

[1]. Brock Amy, Chang Hannah, and Huang Sui. Non-genetic heterogeneity - a mutation-independent 
driving force for the somatic evolution of tumours. Nature Reviews Genetics, 10(5):336, 2009.

[2]. Peter A Jones and Stephen B Baylin. The epigenomics of cancer. Cell, 128(4):683–692, 2007. 
[PubMed: 17320506] 

[3]. Brown Robert, Curry Edward, Magnani Luca, Charlotte S Wilhelm-Benartzi, and Jane Borley. 
Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews Cancer, 
14(11):747, 2014. [PubMed: 25253389] 

[4]. Flavahan William A, Gaskell Elizabeth, and Bernstein Bradley E. Epigenetic plasticity and the 
hallmarks of cancer. Science, 357(6348):eaal2380, 2017. [PubMed: 28729483] 

[5]. Salgia Ravi and Kulkarni Prakash. The genetic/non-genetic duality of drug ‘resistance’in cancer. 
Trends in cancer, 4(2):110–118, 2018. [PubMed: 29458961] 

[6]. Biswas Antara and De Subhajyoti. Drivers of dynamic intratumor heterogeneity and phenotypic 
plasticity. American Journal of Physiology-Cell Physiology, 320(5):C750–C760, 2021. [PubMed: 
33657326] 

[7]. Sharma Sreenath V, Lee Diana Y, Li Bihua, Quinlan Margaret P, Takahashi Fumiyuki, 
Maheswaran Shyamala, McDermott Ultan, Azizian Nancy, Zou Lee, Fischbach Michael A, 
et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 
141(1):69–80, 2010. [PubMed: 20371346] 

[8]. Ramirez Michael, Rajaram Satwik, Steininger Robert J, Osipchuk Daria, Roth Maike A, 
Morinishi Leanna S, Evans Louise, Ji Weiyue, Hsu Chien-Hsiang, Thurley Kevin, et al. 
Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nature 
communications, 7:10690, 2016.

[9]. Hata Aaron N, Niederst Matthew J, Archibald Hannah L, Gomez-Caraballo Maria, Siddiqui Faria 
M, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal 
growth factor receptor inhibition. Nature Medicine, 22(3):262–269, 2016.

[10]. Roesch Alexander, Fukunaga-Kalabis Mizuho, Schmidt Elizabeth C, Zabierowski Susan E, 
Brafford Patricia A, Vultur Adina, Basu Devraj, Gimotty Phyllis, Vogt Thomas, and Herlyn 
Meenhard. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for 
continuous tumor growth. Cell, 141(4):583–594, 2010. [PubMed: 20478252] 

[11]. Shaffer Sydney M, Dunagin Margaret C, Torborg Stefan R, Torre Eduardo A, Emert Benjamin, 
Krepler Clemens, Beqiri Marilda, Sproesser Katrin, Brafford Patricia A, Xiao Min, et al. Rare 
cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 
546(7658):431, 2017. [PubMed: 28607484] 

[12]. Su Yapeng, Wei Wei, Robert Lidia, Xue Min, Tsoi Jennifer, Angel Garcia-Diaz, Moreno Blanca 
Homet, Kim Jungwoo, Ng Rachel H, Lee Jihoon W, et al. Single-cell analysis resolves the 
cell state transition and signaling dynamics associated with melanoma drug-induced resistance. 
Proceedings of the National Academy of Sciences, 114(52):13679–13684, 2017.

[13]. Liau Brian B, Sievers Cem, Donohue Laura K, Gillespie Shawn M, Flavahan William A, Miller 
Tyler E, Venteicher Andrew S, Hebert Christine H, Carey Christopher D, Rodig Scott J, et al. 
Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell 
stem cell, 20(2):233–246, 2017. [PubMed: 27989769] 

[14]. Neftel Cyril, Laffy Julie, Filbin Mariella G, Hara Toshiro, Shore Marni E, Rahme Gilbert 
J, Richman Alyssa R, Silverbush Dana, Shaw McKenzie L, Hebert Christine M, et al. An 
integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell, 178(4):835–
849, 2019. [PubMed: 31327527] 

[15]. Pisco Angela Oliveira, Brock Amy, Zhou Joseph, Moor Andreas, Mojtahedi Mitra, Jackson Dean, 
and Huang Sui. Non-darwinian dynamics in therapy-induced cancer drug resistance. Nature 
communications, 4:2467, 2013.

[16]. Knoechel Birgit, Roderick Justine E, Williamson Kaylyn E, Zhu Jiang, Lohr Jens G, Cotton 
Matthew J, Gillespie Shawn M, Fernandez Daniel, Ku Manching, Wang Hongfang, et al. An 
epigenetic mechanism of resistance to targeted therapy in t cell acute lymphoblastic leukemia. 
Nature genetics, 46(4):364, 2014. [PubMed: 24584072] 

Gunnarsson et al. Page 40

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[17]. Yang G, Quan Y, Wang W, Fu Q, Wu J, Mei T, Li J, Tang Y, Luo C, Ouyang Q, et al. Dynamic 
equilibrium between cancer stem cells and non-stem cancer cells in human sw620 and mcf-7 
cancer cell populations. British journal of cancer, 106(9):1512–1519, 2012. [PubMed: 22472879] 

[18]. Feng Jian-Ming, Miao Ze-Hong, Jiang Yi, Chen Yi, Li Jia-Xin, Tong Lin-Jiang, Zhang Jin, 
Huang Yi-Ran, and Ding Jian. Characterization of the conversion between cd133+ and cd133-
cells in colon cancer sw620 cell line. Cancer biology & therapy, 13(14):1396–1406, 2012. 
[PubMed: 22954703] 

[19]. Geng Yue, Chandrasekaran Siddarth, Agastin Sivaprakash, Li Jiahe, and King Michael R. 
Dynamic switch between two adhesion phenotypes in colorectal cancer cells. Cellular and 
molecular bioengineering, 7(1):35–44, 2014. [PubMed: 24575161] 

[20]. Wang Weikang, Quan Yi, Fu Qibin, Liu Yu, Liang Ying, Wu Jingwen, Yang Gen, Luo 
Chunxiong, Ouyang Qi, and Wang Yugang. Dynamics between cancer cell subpopulations 
reveals a model coordinating with both hierarchical and stochastic concepts. PloS one, 
9(1):e84654, 2014. [PubMed: 24416258] 

[21]. Gupta Piyush B, Fillmore Christine M, Jiang Guozhi, Shapira Sagi D, Tao Kai, Kuperwasser 
Charlotte, and Lander Eric S. Stochastic state transitions give rise to phenotypic equilibrium in 
populations of cancer cells. Cell, 146(4):633–644, 2011. [PubMed: 21854987] 

[22]. Goldman Aaron, Majumder Biswanath, Dhawan Andrew, Ravi Sudharshan, Goldman David, 
Kohandel Mohammad, Majumder Pradip K, and Sengupta Shiladitya. Temporally sequenced 
anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced 
phenotypic transition. Nature communications, 6:6139, 2015.

[23]. Jordan Nicole Vincent, Bardia Aditya, Wittner Ben S, Benes Cyril, Ligorio Matteo, Zheng Yu, 
Yu Min, Sundaresan Tilak K, Licausi Joseph A, Desai Rushil, et al. Her2 expression identifies 
dynamic functional states within circulating breast cancer cells. Nature, 537(7618):102–106, 
2016. [PubMed: 27556950] 

[24]. Bhatia Sugandha, Monkman James, Blick Tony, Pinto Cletus, Waltham Mark, Nagaraj 
Shivashankar H, and Thompson Erik W. Interrogation of phenotypic plasticity between epithelial 
and mesenchymal states in breast cancer. Journal of clinical medicine, 8(6):893, 2019. [PubMed: 
31234417] 

[25]. Gunnarsson Einar Bjarki, De Subhajyoti, Leder Kevin, and Foo Jasmine. Understanding the role 
of phenotypic switching in cancer drug resistance. Journal of Theoretical Biology, 490:110162, 
2020. [PubMed: 31953135] 

[26]. Buder Thomas, Deutsch Andreas, Seifert Michael, and Voss-Böhme Anja. Celltrans: an r 
package to quantify stochastic cell state transitions. Bioinformatics and biology insights, 
11:1177932217712241, 2017. [PubMed: 28659714] 

[27]. Suhas Jagannathan N, Ihsan Mario O, Kin Xiao Xuan, Welsch Roy E, Clément Marie-
Véronique, and Tucker-Kellogg Lisa. Transcompp: understanding phenotypic plasticity by 
estimating markov transition rates for cell state transitions. Bioinformatics, 36(9):2813–2820, 
2020. [PubMed: 31971581] 

[28]. Li Xin and Thirumalai D. A mathematical model for phenotypic heterogeneity in breast 
cancer with implications for therapeutic strategies. Journal of the Royal Society Interface, 
19(186):20210803, 2022. [PubMed: 35078336] 

[29]. Zhou Joseph Xu, Pisco Angela Oliveira, Qian Hong, and Huang Sui. Nonequilibrium population 
dynamics of phenotype conversion of cancer cells. PloS one, 9(12):e110714, 2014. [PubMed: 
25438251] 

[30]. Devaraj Vimalathithan and Bose Biplab. Morphological state transition dynamics in egf-induced 
epithelial to mesenchymal transition. Journal of clinical medicine, 8(7):911, 2019. [PubMed: 
31247884] 

[31]. Dirkse Anne, Golebiewska Anna, Buder Thomas, Nazarov Petr V, Muller Arnaud, Poovathingal 
Suresh, Brons Nicolaas HC, Leite Sonia, Sauvageot Nicolas, Sarkisjan Dzjemma, et al. Stem 
cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the 
microenvironment. Nature communications, 10(1):1–16, 2019.

[32]. Vipparthi Kavya, Hari Kishore, Chakraborty Priyanka, Ghosh Subhashis, Patel Ankit Kumar, 
Ghosh Arnab, Biswas Nidhan Kumar, Sharan Rajeev, Arun Pattatheyil, Jolly Mohit Kumar, et 

Gunnarsson et al. Page 41

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral 
cancer. iScience, 25(5):104317, 2022. [PubMed: 35602941] 

[33]. Chedere Adithya, Hari Kishore, Kumar Saurav, Rangarajan Annapoorni, and Jolly Mohit Kumar. 
Multi-stability and consequent phenotypic plasticity in ampk-akt double negative feedback loop 
in cancer cells. Journal of clinical medicine, 10(3):472, 2021. [PubMed: 33530625] 

[34]. Devaraj Vimalathithan and Bose Biplab. The mathematics of phenotypic state transition: paths 
and potential. Journal of the Indian Institute of Science, 100(3):451–464, 2020.

[35]. Athreya Krishna B and Ney Peter E. Branching processes Courier Corporation, 2004.

[36]. Bintu Lacramioara, Yong John, Antebi Yaron E, McCue Kayla, Kazuki Yasuhiro, Uno Narumi, 
Oshimura Mitsuo, and Michael B Elowitz. Dynamics of epigenetic regulation at the single-cell 
level. Science, 351(6274):720–724, 2016. [PubMed: 26912859] 

[37]. Nam Arin, Mohanty Atish, Bhattacharya Supriyo, Kotnala Sourabh, Achuthan Srisairam, 
Hari Kishore, Srivastava Saumya, Guo Linlin, Nathan Anusha, Chatterjee Rishov, et al. 
Dynamic phenotypic switching and group behavior help non-small cell lung cancer cells evade 
chemotherapy. Biomolecules, 12(1):8, 2022.

[38]. Casella George and Berger Roger L. Statistical inference Cengage Learning, 2021.

[39]. Neale Michael C and Miller Michael B. The use of likelihood-based confidence intervals in 
genetic models. Behavior genetics, 27(2):113–120, 1997. [PubMed: 9145549] 

[40]. Fischer Samuel M and Lewis Mark A. A robust and efficient algorithm to find profile likelihood 
confidence intervals. Statistics and Computing, 31(4):1–17, 2021.

[41]. Borisov Ivan and Metelkin Evgeny. Confidence intervals by constrained optimization—an 
algorithm and software package for practical identifiability analysis in systems biology. PLOS 
Computational Biology, 16(12):e1008495, 2020. [PubMed: 33347435] 

[42]. Venzon DJ and Moolgavkar SH. A method for computing profile-likelihood-based confidence 
intervals. Journal of the Royal Statistical Society: Series C (Applied Statistics), 37(1):87–94, 
1988.

[43]. Raue Andreas, Kreutz Clemens, Maiwald Thomas, Bachmann Julie, Schilling Marcel, Ursula 
Klingmüller, and Jens Timmer. Structural and practical identifiability analysis of partially 
observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15):1923–
1929, 2009. [PubMed: 19505944] 

[44]. Yakovlev Andrei Y and Yanev Nikolay M. Relative frequencies in multitype branching processes. 
The annals of applied probability, 19(1):1–14, 2009.

[45]. Rothenberg Thomas J. Identification in parametric models. Econometrica: Journal of the 
Econometric Society, pages 577–591, 1971.

[46]. Browning Alexander P, Warne David J, Burrage Kevin, Baker Ruth E, and Simpson Matthew J. 
Identifiability analysis for stochastic differential equation models in systems biology. Journal of 
the Royal Society Interface, 17(173):20200652, 2020. [PubMed: 33323054] 

[47]. Chis Oana-Teodora, Banga Julio R, and Balsa-Canto Eva. Structural identifiability of systems 
biology models: a critical comparison of methods. PloS one, 6(11):e27755, 2011. [PubMed: 
22132135] 

[48]. Russo Mariangela, Pompei Simone, Sogari Alberto, Corigliano Mattia, Crisafulli Giovanni, 
Puliafito Alberto, Lamba Simona, Erriquez Jessica, Bertotti Andrea, Gherardi Marco, et al. A 
modified fluctuation-test framework characterizes the population dynamics and mutation rate of 
colorectal cancer persister cells. Nature Genetics, 54(7):976–984, 2022. [PubMed: 35817983] 

[49]. Greene James M, Gevertz Jana L, and Sontag Eduardo D. Mathematical approach to differentiate 
spontaneous and induced evolution to drug resistance during cancer treatment. JCO clinical 
cancer informatics, 3:1–20, 2019.

[50]. Kuosmanen Teemu, Cairns Johannes, Noble Robert, Beerenwinkel Niko, Mononen Tommi, and 
Mustonen Ville. Drug-induced resistance evolution necessitates less aggressive treatment. PLoS 
computational biology, 17(9):e1009418, 2021. [PubMed: 34555024] 

[51]. Angelini Erin, Wang Yue, Zhou Joseph Xu, Qian Hong, and Huang Sui. A model for the intrinsic 
limit of cancer therapy: Duality of treatment-induced cell death and treatment-induced stemness. 
PLOS Computational Biology, 18(7):e1010319, 2022. [PubMed: 35877695] 

Gunnarsson et al. Page 42

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[52]. Benzekry Sébastien, Lamont Clare, Beheshti Afshin, Tracz Amanda, Ebos John ML, Hlatky 
Lynn, and Hahnfeldt Philip. Classical mathematical models for description and prediction of 
experimental tumor growth. PLoS computational biology, 10(8):e1003800, 2014. [PubMed: 
25167199] 

[53]. Steiert Bernhard, Raue Andreas, Timmer Jens, and Kreutz Clemens. Experimental design for 
parameter estimation of gene regulatory networks. PloS one, 7(7):e40052, 2012. [PubMed: 
22815723] 

[54]. Durrett Richard. Branching process models of cancer. In Branching Process Models of Cancer, 
pages 1–63. Springer, 2015.

[55]. Niepel Mario, Spencer Sabrina L, and Sorger Peter K. Non-genetic cell-to-cell variability and the 
consequences for pharmacology. Current opinion in chemical biology, 13(5–6):556–561, 2009. 
[PubMed: 19833543] 

Gunnarsson et al. Page 43

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• A framework to estimate parameters of phenotypic switching is developed.

• Identifiability of parameters depending on what data is collected is 

investigated.

• Cell fraction data may only enable accurate estimation of switching rates.

• Cell number data enables accurate estimation of growth rates.
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Figure 1: 
The dynamics of phenotypic switching are commonly interrogated by sorting live cells into 

isolated phenotypic subpopulations and expanding these subpopulations in culture [21, 17, 

19, 20, 23, 24, 14]. By tracking the evolution of phenotypic proportions over time and 

applying mathematical models of phenotypic switching, it becomes possible to estimate the 

quantitative parameters of the process [21, 26, 27, 28, 29, 22, 12, 30].
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Figure 2: 
The multitype branching process model captures a variety of switching dynamics previously 

observed in the literature. (a) A two-type model captures e.g. the dynamics between HER2+ 

and HER2− cell states in Brx-82 and Brx-142 breast cancer cells [23]. (b) A three-type 

model captures e.g. the dynamics between stem-like, basal and luminal cell states in 

SUM149 and SUM159 breast cancer cells [21]. (c) A four-type model captures e.g. the 

dynamics between CD24Low/ALDHHigh, CD24Low/ALDHLow, CD24High/ALDHHigh and 

CD24Hich/ALDHLow cell states in GBC02, SCC029B and SCC070 oral cancer cells [32].
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Figure 3: 
Assessment of estimation error across a wide range of biologically realistic parameter 

regimes. We first generated 100 different parameter regimes, then generated 100 artificial 

datasets for each regime, and finally computed parameter estimates for each dataset. To 

generate the parameter regimes, we sampled birth and death rates uniformly between 0 

and 1, and sampled switching rates log-uniformly between 10−1 and 10−3 (Appendix H). 

For each parameter and each parameter regime, we used the 100 estimates to compute the 

coefficient of variation (CV) for the estimates, which measures the error in the estimation. 

Each dot in the figure represents the CV for a single parameter under a single regime, 

with the blue dots (resp. red dots) representing estimates from cell number data (resp. cell 

fraction data). Collectively, the dots enable comparison of estimation error between different 

model parameters and between cell number and cell fraction data. The horizontal bars 

represent the 10th percentile, median and 90th percentile of the CVs, bottom to top.
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Figure 4: 
Two ways of improving the estimation accuracy for the birth rates b when cell number data 

is used. In (a), we show how the estimation accuracy for the birth rate b1 improves as the 

number of experimental replicates is increased. In (b), we compare the estimation accuracy 

for the birth rate b1 and the net birth rate λ1 depending on whether data on the number of 

dead cells at each time point is included in the estimation or not.
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Figure 5: 
Augmentation of the mathematical model for when data is available on the number of dead 

cells at each time point. In that case, in stead of cells being lost from the model upon dying 

(left panel), they transition into a new state (right panel).
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Figure 6: 
Comparison of estimation error depending on whether our framework is applied to endpoint 

data or sequential data. The blue dots show the estimation error when endpoint data is used, 

i.e. when experiments from different time points are independent, and the red dots show 

the error when sequential data is used, i.e. when data is collected at multiple time points in 

the same experiment. Panel (a) shows the comparison for cell number data and panel (b) 
for cell fraction data. Even though our framework is derived for endpoint data, it provides 

reasonable estimation accuracy for sequential data.
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Figure 7: 
Visual comparison of point estimates and 95% confidence intervals for the statistical 

model f j, ℓ   ∼ p(j)(tℓ) + N 0, ω2I  (Model Ia) and the same model with λ2 − λ1 = 0 (Model 

IIa) applied to publicly available cell fraction data from Yang et al. [17].
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Figure 8: 
To demonstrate that our estimation framework is applicable to reducible switching models, 

we consider a three-type model with a reversible transition between type-1 and type-2, and 

an irreversible transition from type-2 to type-3. This model is applicable e.g. to epigenetic 

gene silencing under the recruitment of chromatin regulators [36] and to epigenetically-

driven drug resistance in cancer [25].

Gunnarsson et al. Page 52

J Theor Biol. Author manuscript; available in PMC 2024 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
An example of a four-type switching model where the likelihood function (24) for cell 

fraction data from the main text must be modified to avoid degeneracy issues. This model 

structure can e.g. arise in the context of epigenetically-driven drug resistance in cancer, 

where drug-sensitive (type-0) cells can acquire transient resistance (type-1), which then 

evolves gradually to stable resistance (type-4) in two steps [25].
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Figure 10: 
Graphical depiction of the output of our estimation framework. We first generated artificial 

cell-number and cell-fraction data by simulating the branching process model of Section 

3.1 for b1 = 0.6, d1 = 0.3, b2 = 1.0, d2 = 0.5, ν12 = 0.02, ν21 = 0.04 and N1 = N2 = 1, 000. Using 

this data, we computed maximum likelihood estimates and likelihood-based 95% confidence 

intervals (CIs) for the model parameters. For each parameter, the shaded region indicates the 

CI, the vertical bar inside the interval indicates the MLE estimate, and the arrow points to 

the true value of the parameter.
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Figure 11: 
Comparison of estimation error for different experimental designs when the number of data 

points is doubled. We generated 10 parameter regimes and 100 datasets for each regime. The 

blue dots represent estimation from datasets with L = 6 time points and R = 3 replicates. The 

red dots represent estimation from L = 6 time points and R = 6 replicates. The green and 

grey dots represent estimation from L = 12 time points and R = 3 replicates, where the extra 

time points are added in between and after the previous time points, respectively. Panel (a) 
shows estimation from cell number data and panel (b) shows estimation from cell fraction 

data.
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Table 1:

Notation for the stochastic model of Section 3.1.

Symbol Dimension Description

K 1 Number of types

bj 1 Division rate of type-j cells

dj 1 Death rate of type-j cells

νjk 1 Rate of switching from type-j to type-k
λj 1 Net birth rate of type-j cells, λj = bj − dj

λk
[ − j] 1 Net birth rate relative to λj, λk

[ − j] = λk − λj

A K × K Infinitesimal generator of the branching process model

M t K × K Mean matrix at time t, M t = exp tA
γ 1 × K equilibrium proportions between cell types

Z(j)(t; N) 1 × K Vector of cell numbers at time t, started by N type-j cells

Z(j)(t) 1 × K Z(j)(t): = Z(j)(t; 1)

m(j)(t) 1 × K m(j)(t): = E Z(j)(t; 1) = ejM(t)

Σ(j) t K × K Σ(j)(t): = E Z(j)(t) − m(j)(t) T Z(j)(t) − m(j)(t)

Δ j t; N 1 × K Vector of cell fractions at time t, started by N type-j cells

Δ(j)(t) 1 × K Δ(j)(t): = Δ(j)(t; 1)

p(j)(t) 1 × K p(j)(t): = m(j)1T −1m(j)(t)

Q(j)(t) K × K Q(j)(t): = I − 1Tp(j)(t)

S(j)(t) K × K S(j)(t): = m(j)(t)1T −2 Q(j)(t) TΣ(j)(t)Q(j)(t)
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Table 2:

Summary of the structural identifiability analysis of Propositions 1 and 2. For cell number data, the switching 

rates νik k ≠ i and the net birth rates λ are identifiable from the slopes (first derivatives) of the mean functions 

m(j) t  (first moments) at time 0. The birth rates b are identifiable from the slopes of the covariance functions 

Σ(j) t  (second moments). For cell fraction data, only the switching rates νik k ≠ i are identifiable from the slopes 

of the mean functions p(j) t , while the net birth rate differences λ[ − 1] can be determined from their curvatures 

(second derivatives). In contrast to cell number data, the slopes of the covariance functions S(j) t  for cell 

fraction data provide no extra information on the model parameters.

Moment Derivative Cell number data Cell fraction data

1 1
2

λ, νik k ≠ i
–

νik k ≠ i

λ[ − 1]

2 1 b νik k ≠ i
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Table 3:

Comparison of model fit quality, point estimates and confidence intervals for the statistical models 

f j, ℓ ∼ p(j) tℓ + N 0, Nj
−1S(j) tℓ + N 0, ω2I  (Model I) and f j, ℓ ∼ p(j) tℓ + N 0, ω2I  (Model Ia) applied to 

publicly available cell fraction data from Yang et al. [17].

Model AIC BIC ν21 ν12 λ2 − λ1

I −113.4 −105.2 0.154
CI: [0.111, 0.212]

0.057
CI: [0.036, 0.087]

0.080
CI: [−0.058, 0.219]

Ia −119.4 −114.7 0.157
CI: [0.115, 0.213]

0.057
CI: [0.037, 0.088]

0.084
CI: [−0.054, 0.218]
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Table 4:

Comparison of model fit quality, point estimates and confidence intervals for the statistical models 

f j, ℓ ∼ p(j) tℓ + N 0, Nj
−1S(j) tℓ + N 0, ω2I , λ2 − λ1 = 0 (Model II) and f j, ℓ ∼ p(j) tℓ + N 0, ω2I , λ2 − λ1 = 0

(Model IIa) applied to publicly available cell fraction data from Yang et al. [17].

Model AIC BIC ν21 ν12

II −114.0 −107.0 0.131
CI: [0.110, 0.161]

0.071
CI: [0.057, 0.089]

IIa −119.8 −116.3 0.134
CI: [0.112, 0.162]

0.072
CI: [0.059, 0.090]
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