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Artificial intelligence;
Lateral cephalometry;

Method: In this study, we conducted a meta-analysis and systematic review to evaluate the ac-
curacy of ML software for detecting and predicting anatomical landmarks on two-dimensional

Orthodontics; (2D) lateral cephalometric images. The meta-analysis followed the Preferred Reporting Items for

Accuracy Systematic Reviews and Meta-Analyses (PRISMA) guidelines for selecting and screening research
articles. The eligibility criteria were established based on the diagnostic accuracy and prediction of
ML combined with 2D lateral cephalometric imagery. The search was conducted among English
articles in five databases, and data were managed using Review Manager software (v. 5.0). Quality
assessment was performed using the diagnostic accuracy studies (QUADAS-2) tool.

Result: Summary measurements included the mean departure from the 1-4-mm threshold or the
percentage of landmarks identified within this threshold with a 95% confidence interval (CI). This
meta-analysis included 21 of 577 articles initially collected on the accuracy of ML algorithms for
detecting and predicting anatomical landmarks. The studies were conducted in various regions of
the world, and 20 of the studies employed convolutional neural networks (CNNs) for detecting
cephalometric landmarks. The pooled successful detection rates for the 1-mm, 2-mm, 2.5-mm, 3-
mm, and 4-mm ranges were 65%, 81%, 86%, 91%, and 96%, respectively. Heterogeneity was de-
termined using the random effect model.

Conclusion.: In conclusion, ML has shown promise for landmark detection in 2D cephalometric
imagery, although the accuracy has varied among studies and clinicians. Consequently, more re-
search is required to determine its effectiveness and reliability in clinical settings.
© 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

tion with facial form evaluation and model analysis to identify
the location of skeletal and dental anomalies that can be im-
proved with braces and/or surgery (Durdo et al., 2013).

Utilizing oral radiology can be lucrative in various fields of
dentistry, such as endodontics, periodontology, and orthodon-
tics (Abdinian and Baninajarian 2017, Mehdizadeh et al.,
2022). Cephalometry is the study of skull dimensions using lin-
ear and angular measurements of anatomical and constructed
landmarks on standardized two-dimensional (2D) lateral head
films. The linear and angular measurements from cephalome-
try can be used in facial recognition and forensic identification
(Hlongwa 2019). However, cephalometry is used most fre-
quently in orthodontics and oral surgery for the diagnosis of
malocclusion and treatment planning. It is used in combina-

Currently, detecting irregularities related to orthodontics
and dentistry has become possible owing to advancements in
artificial intelligence (AI) (Pattanaik 2019). Al technology
has been incorporated into cephalometry to resolve accurate
diagnosis and surgical planning issues (Shin and Kim 2022).
Cephalometry combined with Al may be able to assist practi-
tioners with determination of bone age, extraction decisions,
orthognathic surgical prediction, and temporomandibular
bone segmentation (Mohammad-Rahimi et al, 2021,
Mehdizadeh et al., 2022, Ebadian et al., 2023). Cephalometry
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and Al are often combined with other diagnostic tools, such as
facial form analysis and model analysis; thus, the time-
consuming task of orthodontic diagnosis can be made more ef-
ficient, accurate, and objective (Ruizhongtai Qi 2020).
Decision-making models can hopefully be used in comput-
erized analysis to acquire accurate and consistent data in a
timely fashion and then utilize this data to formulate treatment
strategies. This type of computerized diagnosis and treatment
planning is still in its infancy despite several technical advance-
ments in Al (Juneja et al., 2021). This technology would be a
major advancement for diagnosis since the introduction of

(n = 244)

Reports excluded: (n = 27)
. Articles regarding
measurements, and not
landmarks (n = 10)
Not related to our
question (n = 10)
. Using methods other
than the mean SDR to
evaluate the algorithm's
function (n =7)

PRISMA flowchart for screening and selection of standardized research articles.

cephalometry by Broadbent and Hofrath in the 1930s (Helal
et al., 2019, Park and Pruzansky 2019, Palomo et al., 2021,
Tanna et al., 2021).

In the last few decades, ML approaches have been implicat-
ed in anatomical landmarks detection, computerized diagnosis,
and data mining related to medical assessments. ML
algorithms have commonly been used extensively for
decision-making and in various fields to solve real-world
data-related issues (Bollen 2019, Jodeh et al., 2019). Research
has indicated that cephalometric analysis provides detailed
images of anatomical structural points. This improves
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reliability by maximizing the identifying points’ accuracy (K ok
et al., 2019). However, there is still uncertainty regarding the
accuracy of cephalometric imaging results in detecting
anatomical landmarks; thus, the algorithm’s accuracy is un-
clear and should be addressed by analyzing previous studies.
In this study, we conducted a meta-analysis and systematic re-
view to assess the accuracy of machine learning (ML) software
for detecting and predicting anatomical landmarks on 2D lat-
eral cephalometric images.

2. Materials and methods

The meta-analysis conducted in this study followed the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009) for
extracting, selecting, and screening the included research
articles (Fig. 1). After the initial screening phase, the study
protocol was registered with the International Prospective
Register of Systematic Reviews (PROSPERO) with code
CRD42023399216 (Alshamrani et al., 2022). The population,
intervention, control, and outcomes (PICO) question was as
follows:

Is 2D lateral cephalometric imagery suitable for detecting
and predicting anatomical landmarks using ML software?
What is the accuracy?

2.1. Eligibility criteria

The meta-analysis included the following inclusion criteria: (1)
studies employing the diagnostic accuracy and prediction of
ML, (2) evaluation and assessment of 2D cephalometric im-
agery analysis, such as 2D lateral radiographs with relevant
landmarks that provide detection and prediction accuracy,
(3) reporting the outcome as the mean successful detection rate
(SDR), (4) those published after 2000 until February 2023, as
we expected ML-related data to be included, and (5) articles
published only in the English language. Only studies that
met the above criteria were included.

Studies were excluded if they (1) already conducted a sys-
tematic review and meta-analysis or scoping review, (2) report-
ed other methods for the function of the algorithms rather
than SDR, (3) were studies of cephalometry-irrelevant land-
marks or used other methods for non-radiographic data, or
(4) were articles published in other languages.

2.2. Research strategy and screening

The search and screening of research articles were systemati-
cally performed using five databases, including PubMed, Sco-
pus, Scopus Secondary, Embase, and Web of Science (WOS),
for studies published from January 2000 to February 2023 in
English. The meta-analysis utilized PRISMA systematic review
and meta-analysis guidelines for screening and selecting the in-
cluded studies. The overall search was designed to analyze the
different publications across different disciplines; the keywords
for each database are outlined in Table 1.

The titles and abstracts were screened independently by re-
viewers, and the third reviewer resolved disagreements. All in-
cluded studies met the eligibility criteria in full and were those
for which the full text was available.

Table 1 Keywords for each database.

Database Result

Pubmed

Keyword

(“Artificial Intelligence”[Mesh] OR 129
“Machine Learning”[Mesh] OR “Neural
Networks, Computer”’[Mesh] OR “Deep
Learning”[Mesh]) AND (“lateral

cephalometry” OR ““lateral cephalometric”)
(TITLE-ABS-KEY (“Artificial 193
Intelligence”) OR TITLE-ABS-KEY

(“Machine Learning”) OR TITLE-ABS-

KEY (“Neural Networks”) OR TITLE-
ABS-KEY (“Deep Learning”)) AND
(TITLE-ABS-KEY (“Cephalometry”) OR
TITLE-ABS-KEY (“lateral cephalometry”)

OR TITLE-ABS-KEY (“lateral
cephalometric”))

(TITLE-ABS-KEY (“Artificial 5
Intelligence”) OR TITLE-ABS-KEY

(“Machine Learning”) OR TITLE-ABS-

KEY (“Neural Networks”) OR TITLE-
ABS-KEY (“Deep Learning”)) AND
(TITLE-ABS-KEY (“Cephalometry”) OR
TITLE-ABS-KEY (“lateral cephalometry”)

OR TITLE-ABS-KEY (“lateral
cephalometric™))

(Cartificial intelligence’/exp OR ’artificial 191
intelligence’ OR ’machine learning’/exp OR
’machine learning’ OR ’artificial neural
network’/exp OR ’artificial neural network’

OR ’neural networks’/exp OR 'neural

networks’ OR ’deep learning’/exp OR ’deep
learning’) AND (’cephalometry’/exp OR
cephalometry OR ’lateral cephalometry’ OR
’lateral cephalometric’)

(ALL = (““Artificial Intelligence” OR 59
“Machine Learning” OR ““Neural

Networks” OR “Deep Learning”)) AND

ALL = (“Cephalometry” OR “lateral
cephalometry” OR “‘lateral cephalometric”)

Scopus

Scopus

secondary

Embase

WOS

2.3. Data collection and synthesis

The information extracted from research papers is displayed in
Table 1. The extracted information was based on study charac-
teristics, including author, year of publication, country of
study, imagery (2D lateral radiographs), objective, number
of landmarks detected, and findings, as shown in Table 2.
Studies were fully extracted if the article mentioned several test
datasets or models.

2.4. Quality assessment

The quality assessment of diagnostic accuracy studies
(QUADAS-2) tool (Whiting et al., 2011) was utilized to evalu-
ate risk bias, which accounted for risk bias (data selection, in-
dex test, and reference test) and applicability concerns (no flow
or timing, data selection, index test, and reference test). Two
reviewers assessed the bias risk in the included studies and
interpreted the results.
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Table 2 Data extraction.

Author/year Country Architecture Objective Sample SDR (successful
size detection rate)
Alshamrani et al.  Saudi CNN (autoencoder- Generate a Bjork—Jarabak and Ricketts 100 Basic
(2022) Arabia  based Inception layers) cephalometrics automatically. autoencoder
(Alshamrani et al., model trained
2022) on Set 1
2.0 mm: 64%
2.5 mm: 69%
3.0 mm: 72%
4.0 mm: 77%
150 Model
autoencoder
wider Paddup
box set 2
2.0 mm: 71%
2.5 mm: 75%
3.0 mm: 78%
4.0 mm: 84%
El-Fegh et al. Libya/ CNN A new approach to cephalometric X-ray landmark > 80 2.0 mm: 91%
(2008) (El-Fegh Canada localization
et al., 2008)
El-Feghi et al. Canada MLP A novel algorithm based on the use of the Multi-layer 134 2.0 mm: 91.6%
(2003) (El-Feghi Perceptron (MLP) to locate landmarks on a digitized
et al., 2003) X-ray of the skull
Hwang et al. South CNN (YOLO version 3) To compare an automated cephalometric analysis 200 2.0 mm: 75.45%
(2021) (Hwang Korea based on the latest deep learning method 2.5 mm: 83.66%
et al., 2021) 3.0 mm: 88.92%
4.0 mm: 94.24%
Jiang et al. (2023) China CNN (A cascade Utilizing artificial intelligence (AI) to achieve 259 1.0 mm: 66.15%
(Jiang et al., 2023) framework “CephNet”) automated landmark localization in patients with 2.0 mm: 91.73%
various malocclusions 3.0 mm: 97.99%
Kafieh et al. Iran ASM As a new method for automatic landmark detection in 63 1.0 mm: 24.00%
(2009) (Kafieh cephalometry, they propose two different methods for 2.0 mm: 61.00%
et al., 2009) bony structure discrimination in cephalograms. 5.0 mm: 93.00%
Kim et al. (2020)  South CNN Develop a fully automated cephalometric analysis 100 2.0 mm: 84.53%
(Kim et al., 2020) Korea method using deep learning and a corresponding web- 2.5 mm: 90.11%
based application that can be used without high- 3.0 mm: 93.21%
specification hardware. 4.0 mm: 96.79%
Kim et al. (2021)  South CNN Propose a fully automatic landmark identification 50 2.0 mm: 64.30%
(Kim et al., 2021) Korea model based on a deep learning algorithm using real 2.5 mm: 77.30%
clinical data 3.0 mm: 85.50%
4.0 mm: 95.10%
Lee et al. (2020) South BCNN Develop a novel framework for locating 250 2.0 mm: 82.11%
(Lee et al., 2020) Korea cephalometric landmarks with confidence regions 2.5 mm: 88.63%
3.0 mm: 92.28%
4.0 mm: 95.96%
Oh et al. (2021) South CNN They proposed a novel framework DACFL that 150 2.0 mm: 86.20%
(Oh et al., 2020) Korea enforces the FCN to understand a much deeper 2.5 mm: 91.20%
semantic representation of cephalograms 3.0 mm: 94.40%
4.0 mm: 97.70%
100 2.0 mm: 75.90%
2.5 mm: 83.40%
3.0 mm: 89.30%
4.0 mm: 94.70%
Ramadan et al. Saudi CNN Detection of the cephalometric landmarks 150 2.0 mm: 90.39%
(2022) (Ramadan  Arabia automatically 3.0 mm: 92.37%
et al., 2022) 100 2.0 mm: 82.66%
3.0 mm: 84.53%
Song et al. (2020) Japan CNN (with a backbone A two-step method for the automatic detection of 150 2.0 mm: 86.40%
(Song et al., 2020) of ResNet50) cephalometric landmarks 2.5 mm: 91.70%
3.0 mm: 94.80%
4.0 mm: 97.80%
100 2.0 mm: 74.00%
2.5 mm: 81.30%
3.0 mm: 87.50%

(continued on next page)
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Table 2 (continued)

Author/year Country Architecture Objective Sample SDR (successful
size detection rate)
4.0 mm: 94.30%
Song et al. (2021) Japan/  CNN (Deep A coarse-to-fine method to detect cephalometric 150 2.0 mm: 85.20%
(Song et al., 2021) China convolutional neural landmarks 2.5 mm: 91.20%
networks) 3.0 mm: 94.40%
4.0 mm: 97.20%
100 2.0 mm: 72.20%
2.5 mm: 79.50%
3.0 mm: 85.00%
4.0 mm: 93.50%
Song et al. (2020)  Japan/  CNN (Resnet50) A semi-automatic method for detection of 150 2.0 mm: 85.00%
(Song et al., 2019) China cephalometric landmarks using deep learning. 2.5 mm: 90.70%
3.0 mm: 94.50%
4.0 mm: 98.40%
100 2.0 mm: 81.80%
2.5 mm: 88.06%
3.0 mm: 93.80%
4.0 mm: 97.95%
Tanikawa et al. Japan N/A Evaluate the reliability of a system that performs 65 88.00%
(2009) (Tanikawa automatic recognition of anatomic landmarks and
et al., 2009) adjacent structures on lateral cephalograms using
landmark-dependent criteria unique to each landmark
Ugurlu, (2022) Turkey CNN Develop an artificial intelligence model to detect 180 2.0 mm: 76.20%
(Ugurlu 2022) cephalometric landmark, automatically enabling the 2.5 mm: 83.50%
automatic analysis of cephalometric radiographs 3.0 mm: 88.20%
4.0 mm: 93.40%
Wang et al. (2018) China Multiscale decision tree  Develop a fully automatic system of cephalometric 150 2.0 mm: 73.37%
(Wanget al., 2018) regression voting using  analysis, including cephalometric landmark detection 2.5 mm: 79.65%
SIFTbased patch and cephalometric measurement in lateral 3.0 mm: 84.46%
cephalograms. 4.0 mm: 90.67%
165 2.0 mm: 72.08%
2.5 mm: 80.63%
3.0 mm: 86.46%
4.0 mm: 93.07%
Yao et al. (2022) China CNN Develop an automatic landmark location system to 100 1.0 mm: 54.05%
(Yao et al., 2022) make cephalometry more convenient 1.5 mm: 91.89%
2.0 mm: 97.30%
2.5 mm:
100.00%
3.0 mm:
100.00%
4.0 mm:
100.00%
Yoon et al. (2022) South CNN (EfficientNetB0 Evaluate the accuracy of a cascaded two-stage (CNN) 100 1.0 mm: 74.71%
(Yoon et al., 2022) Korea (Eff-UNet B0) model) model in detecting upper airway soft tissue landmarks 2.0 mm: 93.43%
in comparison with the skeletal landmarks on lateral 3.0 mm: 97.29%
cephalometric images 4.0 mm: 98.71%
Yue et al. (2006) China ASM Craniofacial landmark localization and structure 86 2.0 mm: 71.00%
(Yue et al., 2006) tracing are addressed in a uniform framework. 4.0 mm: 88.00%
Zeng et al. (2021)  China CNN A novel approach with a cascaded three-stage 150 2.0 mm: 81.37%
(Zeng et al., 2021) convolutional neural networks to predict 2.5 mm: 89.09%
cephalometric landmarks automatically. 3.0 mm: 93.79%
4.0 mm: 97.86%
100 2.0 mm: 70.58%
2.5 mm: 79.53%
3.0 mm: 86.05%
4.0 mm: 93.32%

CNN: convolutional neural network, ASM: Active shape model, BCNN: Bayesian Convolutional Neural Networks, MLP: Multi-layer
Perceptron.
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2.5. Summary measures and data synthesis

To be considered for meta-analysis, a study had to report ei-
ther the deviation from a 1-, 2-, 3-, and 4-mm estimated error
criterion (in mm) or the percentage of landmarks accurately
predicted within this 1-, 2-, 3-, and 4-mm prediction error
thresholds (Higgins and Thompson 2002). Our final measure-
ments were the mean deviation from the 1-, 2-, 3-, and 4-mm
thresholds (in mm) or the percentage of landmarks identified
within the 1-, 2-, 3-, and 4-mm thresholds, both with their
95% confidence intervals (CI). The meta-analysis was conduct-
ed using Review Manager version 5.0, and heterogeneity was
evaluated using Cochrane’s Q and I? statistics using the ran-
dom effect model (Viechtbauer 2010).

3. Results

3.1. Identified studies

The meta-analysis yielded approximately 577 research articles
on the accuracy of ML algorithms for detecting and predicting
anatomical landmarks from the abovementioned databases.
According to the inclusion criteria, 48 papers were determined
to be relevant, reliable, and in line with the study’s objectives.
Through the exclusion criteria, 27 papers were eliminated of
the 48 studies. Approximately 21 of the remaining articles
met the aforementioned criteria and were included.
The reasons for exclusion were as follows:

e Studies on measurements and not landmarks = 10

e Those not related to our question = 10

e Those using methods other than the mean SDR to evaluate
the algorithm’s function = 7

3.2. Descriptive analysis of identified studies

Among the 577 studies selected, 21 articles were included in the
data extraction phase. These studies were model-based studies
conducted in Korea, Saudi Arabia, Iran, Israel, Canada, Bos-
nia, China, Turkey, the USA, and Italy, representing different
world regions. Furthermore, they included studies on ML
cephalometric landmark detection through CNN, and the out-
comes were successful detection rates.

3.3. Risk of bias

The risk of bias in the included studies was assessed using the
QUADAS-2 tool in two main domains: risk of bias and appli-
cability issues. The risk of bias assessment demonstrated that
some of the included articles exhibit a high risk of bias in data
selection (n = 11, 52.38%), reference tests (n = 6, 28.57%),
index tests (n = 1.4, 76%), and timing (n = 2.9, 52%). The
majority of the presented studies had applicability issues for
data selection (n = 5.23, 8%), reference tests (n = 0), and in-
dex tests (n = 2.95, 2%). A detailed assessment of the risk of
bias and applicability concerns is provided in Table 3.

3.4. Architecture of AI

The majority of the included studies use various modalities of
CNNs as the architecture for detecting landmarks on radio-
graphs (n = 15, 71.4%) followed by the active shape model
(ASM) at 9% (n = 2). Further information is provided in
Table 2.

3.5. Successful detection rates

Twenty-one of the included studies reported the SDR of
anatomical landmarks in different ranges. Most studies report-
ed the SDR for the range of 2 mm (n = 20, 95.2%). In addi-
tion, 13 of the included studies reported the SDR for the 2.5-
mm range (61.9%), 16 studies reported the SDR for the 3-mm
range (76.2%), 15 studies reported the SDR for the 4-mm
range (71.4%), and 3 studies reported the SDR for the 1-mm
range (14.2%). The pooled SDR for the 1-mm, 2-mm, 2.5-
mm, 3-mm, and 4-mm ranges were 65%, 81%, 86%, 91%,
and 96%, respectively, the supplementary files for Figures 2-
6. Table 4 presents further findings of each meta-analysis.

4. Discussion

This study’s systematic review revealed that ML algorithms for
anatomical landmarking of 2D cephalometric images have
been implicated as an active radiography resource, as 20 of
21 are studies that reported accuracy, which were typically
published between 2006 and 2023. Fifteen studies used varied
modalities of CNN, and six studies utilized other AI architec-
tures, such as ASM and Bayesian convolutional neural net-
works (BCNN). Most of the studies reported SDR for the 2-
mm (95.2%), 2.5-mm (61.9%), 3-mm (76.2%), and 4-mm
(71.4%) ranges. The overall reported SDR for the 1-mm range
was 65% followed by 81% for 2 mm, 86% for 2.5 mm, 91%
for 3 mm, and 96% for 4 mm.

Even though these assessments are based on landmarks, it
is impossible to systematically determine a total systematic er-
ror from landmark machine translation errors. The overall
standard deviation might be decreased or increased based on
landmark coordinate values, which alters the therapeutic rele-
vance of the findings. Consequently, there is a shortage of data
on the diagnosis accuracy of computerized three-dimensional
(3D) cephalometry.

Another study found that, compared to other radiographic
techniques, cephalograms provide quantitative and qualitative
results for anatomical landmark detection (Bichu et al., 2021,
Joda and Pandis 2021, Liu et al., 2021, Auconi et al., 2022).
Skeletal landmark detection improves the accuracy of quanti-
tative analyses as it identifies reference points. Thus, the land-
marks’ precise source must be determined to produce relevant
results. The current study assessed research that utilized 2D
cephalometric images and ML for landmark detection.

The efficacy of ML, as demonstrated by experimental trials,
has transformed the implications of ML for cephalometric
analysis. However, it requires considerable attention due to
the association of certain challenges in orthodontics and other
medical assessments. One such difficulty is the presence of
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Table 3 Bias risk assessment.

Risk of bias

Applicability concerns

Authors Year Patient Index Reference Flow and Patient Index Reference
selection test standard timing selection test standard
Kim et al. (Kim et al., 2021) 2021 Low Low Low Low Low Low Low
Kafieh et al. (Kafieh et al., 2009) 2009 High Low High Unclear Low Low High
Oh et al. (Oh et al., 2020) 2021 Low Low Low Low Low Low Low
Ramadan et al. (Ramadan et al., 2022 High Low Low Low High Low Low
2022)
El-Fegh (El-Fegh et al., 2008) 2008 High Low Low High High Low Low
El-Feghi et al. (El-Feghi et al., 2003 High Low Low High High Low Low
2003)
Lee et al. (Lee et al., 2020) 2020 Low Low Low Low Low Low Low
Kim et al. (Kim et al., 2020) 2020 Low Low Low Low Low Low Low
Alshamrani et al. (Alshamrani 2022 High Low High Low High Low Low
et al., 2022)
Hwang et al. (Hwang et al., 2021) 2021 Low Unclear Low Low Low Unclear Low
Jiang et al. (Jiang et al., 2023) 2022 Low Low Low Low Low Low Low
Song et al. (Song et al., 2020) 2020 High Low Low Low Low Low Low
Song et al. (Song et al., 2019) 2019 High Low High Unclear High Low High
Tanikawa et al. (Tanikawa et al., 2009 Low Low High Low Low Low Low
2009)
Yao et al. (Yao et al., 2022) 2022 Low Low Low Low Low Low Low
Wang et al. (Wang et al., 2018) 2018 High Low Low Unclear Low Low Low
Yue et al. (Yue et al., 2006) 2006 High Low Low Low Low Low Low
Yoon et al. (Yoon et al., 2022) 2022 Low Low High Low Low Low Low
Song et al. (Song et al., 2021) 2021 High High Low Low Low Unclear Low
Zeng et al. (Zeng et al., 2021) 2021 High Low Low Low Low Low Low
Ugurlu (Ugurlu 2022) 2022 Low Low High Low Low Low Low
Table 4 Meta-analysis results.
Diameter range Detection percentage 95% confidence interval 12 P-value heterogeneity
1 mm 65% 54-76 83.27 0.01
2 mm 81% 78-85 87.83 0.00
2.5 mm 86% 83-89 91.38 0.00
3 mm 91% 88-93 93.44 0.00
4 mm 96% 94-97 90.47% 0.00

“black-box” characteristics in ML, which necessitates improv-
ing the visuals and gaining the confidence of physicians and
patients before the clinical implementation of ML (Su et al.,
2020, Du et al., 2022). Moreover, trial techniques are needed
to manage bias risk. For instance, performing consistency eval-
uations is crucial to assess consistency. Allocation plans also
need to be free of personal prejudices. Furthermore, a few
other issues, such as a reliability crisis, underfitting, and inad-
equacy of data, have limited the use of ML in cephalometry
(Asiri et al., Tandon et al., 2020, Palanivel et al., 2021,
Tanikawa et al., 2021).

Montufar et al. (Montufar et al., 2018) conducted automat-
ic cephalometric analysis for landmark detection using cone
beam computed tomography (CBCT) images and an active
surface AI model. They determined the accuracy of this pro-
cess to be 3.64 mm on average at 18 anatomical points.

Several studies have reported the risk of more errors while
detecting irregular structures through cephalometric analysis.
Patcas et al. (Patcas et al., 2019) conducted a 2D hybrid

cephalometric analysis to acquire CBCT images. Approxi-
mately 18 anatomical landmark points were identified with a
mean error of 2.51 mm via holistic three-dimensional cephalo-
metric detection. Yu et al. (Yu et al., 2014) evaluated the accu-
racy of cephalometric analysis using the ML method and
reported the interaction between landmark detection and facial
attractiveness identification algorithms.

Similarly, Patcas et al. (Patcas et al., 2019) performed a
study using Al to assess the accuracy of landmark detection
through cephalometric analysis before treatment or decision-
making before surgery. For approximately 146 patients that
underwent orthognathic surgery, their starting and final im-
ages were evaluated using algorithms for facial beauty and ap-
pearance. Their study suggested that patients undergoing
orthognathic surgery might be assessed for facial symmetry
and chronological age using ML.

This meta-analysis had several limitations. First, we focused
on ML to detect anatomical landmarks, and a comparison
with automated landmarking procedures was not conducted.
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Second, we excluded several studies, following the inclusion
criteria, e.g., those utilizing DL to detect cephalometric analy-
sis, whose full texts were unavailable and did not comprehen-
sively address the study objectives. Third, a variety of risk
biases existed in the included studies. Data selection produced
limited and potentially unrepresentative groups; most studies
utilized the same dataset. Conclusive evidence for predictive
data value was relatively poor, particularly for 3D images; im-
ages in the test dataset typically were from only a few individ-
uals. Fourth, as previously stated, the limited generalizability
was because only a few researchers tested the established DL
models on fully independent datasets, such as those from dif-
ferent centers, people, or image processors. Finally, most stud-
ies relied on precision estimations rather than other, obviously
comparable outcome measures, such as variations in millime-
ters, pixels, or percentages (primarily as a result of our inclu-
sion criteria) (Gupta et al., 2016).

The use of an ML tool in primary care and its impact on
diagnostic and treatment practices, the efficacy, and safe-
ty were not documented as additional outcomes that would
have been relevant to physicians, patients, or other users. Fu-
ture research should consider expanding the outcome set and
thoroughly testing the applicability of DL in various contexts
and situations (e.g., observational studies in clinical care and
randomized controlled trials). Of note, the criteria for Al-
based cephalometric evaluations could change based on the re-
sulting treatment decisions.

One of the limitations of this study was not including book-
s, other types of literature, and articles that were not in Eng-
lish. To obtain a more accurate outcome, further studies
should include more databases, such as Google Scholar, and
gray literature.

5. Conclusion

This study demonstrated that ML is significant for detecting
landmarks through cephalometric 2D imagery. Most included
studies focused on 2D imagery generated by automated
cephalometric analysis of ML, which shows promise for the fu-
ture. The accuracy of landmark detection using ML was
heterogeneous across the included studies; however, the accu-
racy rates of clinicians varied significantly. While generally
consistent, the overall evidence shows low generalizability
and consistent accuracy, and the clinical utility of ML has
yet to be demonstrated. The use of Al for accurately detecting
cephalometric landmarks with the extremely low certainty of
the findings is intriguing. However, future research should fo-
cus on establishing its efficacy and reliability in various
samples.
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