Skip to main content
. 2023 May 23;35(5):487–497. doi: 10.1016/j.sdentj.2023.05.014

Table 2.

Data extraction.

Author/year Country Architecture Objective Sample size SDR (successful detection rate)
Alshamrani et al. (2022) (Alshamrani et al., 2022) Saudi Arabia CNN (autoencoder-based Inception layers) Generate a Bjork–Jarabak and Ricketts cephalometrics automatically. 100 Basic autoencoder model trained on Set 1
2.0 mm: 64%
2.5 mm: 69%
3.0 mm: 72%
4.0 mm: 77%
150 Model autoencoder wider Paddup box set 2
2.0 mm: 71%
2.5 mm: 75%
3.0 mm: 78%
4.0 mm: 84%
El-Fegh et al. (2008) (El-Fegh et al., 2008) Libya/ Canada CNN A new approach to cephalometric X-ray landmark localization > 80 2.0 mm: 91%
El-Feghi et al. (2003) (El-Feghi et al., 2003) Canada MLP A novel algorithm based on the use of the Multi-layer Perceptron (MLP) to locate landmarks on a digitized X-ray of the skull 134 2.0 mm: 91.6%
Hwang et al. (2021) (Hwang et al., 2021) South Korea CNN (YOLO version 3)
To compare an automated cephalometric analysis based on the latest deep learning method 200 2.0 mm: 75.45%
2.5 mm: 83.66%
3.0 mm: 88.92%
4.0 mm: 94.24%
Jiang et al. (2023) (Jiang et al., 2023) China CNN (A cascade framework “CephNet”) Utilizing artificial intelligence (AI) to achieve automated landmark localization in patients with various malocclusions 259 1.0 mm: 66.15%
2.0 mm: 91.73%
3.0 mm: 97.99%
Kafieh et al. (2009) (Kafieh et al., 2009) Iran ASM As a new method for automatic landmark detection in cephalometry, they propose two different methods for bony structure discrimination in cephalograms. 63 1.0 mm: 24.00%
2.0 mm: 61.00%
5.0 mm: 93.00%
Kim et al. (2020) (Kim et al., 2020) South Korea CNN Develop a fully automated cephalometric analysis method using deep learning and a corresponding web-based application that can be used without high-specification hardware. 100 2.0 mm: 84.53%
2.5 mm: 90.11%
3.0 mm: 93.21%
4.0 mm: 96.79%
Kim et al. (2021) (Kim et al., 2021) South Korea CNN Propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data 50 2.0 mm: 64.30%
2.5 mm: 77.30%
3.0 mm: 85.50%
4.0 mm: 95.10%
Lee et al. (2020) (Lee et al., 2020) South Korea BCNN Develop a novel framework for locating cephalometric landmarks with confidence regions 250 2.0 mm: 82.11%
2.5 mm: 88.63%
3.0 mm: 92.28%
4.0 mm: 95.96%
Oh et al. (2021) (Oh et al., 2020) South Korea CNN They proposed a novel framework DACFL that enforces the FCN to understand a much deeper semantic representation of cephalograms 150 2.0 mm: 86.20%
2.5 mm: 91.20%
3.0 mm: 94.40%
4.0 mm: 97.70%
100 2.0 mm: 75.90%
2.5 mm: 83.40%
3.0 mm: 89.30%
4.0 mm: 94.70%
Ramadan et al. (2022) (Ramadan et al., 2022) Saudi Arabia CNN Detection of the cephalometric landmarks automatically 150 2.0 mm: 90.39%
3.0 mm: 92.37%
100 2.0 mm: 82.66%
3.0 mm: 84.53%
Song et al. (2020) (Song et al., 2020) Japan CNN (with a backbone of ResNet50) A two-step method for the automatic detection of cephalometric landmarks 150 2.0 mm: 86.40%
2.5 mm: 91.70%
3.0 mm: 94.80%
4.0 mm: 97.80%
100 2.0 mm: 74.00%
2.5 mm: 81.30%
3.0 mm: 87.50%
4.0 mm: 94.30%
Song et al. (2021) (Song et al., 2021) Japan/ China CNN (Deep convolutional neural networks) A coarse-to-fine method to detect cephalometric landmarks 150 2.0 mm: 85.20%
2.5 mm: 91.20%
3.0 mm: 94.40%
4.0 mm: 97.20%
100 2.0 mm: 72.20%
2.5 mm: 79.50%
3.0 mm: 85.00%
4.0 mm: 93.50%
Song et al. (2020) (Song et al., 2019) Japan/ China CNN (Resnet50) A semi-automatic method for detection of cephalometric landmarks using deep learning. 150 2.0 mm: 85.00%
2.5 mm: 90.70%
3.0 mm: 94.50%
4.0 mm: 98.40%
100 2.0 mm: 81.80%
2.5 mm: 88.06%
3.0 mm: 93.80%
4.0 mm: 97.95%
Tanikawa et al. (2009) (Tanikawa et al., 2009) Japan N/A Evaluate the reliability of a system that performs automatic recognition of anatomic landmarks and adjacent structures on lateral cephalograms using landmark-dependent criteria unique to each landmark 65 88.00%
Ugurlu, (2022) (Uğurlu 2022) Turkey CNN Develop an artificial intelligence model to detect cephalometric landmark, automatically enabling the automatic analysis of cephalometric radiographs 180 2.0 mm: 76.20%
2.5 mm: 83.50%
3.0 mm: 88.20%
4.0 mm: 93.40%
Wang et al. (2018) (Wang et al., 2018) China Multiscale decision tree regression voting using SIFTbased patch Develop a fully automatic system of cephalometric analysis, including cephalometric landmark detection and cephalometric measurement in lateral cephalograms. 150 2.0 mm: 73.37%
2.5 mm: 79.65%
3.0 mm: 84.46%
4.0 mm: 90.67%
165 2.0 mm: 72.08%
2.5 mm: 80.63%
3.0 mm: 86.46%
4.0 mm: 93.07%
Yao et al. (2022) (Yao et al., 2022) China CNN Develop an automatic landmark location system to make cephalometry more convenient 100 1.0 mm: 54.05%
1.5 mm: 91.89%
2.0 mm: 97.30%
2.5 mm: 100.00%
3.0 mm: 100.00%
4.0 mm: 100.00%
Yoon et al. (2022) (Yoon et al., 2022) South Korea CNN (EfficientNetB0 (Eff-UNet B0) model) Evaluate the accuracy of a cascaded two-stage (CNN) model in detecting upper airway soft tissue landmarks in comparison with the skeletal landmarks on lateral cephalometric images 100 1.0 mm: 74.71%
2.0 mm: 93.43%
3.0 mm: 97.29%
4.0 mm: 98.71%
Yue et al. (2006) (Yue et al., 2006) China ASM Craniofacial landmark localization and structure tracing are addressed in a uniform framework. 86 2.0 mm: 71.00%
4.0 mm: 88.00%
Zeng et al. (2021) (Zeng et al., 2021) China CNN A novel approach with a cascaded three-stage convolutional neural networks to predict cephalometric landmarks automatically. 150 2.0 mm: 81.37%
2.5 mm: 89.09%
3.0 mm: 93.79%
4.0 mm: 97.86%
100 2.0 mm: 70.58%
2.5 mm: 79.53%
3.0 mm: 86.05%
4.0 mm: 93.32%

CNN: convolutional neural network, ASM: Active shape model, BCNN: Bayesian Convolutional Neural Networks, MLP: Multi-layer Perceptron.