
Genomics Proteomics Bioinformatics 21 (2023) 190–202
Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
METHOD
simplifyEnrichment: A Bioconductor Package for

Clustering and Visualizing Functional Enrichment

Results
* Corresponding authors.

E-mail: z.gu@dkfz.de (Gu Z), d.huebschmann@dkfz.de

(Hübschmann D).

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences / China National Center for Bioinfor-

mation and Genetics Society of China.

https://doi.org/10.1016/j.gpb.2022.04.008
1672-0229 � 2023 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of S
China National Center for Bioinformation and Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Zuguang Gu
1,*, Daniel Hübschmann

1,2,3,4,*
1Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, D-69120 Heidelberg, Germany
2Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), D-69120 Heidelberg, Germany
3German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
4Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
Received 24 August 2021; revised 7 January 2022; accepted 8 May 2022
Available online 6 June 2022

Handled by Song Liu
KEYWORDS

Functional enrichment;

Simplify enrichment;

Clustering;

R/Bioconductor;

Software;

Visualization
Abstract Functional enrichment analysis or gene set enrichment analysis is a basic bioinformatics

method that evaluates the biological importance of a list of genes of interest. However, it may pro-

duce a long list of significant terms with highly redundant information that is difficult to summarize.

Current tools to simplify enrichment results by clustering them into groups either still produce

redundancy between clusters or do not retain consistent term similarities within clusters. We pro-

pose a new method named binary cut for clustering similarity matrices of functional terms. Through

comprehensive benchmarks on both simulated and real-world datasets, we demonstrated that bi-

nary cut could efficiently cluster functional terms into groups where terms showed consistent sim-

ilarities within groups and were mutually exclusive between groups. We compared binary cut

clustering on the similarity matrices obtained from different similarity measures and found that

semantic similarity worked well with binary cut, while similarity matrices based on gene overlap

showed less consistent patterns. We implemented the binary cut algorithm in the R package sim-

plifyEnrichment, which additionally provides functionalities for visualizing, summarizing, and com-

paring the clustering. The simplifyEnrichment package and the documentation are available at

https://bioconductor.org/packages/simplifyEnrichment/.
Introduction

Functional enrichment analysis or gene set enrichment analysis
is a method widely used to evaluate whether genes of interest
(GOIs), e.g., differentially expressed genes, are over-

represented or depleted in certain biological processes
ciences /

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2022.04.008&domain=pdf
https://bioconductor.org/packages/simplifyEnrichment/
mailto:z.gu@dkfz.de
mailto:d.huebschmann@dkfz.de
https://doi.org/10.1016/j.gpb.2022.04.008
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2022.04.008
http://creativecommons.org/licenses/by/4.0/

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 191
represented by pre-defined gene sets. It is performed by testing
the list of GOIs against these gene sets through a hypergeomet-
ric test [1], by analyzing whether the gene sets are enriched at

the top of a ranked gene list [2], or by evaluating the gene
expression profile in individual gene sets through univariate
or multivariate approaches [3]. There are also methods to asso-

ciate genomic regions of interest (ROIs), e.g., regulatory
domains, to gene sets to identify which biological processes
the ROIs might affect [4]. Functional enrichment analysis

depends on a priori biological knowledge encoded in pre-
defined gene sets, which are obtained from multiple sources.
Among them, Gene Ontology (GO) [5] is the most comprehen-
sive source, which organizes the biological terms in a hierarchi-

cal tree structure in the form of a directed acyclic graph
(DAG). Other popular sources are, for example, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways [6] and

Molecular Signatures Database (MSigDB) [7]. Depending on
the context, gene sets are also referred to as functional terms,
and we follow that convention in this paper.

Enrichment results usually contain a long list of enriched
terms that have highly redundant information and are difficult
to summarize. For example, an analysis of 671 EMBL-EBI

Expression Atlas differential expression datasets [8] using
GO gene sets with the biological process (BP) ontology showed
that there were 543 (80.9%) datasets having more than 250 sig-
nificantly enriched GO terms under false discovery rate (FDR)

<0.05. The enrichment results can be simplified by clustering
functional terms into groups where in the same group, the
terms provide similar information. The similarities between

terms are important for clustering. The calculation varies for
different sources of gene sets. In the simplest and most general
form, the similarity between two gene sets is based on gene

overlap, i.e., the presence or absence of genes in gene sets. It
is calculated as the Jaccard coefficient, Dice coefficient, or
overlap coefficient [9]. The kappa coefficient is suggested to

be more robust, and it is implemented in the widely used tool,
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) [10]. For GO gene sets, there are more
advanced methods that integrate the DAG structure to mea-

sure the semantic similarity between terms, e.g., the methods
proposed in [11,12] and implemented in the R package
GOSemSim [13]. A comprehensive review of semantic mea-

sures of GO terms can be found in [14]. Semantic similarity
can also be calculated on other ontologies with DAG struc-
ture, such as the Disease Ontology (DO) [15,16].

There are methods that reduce the number of terms by
manually selecting a small subset, such as GO slims [17], or
by selecting the most significant terms [18] or the most repre-
sentative terms [19,20]. However, ignoring the rest of the terms

causes a loss of information. A more advanced way to simplify
the enrichment results is to cluster the similarity matrix of gene
sets. Various clustering methods that have already been imple-

mented in current tools can be applied, for example, hierarchi-
cal clustering [20], affinity propagation clustering [21], or
density-based clustering [10]. The similarity matrix can also

be treated as an adjacency matrix and converted to a graph
where the gene sets are the nodes, and the similarity values
are the weights of edges. Then, algorithms for detecting graph

communities or modules can be applied to identify the clusters.
A popular tool is Enrichment Map [9].

Nevertheless, there are some common issues with clustering
the similarity matrix of gene sets. Taking GO gene sets as an
example, we call the root nodes (i.e., the three top terms of
BP, molecular function, and cellular components) the roots

of the GO tree. In the GO tree, there are branches with differ-

ent depths, which causes two major problems for clustering.
First, the size of GO clusters varies a lot, which means that
there are large clusters that normally correspond to large

branches inheriting from the root region of the GO tree, while
at the same time, there are also many tiny clusters that corre-
spond to the small branches in the very downstream part of the

GO tree. Due to the hierarchical relations in the tree, large
clusters tend to have relatively low average similarities among
terms, while small clusters generally have relatively high aver-
age similarities. Methods such as k-means clustering cannot

preserve the large clusters and instead split them into smaller
clusters, which might still produce redundant information
between clusters. Moreover, they are not able to separate tiny

clusters and prefer to merge them into one larger cluster. These
over-segmentation and under-segmentation behaviors are
mainly due to the fact that k-means clustering expects clusters

to have similar sizes. Second, large GO clusters contain large
amounts of terms, and it is possible that a small fraction of
terms in cluster A also shares similarities to terms in cluster

B, i.e., larger clusters are less mutually exclusive than smaller
clusters, and this results in some graph community methods
merging clusters A and B into one larger cluster due to the
existence, albeit in small amounts, of terms shared by the

two clusters. This, in turn, increases the inconsistency among
gene sets in that merged cluster. Thus, an effective method is
needed to balance these two scenarios, reflecting the generality

and specificity of the GO system.
In this study, we propose a new method named binary cut

that clusters functional terms based on their similarity matrix.

It recursively applies partitioning around medoids (PAM) with
two groups on the similarity matrix, and in each iteration step,
a score is assigned to the submatrices to decide whether the

corresponding terms should be further split into smaller clus-
ters or not. We compared binary cut to a wide range of other
clustering methods with 100 simulated GO lists and 485 GO
enrichment results from real-world datasets, and we demon-

strated that, with similarities calculated by semantic measure-
ments, the binary cut was more efficient to cluster GO terms
such that inside clusters, terms shared more consistent similar-

ity, while at the same time, the clusters had a higher degree of
mutual exclusivity. Binary cut can also be applied to similarity
matrices in general, i.e., based on gene overlap between gene

sets of any type. However, the performance of binary cut var-
ied, depending on the sources of gene sets. Similarity matrices
based on gene overlap generally showed less consistent pat-
terns than semantic similarity matrices and were not suggested

to be used with the binary cut.
We implemented the binary cut algorithm in a R/Biocon-

ductor package named simplifyEnrichment. After the func-

tional terms have been clustered, simplifyEnrichment
visualizes the summaries of clusters by word clouds, which
helps users easily interpret the common biological functions

shared in the clusters. simplifyEnrichment can also export the
clustering results to a web application so that users can inter-
actively retrieve information on functional terms that belong

to a certain cluster. Additionally, simplifyEnrichment provides
a framework where user-defined clustering methods can be
integrated, and subsequently, their results can be fed into
the visualization functionality of simplifyEnrichment.

192 Genomics Proteomics Bioinformatics 21 (2023) 190–202
Furthermore, simplifyEnrichment can compare multiple results
from different clustering methods in a straightforward way.

Method

Similarity measure

If functional terms can be clustered into groups, the similarity

matrices of corresponding gene sets are expected to represent a
pattern where blocks can be observed on the diagonal, where
hierarchical clustering is applied on both rows and columns.
Thus, efficiently clustering gene sets is equivalent to the task

of identifying the diagonal blocks in the similarity matrix.
The similarity between gene sets can be calculated as gene
overlaps by, e.g., Jaccard coefficient, Dice coefficient, or over-

lap coefficient. The three coefficients have similar forms. It has
also been suggested to calculate the gene overlap by kappa
coefficient, which takes into account the possibility of gene

occurrence in two gene sets just by chance [10]. The formal def-
inition of the four gene overlap coefficients can be found in
File S1. If the ontologies have a DAG structure such as GO,

the topology information can be used to calculate the similar-
ities, to generate a so-called semantic similarity, e.g., through
information content (IC)-based approaches which measure
the information each term obtains from its offspring terms.

There exist a broad number of algorithms for calculating
semantic similarities; see [14] for a comprehensive overview.

As we observed from the benchmark datasets for GO

terms, semantic similarities showed more distinct diagonal
block patterns than similarity measures based on gene overlap
(see comparisons in the section ‘‘general similarity by gene

overlap”). The diagonal block pattern of the semantic matrix
was frequently observed even for randomly sampled GO terms
(Files S2 and S3). Thus, we mainly use semantic similarity for
clustering GO terms in this work. simplifyEnrichment uses the

semantic measurements implemented in the R package
GOSemSim [13] and takes the relevance method [12] as default
(see comparisons of different semantic measurements in File

S4). Nevertheless, a similarity matrix by any other method
and on any other ontology can be provided for analysis with
simplifyEnrichment.

Clustering process

Let Ma and Mb denote the similarity matrices of two lists of

GO terms, as illustrated in Figure 1. Intuitively in this example,
GO terms in Ma have overall high pairwise similarities; thus,
they should be treated as one single cluster (Figure 1A), while
terms in Mb show a two-block pattern on the diagonal and

should be split into two sub-clusters (Figure 1B). A metric
can be designed to decide whether a group of terms should
be split or not. Based on this idea, we propose a new method

named binary cut to cluster the similarity matrix of functional
terms, executed in two phases:

Phase 1: applying divisive clustering and generating a

dendrogram

This phase includes two steps. In the first step, for the similar-
ity matrix M of a given list of GO terms, applying a certain

partitioning method (e.g., PAM) with two-group classification
on both rows and columns. It partitions M into four submatri-
ces, denoted as M11, M12, M21, and M22, where the indices rep-
resent the groups in the two matrix dimensions. Next,
calculating the following scores s11, s12, s21, and s22 for the four

submatrices. Taking s11 as an example, let X denote the vector
of entries in M11, and FX(x) the cumulative distribution func-
tion (CDF) of X. Then s11 is calculated as in Equation (1).

s11 ¼ 1�
Z 1

0

FXðxÞdx ð1Þ

Please note, when calculating s11 and s22, entries on the
diagonal of M11 and M22 are excluded. Since the similarity

matrix is always symmetric, s12 and s21 are equal. s11 or s22 is
defined to be 1 if M11 or M22 have only one row. We then
define the score s as in Equation (2).

s ¼ s11 þ s22
s11 þ s12 þ s21 þ s22

ð2Þ

The diagonal blocks M11 and M22 correspond to similarity

measures within sub-clusters, whereas the off-diagonal blocks
M12 and M21 correspond to similarity measures between sub-
clusters. In a successful clustering, similarity measures will be

higher within clusters than between clusters, and this roughly
results in s11 + s22 � s12 + s21. Thus, the values of s approx-
imately range between 0.5 and 1 (The probability of s smaller
than 0.5 is almost 0 with random GO datasets and 0.0003 with

the Expression Atlas datasets. See details in File S5). If M
shows overall similarities, s is far less than 1 (Figure 1A),
and it should not be split anymore, while if the GO terms

can still be split into more groups, s12 and s21 are close to 0,
which results in s close to 1 (Figure 1B).

In the second step, apply the first step to the two submatri-

ces, M11 and M22, respectively. The clustering in the two steps
is executed recursively, and the process is saved as a dendro-
gram where the score s is attached to every node in the dendro-
gram, which corresponds to every submatrix in the iteration.

The clustering stops when the number of terms in a group
reaches 1; these are the leaves of the dendrogram.

Phase 2: cutting the dendrogram and generating clusters

Since every node in the dendrogram has a score s computed in
Phase 1, s is simply compared to a cutoff with 0.85 as the
default. simplifyEnrichment provides functions that help to

decide an optimized cutoff value by testing the performance
of clustering with a list of cutoffs. If s is larger than the cutoff,
the two branches from the node are split, else, all the terms

under the node are taken as a single cluster.
Nodes with large numbers of terms tend to have relatively

smaller s; thus, it is possible that at a certain node, s does
not exceed the cutoff but is very close to it, while its child

nodes have values of s larger than the cutoff. In this case, we
don’t want to close the node so early, and we still split this
node into two subgroups so that its child nodes can be split

furthermore. Thus, the rule in Phase 2 is modified as follows:
if the score s of a given node does not exceed the cutoff but
it is larger than 0.8� cutoff, the node is still split if at least

one of its child nodes has a score that exceeds the cutoff. This
is equivalent to reassigning the maximal scores of its two child
nodes to the score s of this given node. Note this scenario does
not occur often, and the value of 0.8 is empirically determined

based on a larger number of real-world datasets.
An example of the process of binary cut clustering is

demonstrated in Figure 2. Figure 2A–C illustrates the

Figure 1 Examples of similarity matrices for two sets of GO terms

The two matrices are denoted as Ma and Mb. Both matrices are split into two groups in the two dimensions, where submatrices are labeled

as M11, M12, M21, and M22. GO, Gene Ontology.

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 193
clustering in the first three iterations. Figure 2D illustrates the

final dendrogram where the nodes that are split are marked
with crosses. To optimize the clustering process, sim-
plifyEnrichment supports partial clustering to reduce the com-

puting time where the complete dendrogram is not generated,
and the bifurcation stops on a node as long as the correspond-
ing s does not exceed the cutoff.

Software implementation

The binary cut algorithm is implemented in a R/Bioconductor

package named simplifyEnrichment. The input of the package
is a similarity matrix that is provided either directly by the user
or by the functions implemented in simplifyEnrichment, such as
the function GO_similarity() for calculating GO semantic sim-

ilarity or the function term_similarity() that measures general
gene set similarity by Jaccard coefficient, Dice coefficient, over-
lap coefficient or kappa coefficient based on gene overlap.

The function simplifyGO() performs clustering for GO
terms and visualizes the results. Once the GO terms have been
clustered, the biological descriptions for the terms are auto-

matically extracted. The summaries of the biological functions
in clusters are visualized as word clouds and are attached to
the similarity heatmap, which gives a direct iallustration of
the common biological functions involved in each cluster (Fig-

ure 3). In word clouds, enrichment of keywords is assessed by
Fisher’s exact test, and the significance is mapped to the font
size of keywords. The function simplifyEnrichment() performs

clustering on similarity matrices from any type of ontology.
The static heatmap demonstrated in Figure 3 can be exported
to a Shiny web application by the function ex-

port_to_shiny_app() so that users can interactively select GO
terms that belong to a specific cluster from the heatmap for
deeper exploration (File S6).

simplifyEnrichment also allows the integration of other clus-
tering methods. New clustering functions can be added by the
function register_clustering_methods(). The function com-
pare_clustering_methods() applies multiple clustering methods
on the same similarity matrix and compares them via

heatmaps.
Results

We compared the following 10 clustering methods to binary
cut: k-means clustering (kmeans), where the optimized number

of clusters was selected based on the distribution of the within-
cluster sum of squares (WSS), PAM where the optimized num-
ber of clusters was selected by the R package fpc (https://
CRAN.R-project.org/package=fpc), dynamicTreeCut [22],

mclust [23], apcluster [24], hdbscan [25], the following graph
community methods implemented in the R package igraph
[26]: fast greedy, louvain and walktrap, as well as one addi-

tional community method MCL [27] which was recently used
in implementation for clustering GO terms [28]. These selected
methods are based on various categories of clustering algo-

rithms and are by default supported in simplifyEnrichment.
They were applied with their default clustering parameters in
the benchmark. GO semantic similarities were calculated by
the relevance method [12] with the R package GOSemSim.

Application of simplifyEnrichment to random GO lists

500 random GO terms were uniformly sampled from the BP

ontology. Clusterings of 11 different methods are illustrated
in Figure 4. dynamicTreeCut, mclust, and apcluster generated
huge numbers of small clusters (Figure 4D–F). Kmeans and

hdbscan generated intermediate numbers of clusters, but
kmeans failed to preserve large clusters even if overall similar-
ities within them were high (e.g., the first three clusters in Fig-

ure 4B), while for hdbscan, the largest cluster did not show
consistent similarities for all term pairs and it should be split
further (the bottom right cluster in Figure 4G). PAM as well
as community methods of fast greedy, louvain, walktrap and

MCL identified large clusters; however, some large clusters
may still be split further (Figure 4C and H–K), as most

https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc

Figure 2 A demonstration of the binary cut clustering with 500 random GO terms

A. The clustering in the first iteration. B. The clustering in the second iteration. C. The clustering in the third iteration. D. The complete

dendrogram from binary cut clustering. The colors of the dendrogram segments correspond to the scores s assigned to the nodes. Nodes to

split are marked with crosses.

194 Genomics Proteomics Bioinformatics 21 (2023) 190–202
strikingly visualized for MCL where only one large cluster was

identified under its default clustering parameters (Figure 4K).
In comparison, binary cut generated clean clusters and it was
able to identify large and small clusters at the same time
(Figure 4A).

We then benchmarked the clustering methods quantita-
tively. To this end, the random GO lists of 500 BP terms were
generated 100 times, and the following metrics were used:

Difference score

It measures the difference in the similarity values of the terms
within clusters and between clusters. For a similarity matrix

denoted as M, and for terms i and j where i – j, the similarity
value xi, j is saved to the vector x1 when terms i and j are in the
same cluster. xi, j is saved to the vector x2 when terms i and j

are in different clusters. The difference score measures the dis-
tribution difference between x1 and x2, calculated as the
Kolmogorov-Smirnov statistic between the two distributions
of x1 and x2.
Number of clusters

For each clustering, there are two numbers: the total number
of clusters and the number of clusters with size � 5 (i.e., the
large clusters). The two values can be used to test whether
the clustering methods can identify small clusters.

Block mean

It is calculated as the mean value of the diagonal blocks in the
similarity heatmap. It measures the average within-cluster sim-

ilarity of the clustering. Using the same convention as for the
difference score, the block mean is the mean value of x1. As
demonstrated in Figure 4, when GO terms are over-

clustered, clusters would have a high average within-cluster
similarity, while when GO terms are under-clustered, the aver-
age within-cluster similarity tends to be low. Thus, the block

mean value measures the balance between over-clustering
and under-clustering. An intermediate value is representative
of good classification.

Figure 3 Example of a similarity heatmap from 500 random GO terms that have been clustered and annotated with word clouds

The bottom right cluster with no word cloud annotation contains all other small clusters with numbers of terms less than 5. The plot was

made by the function simplifyGO().

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 195
Comparison of clustering results

As shown in Figure 5A, the binary cut had the highest differ-
ence score, reflecting that clusterings obtained with binary

cut had the most distinct differences in similarity values within
clusters and between clusters, therefore, the clusters identified
by binary cut were the most mutually exclusive among all

methods. dynamicTreeCut and apcluster generated a huge
number of clusters (Figures 4D, F and 5B). These two methods
can be considered too stringent for clustering GO terms; in

addition, there still are high levels of redundant information
among different clusters due to high between-cluster similari-
ties. In comparison, graph community methods and binary
cut generated moderate numbers of clusters, and especially

for binary cut, the numbers of ‘‘large clusters” (size � 5)
dropped dramatically compared to the total numbers of clus-
ters (Figure 5B), indicating that binary cut was able to identify

small clusters. Binary cut generated clusters with moderate
block mean values (Figure 5C). In comparison, kmeans, dyna-
micTreeCut, mclust, and apcluster generated high block mean

values, reflecting that they were not able to preserve large clus-
ters with intermediate similarities. Graph community methods
generated low block mean values, mainly due to the fact that
terms in the clusters did not necessarily need to have high sim-

ilarities to all other terms, as long as terms in the graph com-
munity had enough connections (Figure 4H–K). The method
hdbscan generated intermediate numbers of clusters and had

intermediate block mean values, but it had the second-lowest
difference score in the comparisons, which implies that differ-
ences between similarities within clusters and between clusters

were small (Figure 4G). In conclusion, these comparisons indi-
cated that binary cut kept both generality and specificity of GO
clusters. The analysis reports for all 100 random GO lists can

be found in File S3.
Of note, the similarity matrices of GO terms based on

semantic measures showed clear diagonal block patterns even
for lists of random GO terms. In File S4, we compared the five
semantic similarity measurements supported in the GOSemSim
package and found that the methods ‘‘Rel” (i.e., the relevance
method) [12], ‘‘Resnik” [29] and ‘‘Lin” [30] produced similar

and clear diagonal block patterns. They are thus suitable for
use with binary cut clustering. Furthermore, an analysis of
the complete set of terms of GO BP ontology showed that with

semantic similarity, globally, the similarity matrix had diagonal
block patterns where the clusters corresponded to several top
functional categories (File S7). Uniformly sampling from all

BP terms tends to retain these modular patterns.
By default and in every iteration step, simplifyEnrichment

partitions the current submatrix into two groups using PAM.
In File S8, we compared binary cut clustering on 100 random

GO BP lists with the following three partitioning methods:
PAM, k-means++, and hierarchical clustering with the
‘‘ward.D2” method. k-means++ is an optimized k-means

clustering by pre-selecting proper initial centroids [31,32].
The results showed that the three partitioning methods per-
formed very similarly, i.e., with similar difference scores, num-

bers of clusters, and block mean values among 100 random
GO lists. The final clusterings of GO terms agreed very well
(on average 85.2% agreement, File S8) between the three par-
titioning methods. The three methods are all supported in sim-

plifyEnrichment, and they can be selected specifically for
individual datasets. simplifyEnrichment also supports running
all three methods simultaneously for analysis and automati-

cally selecting the method that generates clustering with the
highest difference score.

Application of simplifyEnrichment to real-world datasets

To assess the performance of simplifyEnrichment also on
actual biological data, we analyzed all datasets from the

Expression Atlas [8] (https://www.ebi.ac.uk/gxa/download)
that have differential expression analysis results. We
applied functional enrichment analysis with the R package

https://www.ebi.ac.uk/gxa/download

Figure 4 Comparison of different clustering methods

A. Clustering by binary cut. B. Clustering by kmeans. C. Clustering by PAM. D. Clustering by dynamicTreeCut. E. Clustering by mclust.

F. Clustering by apcluster. G. Clustering by hdbscan. H. Clustering by the fast greedy graph community method. I. Clustering by the

louvain graph community method. J. Clustering by the walktrap graph community method. K. Clustering by the MCL graph community

method. L. Numbers of all clusters and numbers of large clusters with size � 5. For some methods, the small clusters (size < 5) were put

into one single cluster on the bottom right of the heatmap and were marked by green lines. All the methods were applied to the same GO

semantic similarity matrix from 500 random GO terms from the biological process ontology. The plots were generated by the function

compare_clustering_methods(). PAM, partitioning around medoids.

196 Genomics Proteomics Bioinformatics 21 (2023) 190–202
clusterProfiler [18] to the significantly expressed genes
(FDR < 0.05) with the GO BP ontology. We only took those
datasets for which the number of significant genes was in the

interval [500, 3000] and the number of significant GO terms
(FDR < 0.05) was in [100, 1000]. This yielded 485 GO lists.
Figure 5D–F illustrates the results of the comparisons among

the 11 clustering methods. The conclusion was very similar to
the benchmark with random GO datasets: binary cut outper-
formed other clustering methods. The analysis reports for

485 individual Expression Atlas datasets can be found in File
S3.

We mainly benchmarked GO term enrichment with the BP
ontology, which is the major ontology category in GO (65% of

all GO terms). In File S3, we also applied binary cut to random
GO lists from cellular component and molecular function
ontologies. The results were very similar to those obtained with

BP terms, where binary cut outperformed other clustering
methods on semantic similarity matrices.
General similarity by gene overlap

Many ontologies and gene set collections (e.g., MSigDB gene
sets) are only represented as lists of genes for which the simi-
larities are merely measured by gene overlap. We performed
a second benchmarking and compared the performance of bi-

nary cut on four gene overlap measures: Jaccard coefficient,
Dice coefficient, overlap coefficient, and kappa coefficient.
For this second benchmarking, we again used the 100 random

GO lists with 500 BP terms as well as 485 significant GO lists
from Expression Atlas datasets.

When GO terms were randomly generated, with similarities

measured by Jaccard coefficient, Dice coefficient, and kappa
coefficient, 500 terms were split into large numbers of clusters
(on average 297 clusters, Figure 6A, red boxes), where on aver-

age, less than five terms were in a single cluster (Figure 6B, red
boxes). The number of clusters dropped dramatically if only
counting clusters with size � 5 (on average 6 clusters for all five

Figure 5 Benchmarks of different clustering methods

A. Difference scores. B. Numbers of clusters. C. Block mean values. The analysis in A�C was applied to 100 random GO lists of 500 BP

terms. D. Difference scores. E. Numbers of clusters. F. Block mean values. The analyses in E and F were applied to the functional

enrichment results from 485 Expression Atlas datasets. BP, Biological Process.

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 197
similarity measures, Figure 6A, blue boxes). For the clusters

with size � 5, the average numbers of GO terms per cluster
were 28 with the Jaccard coefficient, 29 with the Dice coeffi-
cient, and 31 with the kappa coefficient, while 73 were identi-
fied with the semantic similarity measurement (Figure 6B, blue

boxes). For the clusters with size < 5, which we defined as
‘‘small clusters”, the Jaccard coefficient generated on average
347 small clusters (covering 79.3% of all terms), the Dice coef-

ficient generated 269 small clusters (66.7% of all terms), and
the kappa coefficient generated 259 small clusters (65.4% of
all terms), while in comparison, semantic similarity only gener-

ated 8 small clusters (2.7% of all terms) (see the difference
between red and blue boxes in Figure 6A). This implies that bi-
nary cut generated a huge number of small clusters when based

on the similarity matrices of the Jaccard coefficient, Dice coef-
ficient and kappa coefficient, and that these three coefficients
could not assign similarities for most of the term pairs, thus
they were not efficient for clustering. Examples of the cluster-

ings under different similarity measures can be found in Fig-
ure 6D and E and File S9. The overlap coefficient performed
differently from the other three gene overlap measures

(27.3% agreement of the clusterings, Figure 6C). In 46% of
all 100 random GO lists, the 500 GO terms could not even
be separated, and the numbers of clusters for them were only

identified as one (File S9). The individual heatmaps of overlap
similarities showed that in most cases, only one major cluster
was generated with a marginal pattern in which a small num-
ber of terms showed high similarities to most of the other
terms, and no diagonal block pattern was observable (File

S9); thus binary cut had a very weak performance on it. The
marginal pattern is due to the definition of the overlap coeffi-
cient, according to which the score was normalized by the size
of the smaller gene set. In such a setting, a term located in the

downstream part of the GO tree, i.e., close to the leaves, has
the same overlap coefficients as all its ancestor terms because
parent terms include all genes of their child terms. The heat-

maps for individual datasets (File S9) showed that, for the ran-
domly sampled GO lists, similarity values calculated by gene
overlap were very weak and noisy, which led to the fact that

in most cases, terms could not be clustered. In comparison,
the semantic similarity matrices generated intermediate num-
bers of clusters and had clear diagonal block patterns

(Figure 6D).
Analysis of the Expression Atlas datasets with GO BP

ontology also showed that binary cut applied to similarity
matrices obtained by semantic similarity generated very dif-

ferent clusterings from the four-gene overlap similarity
matrices (Figure 6F–J). The cluster sizes obtained from the
matrices measured by the Jaccard coefficient, Dice coeffi-

cient, and kappa coefficient had very broad ranges where
many datasets had more than 100 clusters (on average,
17.1% of all datasets, Figure 6K, an example in Figure 6J).

On the other hand, with the Dice coefficient and overlap
coefficient, binary cut clustered terms into small numbers
of clusters for many datasets (less than 5 clusters in
27.2% and 63.9% of all datasets, Figure 6K). In

Figure 6 Comparison of clusterings on similarity matrices by different similarity measures

A. Numbers of clusters. B. Average numbers of terms per cluster. Y-axes in A and B are on log10 scale. C. Mean concordance of the

clusterings. The definition of concordance can be found in File S13. The analysis was applied to 100 random GO lists with 500 BP terms.

D. and E. Examples of binary cut clustering on similarity matrix by semantic and kappa measurement. The two similarity matrices

correspond to the same list of random GO terms. F.�J. Analogous to A�E, but on the functional enrichment results from 485 Expression

Atlas datasets. I and J are based on the same Expression Atlas dataset. K. Distributions of cluster sizes on similarity matrices from

different similarity measures. L. Distributions of the fraction of the largest cluster. K and L are based on Expression Atlas datasets.

198 Genomics Proteomics Bioinformatics 21 (2023) 190–202
comparison, semantic similarity generated numbers of clus-
ters in a moderate range (11 to 25 for the 10th to the
90th percentile, Figure 6K). Moreover, this analysis showed

that the largest cluster comprised more than 80% of all
terms in 24.7% of the datasets when using the Dice coeffi-
cient and in 54.0% of the datasets when using the overlap

coefficient (Figure 6L). This implies that these two coeffi-
cients cannot efficiently separate terms in many datasets.
Taken together, semantic similarity matrices worked better
than gene overlap similarities on real-world datasets.
Besides GO gene sets, we also applied other ontologies and
gene set collections to Expression Atlas datasets, i.e., gene sets
from DO, KEGG, Reactome, and MSigDB, only with gene

overlap as similarity measures (File S10). We found that only
the similarity matrices based on gene overlap coefficients of
Reactome and MSigDB C4 gene sets can be used for binary

cut clustering, while the similarity matrices from other gene
sets generally showed low consistency between terms and did
not have clear diagonal block patterns, thus, they are not suited
for application of binary cut.

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 199
Comparison of enrichment results from multiple lists of genes —

a case study

It is a common task to integrate functional enrichment results
from multiple lists of genes into one plot, e.g., the enrichment

results from up-regulated and down-regulated genes in two-
group differential expression analysis. One of the frequently
used methods is to make barplot-like graphics where the
heights of bars correspond to �log10 P value or �log10 FDR

and the enrichment of the up-regulated and down-regulated
genes are assigned with positive and negative signs, respectively
[33]. This method is limited because users need to pre-select

functional terms only to a small number either by selecting
top n terms with the highest significance or by manually picking
representative terms that have distinct biological meanings.

The former might lose important terms with less significance,
and the latter might be easily affected by subjectivity. Also, this
is limited only to two gene lists. Here, we used a public dataset

to demonstrate a strategy to efficiently compare enrichment
results from multiple gene lists without losing any information,
which makes it easy to detect, e.g., the biological functions
that are uniquely enriched only in one gene list. It works

for arbitrary numbers of gene lists. This strategy was imple-
mented in the function simplifyGOFromMultipleLists() in
simplifyEnrichment.

Figure 7A illustrates a heatmap of expression of signature
genes from a three-group classification of the Golub leukemia
dataset (golubEsets: exprSets for golub leukemia data; https://

www.bioconductor.org/) [34], where rows correspond to genes
and columns correspond to samples. The classification of sam-
ples was obtained by consensus partitioning with the R pack-
age cola [35]. The signature genes were additionally clustered

into three groups by k-means clustering, and the groups were
labeled as ‘‘km1”, ‘‘km2”, and ‘‘km3”. GO enrichment
Figure 7 Compare enrichment results from three gene lists

A. Heatmap of the expression of signature genes from a three-group c

generated by applying k-means clustering on rows of the expression m

GO terms that were significant in any enrichment results of the three

heatmap. The left heatmap demonstrates whether the GO terms were s

word clouds are explained in the main text.
analysis was applied to the three groups of genes separately
with the R package clusterProfiler. To compare the enrichment
results from the three gene lists, the binary cut was applied

directly to the union of the three significant GO term lists
(FDR < 0.01), and a heatmap of FDR was put on the left
of the GO similarity heatmap to visualize whether the GO

terms were significantly enriched in either of the corresponding
gene lists (Figure 7B). This strategy keeps all significant GO
terms without removing anyone. Also, it allows more specific

studies of how the enrichment varies between gene lists. For
example, in Figure 7B, it can be observed that genes down-
regulated in a subset of acute lymphoblastic leukemia (ALL)
samples (km2 group) were more specifically enriched in cell

development and differentiation (labeled with ‘‘1” in Fig-
ure 7B) and genes up-regulated in ALL samples (km3 group)
were more specifically enriched in cell cycle and metabolic pro-

cesses (labeled with ‘‘2” in Figure 7B).
This strategy had also been applied in a previous study [35],

where it was used to compare the biological functions of gene

lists generated by four different feature selection methods for
consensus partitioning to assess which feature selection
method generates more biologically meaningful features.

Discussion

Simplifying functional enrichment results is necessary for easy

interpretation without missing important biological terms. The
essential step to simplify enrichment results is to cluster the
functional terms; later downstream analysis can be applied

to summarize the major biological functions in each cluster,
such as extracting the most significant or representative terms
in each cluster [18–20] or looking for a minimal subset of terms

that cover genes from all terms in that cluster [36] (File S11). A
proper clustering method should identify groups of terms that
lassification of Golub leukemia dataset. The three gene lists were

atrix. The z-score standardization was applied to matrix rows. B.

gene lists were clustered, and their similarities were visualized as a

ignificant in the corresponding gene list. The labels ‘‘1” and ‘‘2” on

https://www.bioconductor.org/packages/release/data/experiment/manuals/golubEsets/man/golubEsets.pdf
https://www.bioconductor.org/
https://www.bioconductor.org/

200 Genomics Proteomics Bioinformatics 21 (2023) 190–202
provide more distinct separation between clusters and reduce
large numbers of terms into an amount easier to read and ana-
lyze. In this work, we developed the R package simplifyEnrich-

ment, which uses a new method called binary cut to efficiently
cluster functional terms and summarize the general functions
in the obtained clusters by word cloud visualizations.

The binary cut is based on the observation that clustering
gene sets efficiently is equivalent to the task of identifying diag-
onal blocks in the similarity matrix of these gene sets after hier-

archical clustering of both rows and columns. The algorithm is
implemented in two phases: (1) applying divisive clustering and
generating a dendrogram on both rows and columns, and (2)
cutting the dendrogram and generating clusters. By default,

phase (1) relies on the recursive application of PAM with
two-group classification, but other partitioning methods,
including k-means++ and hierarchical clustering with the

‘‘ward.D2” method, also performed well.
In the binary cut clustering process, a score is calculated

based on the two-group partitioning on the current submatrix

and is compared against a cutoff to decide whether the corre-
sponding terms are treated as a single cluster or should be fur-
ther split. In most cases, the default cutoff is robust and works

well if a diagonal pattern is observable in the similarity matrix.
Nevertheless, there are still cases where manual adjustment on
the cutoff needs to be applied, such as a large cluster that is
composed of several small and dense subclusters. A typical

example is the clustering of the semantic similarity matrices
of DO terms (File S3). The cutoff can be fine-tuned according
to what levels of similarities users want to keep. simplifyEnrich-

ment provides a function select_cutoff() which tries a list of
cutoffs and compares difference scores, numbers of clusters,
and block mean values for the clusterings to decide an opti-

mized cutoff value. In File S12, we demonstrated the use of
select_cutoff() and how it helps to select a proper cutoff.

Using randomly selected GO terms and a semantic similar-

ity measure, we first compared binary cut with 10 different
clustering methods. While some methods were generally char-
acterized by over-segmentation (dynamicTreeCut, mclust, and
apcluster), others generated intermediate numbers of clusters

but either still failed to preserve large clusters with high
within-cluster similarities (kmeans) or the largest cluster did
not show consistent similarities for all term pairs and should

be split further (PAM, hdbscan, graph community methods).
As opposed to that, the binary cut was able to simultaneously
identify clean small and large clusters. Superior performance

was also demonstrated quantitatively using various metrics;
in particular, the binary cut had the highest difference score,
reflecting the most distinct differences in similarity values
between within-clusters and between-clusters comparisons.

It is worth noting that when using semantic measures, even
for a list of random GO terms, the similarity matrices show
clear diagonal block patterns. Semantic measures are based

on IC; they rely on the IC of the most informative common
ancestor of two terms in the GO tree. A GO term has higher
IC if it has fewer offspring terms. Thus, in general, the more

downstream the ancestor of two terms is in the GO tree, the
higher IC the ancestor will provide and the higher similarity
the two terms will have. Uniformly sampling the GO terms

selects more terms located in the downstream part of the GO
tree due to its hierarchical structure; therefore, it is more prob-
able for two terms to reach an ancestor node deeper in the GO
tree to contribute a higher IC value, which infers that even ran-
dom GO lists can have clear diagonal block patterns in the
benchmark.

The performance of simplifyEnrichment was also assessed

on actual biological data. To this end, we selected datasets
from the Expression Atlas based on the number of significantly
differentially expressed genes and the number of significant

GO terms after functional enrichment with the GO BP ontol-
ogy. Again, binary cut outperformed other clustering methods.
Binary cut also outperformed other clustering methods when

applied to random GO lists from the cellular component and
molecular function ontologies.

As many ontologies and gene set collections (e.g., MSigDB
gene sets) do not have DAG structure and are only represented

as lists of genes for which the similarities are merely measured
by various gene overlap metrics while no semantic similarity
measure is available, we performed a second benchmark and

compared the performance of binary cut when applied to sim-
ilarity matrices calculated by different similarity measures
based on gene overlap, again using both randomly selected

GO terms and real data from the Expression Atlas. With the
Jaccard coefficient, Dice coefficient, or kappa coefficient as
similarity measures, a large number of very small clusters

and a small number of bigger clusters were observed on ran-
dom GO terms, while the overlap coefficient led to massive
under-segmentation. As opposed to that, with semantic simi-
larity, these distributions were more equilibrated, intermediate

numbers of clusters were generated, and the similarity matrices
had clear diagonal block patterns. Also, on the real-world
datasets, the semantic similarity measure worked better on

GO terms than gene overlap similarity measures, even though
the latter showed a more diverse performance. When extending
the benchmark to other ontologies and gene set collections, we

observed that only gene overlap coefficients of Reactome and
MSigDB C4 can be used for clustering with binary cut, while
DO, KEGG, and other subsets of the MSigDB collections gen-

erally showed low consistency between terms and correspond-
ing similarity matrices did not have clear diagonal block
patterns. To improve performance on ontologies or gene set
collections with no DAG structures, a better definition of term

similarity is needed. Current measures based on gene overlap
where genes are equally weighted are not good ways to capture
consistent correlation structures. The idea is to assign genes

with different weights, e.g., weighted by network centralities
for pathway ontologies, so that pathways can be assigned high
similarity as long as they share key genes in pathway networks.

Finally, we applied simplifyEnrichment to a case study in
order to demonstrate its ability to integrate functional enrich-
ment results frommultiple lists of genes intooneplot. The enrich-
ment results of up-regulated and down-regulated genes in a

multi-group differential expression analysis were shown in a
compact and intuitive manner. Furthermore, results are fed into
word cloud visualization, an additional and unique visualization

feature of simplifyEnrichment. For even deeper exploration and
interactive display of enrichment results, simplifyEnrichment
has in-built functionality to seamlessly launch a Shiny applica-

tion with the data in the current workspace of the user.
Conclusion

We described a new clustering algorithm, binary cut, for clus-
tering similarity matrices of functional terms. Through

Gu Z and Hübschmann D / Simplify Functional Enrichment Results 201
comprehensive benchmarks on both simulated and real-world
datasets, we demonstrated that binary cut could efficiently
cluster functional terms where the terms showed more consis-

tent similarities within clusters and were more mutually exclu-
sive between clusters. We implemented the algorithm into the
R package simplifyEnrichment, which additionally provides

functionalities for visualizing, summarizing, and comparing
the clusterings. We believe simplifyEnrichment will be a useful
tool for researchers to rapidly explore their results and obtain

key biological messages.

Code availability

The simplifyEnrichment package and the documentation
are available at https://bioconductor.org/packages/simplify
Enrichment/ and https://ngdc.cncb.ac.cn/biocode/tools/BT007290.

The reports for the analysis of all datasets benchmarked in
the paper are available at https://simplifyenrichment.github.
io/. The scripts coding the analysis and the versions of R pack-

ages for the complete analysis are available at https://github.
com/jokergoo/simplifyEnrichment_manuscript. The supple-
mentary files are also available at https://jokergoo.github.io/
simplifyEnrichment_supplementary/.

Competing interests

The authors have declared no competing interests.

CRediT authorship contribution statement

Zuguang Gu: Conceptualization, Methodology, Software, For-

mal analysis, Validation, Investigation, Writing – original
draft, Visualization. Daniel Hübschmann: Writing – review &
editing, Funding acquisition. Both authors have read and
approved the final manuscript.
Acknowledgments

This work was supported by the National Center for Tumor
Diseases (NCT) Molecular Precision Oncology Program and

the NCT Donations against Cancer Program, Germany.

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2022.04.008.

ORCID

ORCID 0000-0002-7395-8709 (Zuguang Gu)
ORCID 0000-0002-6041-7049 (Daniel Hübschmann)

References

[1] Khatri P, Drăghici S. Ontological analysis of gene expression

data: current tools, limitations, and open problems. Bioinformat-

ics 2005;21:3587–95.
[2] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,

Gillette MA, et al. Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles.

Proc Natl Acad Sci U S A 2005;102:15545–50.

[3] Hung JH, Yang TH, Hu Z, Weng Z, DeLisi C. Gene set

enrichment analysis: performance evaluation and usage guideli-

nes. Brief Bioinform 2012;13:281–91.

[4] McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe

CB, et al. GREAT improves functional interpretation of cis-

regulatory regions. Nat Biotechnol 2010;28:495–501.

[5] The Gene Ontology Consortium. The gene ontology resource: 20

years and still GOing strong. Nucleic Acids Res 2019;47:D330–8.

[6] Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K.

KEGG: new perspectives on genomes, pathways, diseases and

drugs. Nucleic Acids Res 2017;45:D353–61.

[7] Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP,

Tamayo P. The molecular signatures database (MSigDB) hall-

mark gene set collection. Cell Syst 2015;1:417–25.

[8] Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A,

Malone J, et al. Gene expression atlas at the European bioinfor-

matics institute. Nucleic Acids Res 2010;38:D690–8.

[9] Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment

map: a network-based method for gene-set enrichment visualiza-

tion and interpretation. PLoS One 2010;5:e13984.

[10] Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG,

Roayaei J, et al. The DAVID gene functional classification tool: a

novel biological module-centric algorithm to functionally analyze

large gene lists. Genome Biol 2007;8:R183.

[11] Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method

to measure the semantic similarity of GO terms. Bioinformatics

2007;23:1274–81.

[12] Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new

measure for functional similarity of gene products based on gene

ontology. BMC Bioinformatics 2006;7:302.

[13] Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R

package for measuring semantic similarity among GO terms and

gene products. Bioinformatics 2010;26:976–8.

[14] Mazandu GK, Chimusa ER, Mulder NJ. Gene Ontology semantic

similarity tools: survey on features and challenges for biological

knowledge discovery. Brief Bioinform 2017;18:886–901.

[15] Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor

package for disease ontology semantic and enrichment analysis.

Bioinformatics 2015;31:608–9.

[16] Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M,

Felix V, et al. Disease ontology: a backbone for disease semantic

integration. Nucleic Acids Res 2012;40:D940–6.

[17] Davis MJ, Sehgal MSB, Ragan MA. Automatic, context-specific

generation of gene ontology slims. BMC Bioinformatics 2010;11:498.

[18] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package

for comparing biological themes among gene clusters. OMICS

2012;16:284–7.

[19] Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and

visualizes long lists of gene ontology terms. PLoS One 2011;6:e21800.

[20] Ayllon-Benitez A, Bourqui R, Thébault P, Mougin F. GSAn: an

alternative to enrichment analysis for annotating gene sets. NAR

Genom Bioinform 2020;2:lqaa017.

[21] Zhao C, Wang Z. GOGO: An improved algorithm to measure the

semantic similarity between gene ontology terms. Sci Rep

2018;8:15107.

[22] Langfelder P, Zhang B, Horvath S. Defining clusters from a

hierarchical cluster tree: the dynamic tree cut package for R.

Bioinformatics 2008;24:719–20.

[23] Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering,

classification and density estimation using gaussian ginite mixture

models. R J 2016;8:289–317.

[24] Bodenhofer U, Kothmeier A, Hochreiter S. APCluster: an R

package for affinity propagation clustering. Bioinformatics

2011;27:2463–4.

https://bioconductor.org/packages/simplifyEnrichment/
https://bioconductor.org/packages/simplifyEnrichment/
https://ngdc.cncb.ac.cn/biocode/tools/BT007290
https://simplifyenrichment.github.io/
https://simplifyenrichment.github.io/
https://github.com/jokergoo/simplifyEnrichment_manuscript
https://github.com/jokergoo/simplifyEnrichment_manuscript
https://jokergoo.github.io/simplifyEnrichment_supplementary/
https://jokergoo.github.io/simplifyEnrichment_supplementary/
https://doi.org/10.1016/j.gpb.2022.04.008
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0005
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0010
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0015
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0020
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0025
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0025
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0030
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0035
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0040
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0045
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0050
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0055
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0060
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0065
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0065
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0065
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0070
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0075
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0080
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0085
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0085
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0090
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0090
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0090
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0095
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0095
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0100
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0105
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0105
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0105
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0115
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0120
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0125
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0125
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0125

202 Genomics Proteomics Bioinformatics 21 (2023) 190–202
[25] Hahsler M, Piekenbrock M, Doran D. dbscan: fast density-based

clustering with R. J Stat Softw 2019;91:1–30.

[26] Csardi G, Nepusz T. The igraph software package for complex

network research. Interjournal Complex Systems 2006;1695:1–9.

[27] Van Dongen S. Graph clustering via a discrete uncoupling

process. SIAM J Matrix Anal Appl 2008;30:121–41.

[28] Wang G, Oh DH, Dassanayake M. GOMCL: a toolkit to cluster,

evaluate, and extract non-redundant associations of gene ontol-

ogy-based functions. BMC Bioinformatics 2020;21:139.

[29] Resnik P. Semantic similarity in a taxonomy: an information-

based measure and its application to problems of ambiguity in

natural language. J Artif Int Res 1999;11:95–130.

[30] Lin D. An information-Theoretic definition of similarity. Machine

Learning Proceedings 1998:296–304.

[31] Vassilvitskii S. K-means: the advantages of careful seeding.

Proceedings of the 18th Annual ACM-SIAM Symposium on

Discrete Algorithms 2007:1027–35.
[32] Leisch F. A toolbox for K-centroids cluster analysis. Comput Stat

Data Anal 2006;51:526–44.

[33] Liu C, Yu J. Genome-wide association studies for cerebrospinal

fluid soluble TREM2 in Alzheimer’s disease. Front Aging

Neurosci 2019;11:297.

[34] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M,

Mesirov JP, et al. Molecular classification of cancer: class

discovery and class prediction by gene expression monitoring.

Science 1999;286:531–7.

[35] Gu Z, Schlesner M, Hübschmann D. cola: an R/Bioconductor

package for consensus partitioning through a general framework.

Nucleic Acids Res 2021;49:e15.

[36] Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019:

gene set analysis toolkit with revamped UIs and APIs. Nucleic

Acids Res 2019;47:W199–205.

http://refhub.elsevier.com/S1672-0229(22)00073-0/h0130
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0130
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0135
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0135
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0140
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0145
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0150
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0150
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0150
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0155
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0155
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0165
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0165
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0170
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0180
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0185
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0190
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0190
http://refhub.elsevier.com/S1672-0229(22)00073-0/h0190

	simplifyEnrichment: A Bioconductor Package forClustering and Visualizing Functional EnrichmentResults
	Introduction
	Method
	Results
	Discussion
	Conclusion
	Code availability
	Competing interests
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	ORCID
	References

