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Abstract Comprehensive characterization of spatial and temporal gene expression patterns in

humans is critical for uncovering the regulatory codes of the human genome and understanding

the molecular mechanisms of human diseases. Ubiquitously expressed genes (UEGs) refer to the

genes expressed across a majority of, if not all, phenotypic and physiological conditions of an

organism. It is known that many human genes are broadly expressed across tissues. However, most

previous UEG studies have only focused on providing a list of UEGs without capturing their global

expression patterns, thus limiting the potential use of UEG information. In this study, we proposed

a novel data-driven framework to leverage the extensive collection of � 40,000 human transcrip-

tomes to derive a list of UEGs and their corresponding global expression patterns, which offers

a valuable resource to further characterize human transcriptome. Our results suggest that about

half (12,234; 49.01%) of the human genes are expressed in at least 80% of human transcriptomes,

and the median size of the human transcriptome is 16,342 genes (65.44%). Through gene clustering,

we identified a set of UEGs, named LoVarUEGs, which have stable expression across human tran-

scriptomes and can be used as internal reference genes for expression measurement. To further

demonstrate the usefulness of this resource, we evaluated the global expression patterns for 16 pre-

viously predicted disallowed genes in islet beta cells and found that seven of these genes showed rel-

atively more varied expression patterns, suggesting that the repression of these genes may not be

unique to islet beta cells.
Introduction

In multicellular organisms, different tissues or cells contain

mostly the same genome. However, each tissue or cell type
only expresses a subset of its genes and has its own unique
ciences /
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transcriptome. The variations among transcriptomes underlie
the wide range of phenotypic and physiologic differences
across tissues or cells [1]. It is generally believed that the genes

within a transcriptome could be broadly divided into two
groups: the ubiquitously expressed genes (UEGs), traditionally
called housekeeping (HK) genes [2], and the specifically

expressed genes (SEGs) [3]. UEGs are expressed in almost all
living cells of an organism and play an essential role in main-
taining cellular processes and cell survival. On the other hand,

SEGs are strictly expressed in a limited number of tissue or cell
types and usually have specific biological functions. They are
generally believed to be more likely associated with human dis-
eases and/or druggable targets [4]. The more recent view of

UEGs or HK genes has emphasized that these genes should
be insensitive to cell type heterogeneity and have stable expres-
sion across tissues [5,6]. In this study, we used the term UEGs

rather than HK genes to describe those widely expressed genes
with some having variations across conditions, and systemati-
cally characterized the global expression patterns of UEGs in

the human genome.
Much work has been conducted to characterize the UEGs

in the human genome [5,7–10]. However, the reproducibility

of the UEG lists from early studies was low due to the limita-
tions of microarray techniques [6]. As far as we know, it was
not until 2008 that Jiang et al. [9] first reported that there
might be a large number of human genes (about 40% of

human genes) broadly expressed across tissues through the
analysis of an expressed sequence tag (EST) data collection.
With the development of the RNA-seq technology, this obser-

vation was substantiated by RNA-seq studies [7,8], with
approximately 8000 to 10,000 genes broadly expressed across
tissues. However, there are several limitations in the published

UEG studies. First, there are over 200 tissue/cell types in the
human body, and there can be substantial variations in tran-
scriptomes across biological conditions and individuals [6].

The published UEG studies are often limited in the number
of tissue and cell types covered. Second, published UEG stud-
ies often use a single tissue-specificity measure of expression to
identify UEGs and do not fully capture gene expression pat-

terns, thus limiting the potential use of UEG information.
Although some UEG studies have considered expression vari-
ability, it has only been used as a hard filtering criterion [5].

For bulk RNA-seq data, the observed expression level for each
gene is the aggregated expression value of a large number
(maybe heterogeneous) of cells. Thus, traditional bulk RNA-

seq data offer a bird’s-eye view of the expression patterns at
the cell population level.

Inspired by the concept of pan-genome and core-genome in
bacterial research [11,12], we hereby proposed a novel analysis

framework to systematically characterize human UEGs, which
represents the core component of human transcriptomes.
Through simultaneous consideration of a large collection of

diverse transcriptomes, our framework bypassed the subjective
tissue/cell type stratification process to directly assess the glo-
bal expression specificity and the expression pattern for each

gene (Figure 1). By analyzing � 40,000 divergent human tran-
scriptomes, we observed that 12,234 human genes (49.01%)
are ubiquitously expressed in at least 80% of human transcrip-

tomes, and the median size of the human transcriptome is
16,342 genes (65.44%). Coupled with global expression
patterns of these genes, we identified a set of UEGs, named
LoVarUEGs, which have stable expression across biological
conditions and can be used as internal reference genes for

expression measurement. Collectively, as a separate validation,
we observed similar results in another RNA-seq data reposi-
tory, DEE2 [13], supporting the generalizability of our find-

ings. To demonstrate the usefulness of our UEG resource,
we evaluated the global expression patterns of 16 previously
predicted disallowed genes in pancreatic islet beta cells, and

found that seven of these putative disallowed genes had more
varied expression patterns than classical disallowed genes, sug-
gesting that the repression of these genes may not be unique to
islet beta cells, at least in term of expression level. In summary,

our study provides a useful framework and resource for fur-
ther functional genomics studies of human genes.
Results

Highly phenotypic heterogeneity of analyzed transcriptomes

In this study, we primarily used the recount2 repository [14,15],

which comprises � 50,000 RNA-seq based human transcrip-
tome profiles. After preprocessing (described in Materials and
methods), 39,863 (80.3%) transcriptome profiles were retained
for further analyses. We annotated the tissue types of these

transcriptome profiles with an automated semantic annotation
database [16]. These transcriptomes covered more than 30
organ systems, with musculoskeletal system (10.09%) being

the most common tissue, followed by hemolymphoid system
(8.86%), nervous system (7.61%), and digestive system
(2.74%) (Table S1). To improve sample coverage across more

conditions, we also included the transcriptomes from in vitro
cells [including cell lines, primary cells, in vitro differentiated
cells, stem cells, and induced pluripotent stem (iPS) cells], being
about 56.7% of the total samples (Table S2). For reference, we

further manually annotated 6501 (16.31% of total) transcrip-
tomes that represent 101 major tissue types (Table S3). To
check the relatedness among these transcriptomes, we used

onlinePCA (https://cran.r-project.org/package=onlinePCA)
to visualize the first two principal components (PCs) of all
39,863 transcriptome profiles (Figure 2). We can see that these

divergent transcriptomes collected from various experiments
were reasonably clustered, and those unclassified transcrip-
tomes exhibited a broad transcriptomic heterogeneity. In addi-

tion, we found that 17,503 (43.91%) transcriptomes showed
relatively high relatedness (Figure S1), suggesting that these
transcriptomes may be overrepresented in the recount2 dataset.
We then conducted a sensitivity analysis to evaluate the impact

of these overrepresented samples (described in File S1) and
observed that these overrepresented transcriptomes had limited
effects on our overall results and conclusions (Figures S2–S4).

To evaluate the generalizability of our results, we applied our
analysis framework to a more recent transcriptome dataset,
DEE2 [13], which is a public repository of uniformly processed

RNA-seq profiles. The differences between DEE2 and recount2
datasets are that (1) they used different pipelines to generate
transcriptome profiles; and (2) they only shared about 15%
of the samples and had different relatedness patterns (Figure 2,

Figures S1 and S5).

https://cran.r-project.org/package=onlinePCA


Figure 1 The flow diagram for systematic characterization of UEGs in the human genome

A. Definition of global expression specificity. Different colored circles represent the transcriptomes derived from different tissues or cell

types. The overlapping area represents the core component of human transcriptomes, i.e., the UEGs. B. After preprocessing, we

performed a sample-wise quantile normalization that allowed us to obtain a robust global distribution of expression levels for each gene.

Then, we clustered genes by their dynamic ranges of global distribution. Finally, the global expression specificity metrics were mapped to

the genes and gene clusters. SEG, specifically expressed gene; UEG, ubiquitously expressed gene.

Figure 2 The phenotypic compositions of analyzed transcriptomes

The onlinePCA (https://cran.r-project.org/package=onlinePCA) was performed to the quantile-normalized expression matrix to visualize

the phenotypic compositions and relatedness among transcriptomes. Each dot represents one transcriptome projected on the principal

plane formed by the first and second principal axes. A. Diversity of phenotypes in transcriptome profiles. The colored dots represent the

6501 (16.31%) manually curated reference transcriptomes belonging to 101 tissue groups. Gray dots represent those unclassified

transcriptomes that exhibit a broad spectrum of heterogeneity. B. Transcriptome profiles generated from in vitro and in vivo samples. The

cyan dots represent the transcriptomes from tissue samples, and the red dots represent the transcriptomes from in vitro cells. PC, principal

component.
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The majority of human genes are either ubiquitously or specifi-

cally expressed

We proposed to use the proportion of samples in which a gene
was expressed across all the transcriptomes to quantify its

expression specificity. We referred to this proportion as global
expression specificity /, where / = 1 denotes a UEG and /
close to 0 denotes a highly expressed SEG. As shown in

Figure 3A, the distribution of / had a clear bimodal distribu-
tion, i.e., most genes were either ubiquitously or specifically
expressed, which is consistent with previous observations [17].

In order to determine the optimal expression detection
threshold, we made a comparison between four commonly
used detection thresholds and found that the threshold of tran-

scripts per million (TPM) � 0.1, which was used in the GTEx
project, was a robust and sensitive detection threshold for
those lowly expressed genes (Figure S6; Table S4). Applying

this threshold, 12,267 (49.14%) genes had their / � 0.8 and
7439 (29.80%) genes had / � 0.4 (Table 1). To compare / with
traditional tissue-based expression specificity using manually

curated samples with tissue information, we calculated tissue-
based specificity and compared these two metrics across genes.
As shown in Figure S7, these two metrics were highly corre-
lated with a Pearson correlation coefficient (PCC) of 0.960.

https://cran.r-project.org/package=onlinePCA


Figure 3 The global expression specificity and global dynamic ranges of expression values

A.Density plot showing the global expression specificity obtained at different detection thresholds (TPM � 0.1, TPM � 1.0, RPKM � 0.3,

and RPKM � 1.0). TPM Spec@0.1, TPM Spec@1.0, RPKM Spec@0.3, and RPKM Spec@1.0 donate the global expression specificity

determined by the thresholds of TPM � 0.1, TPM � 1.0, RPKM � 0.3, and RPKM � 1.0, respectively. B. Density plot showing the

distribution of human transcriptome size detected at different thresholds (TPM � 0.1, TPM � 1.0, RPKM � 0.3, and RPKM � 1.0).

C. Quantile-normalized transcriptome profiles are summarized into dynamic ranges [the lowest 5% (Q5) to highest 95% (Q95) relative

expression level] and used to generate a heatmap showing the global expression pattern for each gene. TPM, transcripts per million;

RPKM, reads per kilobase of transcript per million reads mapped.
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Only 2279 genes (9.1%) had a difference � 0.2 (20% of total
range) between these two specificity metrics, where genes with

relatively high or low global expression specificity had a higher
agreement (Figure S8). Moreover, with this detection thresh-
old, we found that 80% of the human transcriptomes had

11,166 (44.71%) to 19,033 (76.21%) expressed genes, and the
median number of expressed genes was 16,342 (65.44%)
(Figure 3B). This number was close to what was reported in
a smaller-scale study [8]. This suggests that the average differ-

ence in gene content between human transcriptomes is only
16.43%.

Distribution skewness of relative expression values is strongly

associated with global expression specificity

Although it is useful to classify genes into UEG and SEG

groups by their expression specificity, such classification can-
not capture global expression patterns. Through joint analyses
of diverse transcriptomes, we can characterize the dynamic

ranges of relative expression values for each gene. To reduce
batch effects in defining global expression patterns, we used
a sample-wise quantile transformation [18] to TPM- or reads

per kilobase of transcript per million reads mapped
(RPKM)-normalized transcriptome profiles. After transforma-
tion, expression values were replaced by their percentile ranks

for each profile. Figure 3C displays the dynamic ranges of gene
expression values [the lowest 5% (Q5) to the highest 95%
(Q95) relative expression values for each gene]. With an empir-
ical threshold of 10% percentile (Q10) � 0.1 (Figure S9), the

expression levels of 9692 (38.83%) genes were above Q10 in
at least 90% of all transcriptomes. With a more relaxed thresh-
old of 20% percentile (Q20) � 0.1, this number increased to

12,005 (48.09%), i.e., these genes’ expression levels were above
Q20 in at least 80% of the samples (Table 1). These observa-
tions were close to the inference of UEGs through /.
Table S5 lists all the genes with their global expression speci-
ficity and dynamic ranges.

We then examined the relationships between global expres-

sion specificity and the distribution attributes of relative
expression values, including mean, median, interquartile range



Table 1 The number of genes in each specificity interval

Global expression specificity
Total

0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0–0.2

All genes 12,267 (49.14%) 2727 (10.92%) 2530 (10.13%) 2641 (10.58%) 4798 (19.22%) 24,963

Skewness � 0 10,421 (99.20%) 84 (0.80%) 0 (0%) 0 (0%) 0 (0%) 10,505 (42.08%)

Q10 � 0.1 9692 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9692 (38.83%)

Q20 � 0.1 12,002 (99.98%) 3 (0.02%) 0 (0%) 0 (0%) 0 (0%) 12,005 (48.09%)

2011 UEG ARRAY [10] 2038 (99.66%) 4 (0.20%) 2 (0.10%) 1 (0.05%) 0 (0%) 2045 (8.19%)

2009 UEG SEQ [8] 7703 (98.88%) 59 (0.76%) 13 (0.17%) 13 (0.17%) 2 (0.03%) 7790 (31.21%)

2014 UEG SEQ [7] 8696 (97.60%) 176 (1.98%) 37 (0.42%) 0 (0%) 1 (0.01%) 8910 (35.69%)

2013 HK SEQ [5] 3786 (99.82%) 5 (0.13%) 2 (0.05%) 0 (0%) 0 (0%) 3793 (15.19%)

BodyMap SEGs [3] 735 (20.75%) 573 (16.17%) 708 (19.98%) 808 (22.81%) 719 (20.29%) 3543 (14.19%)

GTEx SEGs [3] 1128 (27.96%) 661 (16.39%) 748 (18.54%) 806 (19.98%) 691 (17.13%) 4034 (16.16%)

Essential genes [26] 5356 (77.00%) 548 (7.88%) 430 (6.18%) 345 (4.96%) 277 (3.98%) 6956 (27.87%)

Trait genes [27] 2246 (72.33%) 372 (11.98%) 251 (8.08%) 172 (5.54%) 64 (2.06%) 3105 (12.44%)

Genetic disease genes [28] 9759 (61.42%) 1862 (11.72%) 1644 (10.35%) 1443 (9.08%) 1180 (7.43%) 15,888 (63.65%)

DRUGABLE genes [33] 1764 (40.84%) 711 (16.46%) 738 (17.09%) 643 (14.89%) 463 (10.72%) 4319 (17.30%)

UEGs@1.0 category 9687 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9687 (38.81%)

UEGs@0.1 category 2272 (89.20%) 275 (10.80%) 0 (0%) 0 (0%) 0 (0%) 2547 (10.20%)

MEG category 307 (9.75%) 2094 (66.48%) 749 (23.78%) 0 (0%) 0 (0%) 3150 (12.62%)

SEGs@1.0 category 1 (0.03%) 358 (11.71%) 1771 (57.91%) 928 (30.35%) 0 (0%) 3058 (12.25%)

SEGs@0.1 category 0 (0%) 0 (0%) 10 (0.15%) 1713 (26.27%) 4798 (73.58%) 6521 (26.12%)

Note: ‘‘All genes” indicates total genes analyzed in this study; ‘‘UEG SEQ” indicates UEGs derived from an RNA-seq-based study; ‘‘HK SEQ”

indicates HK genes derived from an RNA-seq-based study which takes into account the variability of gene expression; ‘‘UEG ARRAY” indicates

UEGs derived from a microarray-based study. Q10, 10% percentile; Q20, 20% percentile; UEG, ubiquitously expressed gene; SEG, specifically

expressed gene; MEG, moderately specific gene; HK, housekeeping.

Figure 4 The relationship between expression specificity, expression level, and expression variability

A. Scatter plot showing the relationship between median (Q50) expression level, expression specificity, and expression variability.

B. Scatter plot showing the relationship between maximal (Q95) expression level, expression specificity, and expression variability.

C. Scatter plot showing the relationship between distribution skewness, expression specificity, and expression variability.
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(IQR; variability), and skewness. As expected, the genes with
larger / tended to have higher median (Q50) and maximal

(Q95) expression levels (Figure 4A and B), which is consistent
with previous observations [17,19,20]. One interesting finding
is that the global expression specificity is strongly associated

with distribution skewness of relative expression values as
observed in previous tissue specificity of gene expression
(Spearman correlation coefficient is �0.97) [17,21]. The UEGs

were enriched with genes showing negative skewness, whereas
the SEGs were enriched with genes having positive skewness
(Figures 3C and 4C; Table 1). About 90% of previously
reported UEGs had a negatively skewed distribution, and

� 80% of previously reported SEGs had a positively skewed
distribution.
Global expression specificity categories and functional implica-

tions

To group genes according to their global expression patterns,
we performed clustering on the dynamic range matrix through

percentile clustering [22], that is, to cluster genes according to
their summarized distribution shapes of expression values.
After clustering, the genes with similar expression levels,

expression variability, and expression specificity were grouped
into the same cluster (Figure 5). Figure 5A shows the principal
component analysis (PCA) plot of the dynamic range matrix

with 96 gene clusters inferred by the affinity propagation clus-
tering method [23]. Figure 5B shows the dynamic range for



Figure 5 Global expression specificity categories

A. PCA plot visualizing the global expression patterns and clustering results. Each dot represents a gene. Different colors represent 96 gene

clusters. The genes within the same cluster show similar expression levels, expression specificity, and expression variability. B. Boxplot

showing the global expression patterns of some gene clusters. C. Boxplot showing the distribution of expression specificity of 96 clusters.

The clusters (boxes) are ranked according to their median skewness. The red dashed lines represent the global expression specificity (/) of
0.8 (upper) and 0.3 (lower), respectively, using the detection threshold of TPM � 0.1. D. Boxplot showing the distribution of expression

variability among these clusters. The clusters (boxes) are ranked according to their median skewness. PCA, principal component analysis.
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some gene clusters, e.g., cluster #81 with most ubiquitously

and highly expressed genes, cluster #10 with ubiquitously but
lowly expressed genes, cluster #60 with the most varied expres-
sion pattern, and cluster #70 with the most restricted expres-
sion pattern. We then mapped the global expression

specificity to these gene clusters, and with such information,
we can broadly classify these gene clusters into five specificity
categories (Figure 5C): (1) UEGs@1.0, a UEG category

detected by the threshold of TPM � 1.0 (with median / of
clusters � 0.8). This category included 9687 (38.81%) genes
in 40 clusters that had a ubiquitous expression pattern. The

genes in this category are more likely involved in essential
cellular processes, such as transcription (11.95%), apoptotic

process (3.45%), oxidation–reduction process (3.28%), protein
transport (3.16%), and cell division (2.95%). (2) UEGs@0.1, a
UEG category only inferred by a more sensitive detection
threshold of TPM � 0.1 (with median / of clusters � 0.8). This

category was composed of 14 clusters involving 2547 (10.20%)
genes. Some clusters in this category showed low expression
levels, e.g., cluster #77 and cluster #4, and they might be easily

overlooked by stringent detection thresholds (Figure S6;
Table S4) or experiments with insufficient detection sensitivity.
A total of 352 (78.40%) genes of these two gene clusters were

above Q10 in at least 80% of all transcriptomes studied,
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whereas only 4.45%�6.46% of them were classified as UEGs
in previous UEG studies [7,8]. On the other hand, some clus-
ters in this category showed relatively higher expression vari-

ability, e.g., clusters #31, #65, and #55. Although these genes
were widely detectable, their percentile ranks within each tran-
scriptome varied significantly across biological conditions.

This means that these gene clusters with higher expression
variability are more likely to have a leaky expression [5,24]
and are more sensitive to biological conditions. (3) Moderately

specific gene (MSG) category. This category included 3150
(12.62%) genes in 20 gene clusters. The genes in this category
are mainly involved in the regulation of biological processes,
including signal transduction (7.59%), cell adhesion (4.66%),

and inflammatory response (3.89%). (4) SEGs@1.0, an SEG
category detected by the threshold of TPM � 1.0 (with median
/ of gene clusters � 0.3). This category included 3058

(12.25%) genes in 12 clusters. (5) SEGs@0.1, an SEG category
only detected by the threshold of TPM � 0.1 (with median /
of clusters � 0.3). This category included 6521 (26.12%) genes

in 10 clusters.
The SEG categories SEGs@1.0 and SEGs@0.1 refer to

those genes that are specifically expressed in a limited set of

biological conditions and have specialized functions. The genes
in these two specific categories are likely involved in various
specific biological processes, such as G-protein coupled recep-
tor signaling pathway (6.58%), sensory perception of smell

(4.13%), multicellular organism development (1.88%), and
proteolysis (1.72%). All functional enrichment results are
listed in Table S6.

A large fraction of UEGs involves human diseases

Since UEGs play an essential role in maintaining cellular pro-

cesses and cell survival, they have been considered unlikely to
be a disease gene, especially for genetic diseases [25]. We
observed that approximately 80% of the essential genes [26]

exhibited a ubiquitous expression pattern (/ � 0.8, Table 1).
However, we compared / with the genes associated with phys-
iological traits [27] and genetic diseases [28], and observed that
about 70% of physiological trait-related or disease-related

genes exhibited a ubiquitous expression pattern (/ � 0.8,
Table 1). For example, loss-of-function mutations in the
ACTB gene, a most abundant cytoskeletal HK gene, cause

development disorder and intellectual disability [29]; expanded
trinucleotide repeats in the TBP gene, encoding an important
general transcription initiation factor, cause a Huntington

disease-like phenotype [30–32]. Our results indicate that even
the most UEGs cannot be simply ignored during the prioritiza-
tion of causal genes/variants. On the other hand, genes with
restricted expression patterns are believed to be good drug tar-

gets due to improved efficacy and safety [4]. This is supported
by our observation that 59.16 % of the reported druggable
genes [33] show significantly varied (/ < 0.8) expression levels

between biological conditions (Table 1).

Evaluation of the global expression patterns of disallowed genes

An interesting example of UEGs associated with vital physio-
logical phenotypes is the important metabolic enzyme
gene LDHA and the SLC16A1 gene encoding a transporter
MCT-1, which belong to a class of so-called disallowed genes
which were first described in the beta cells of pancreas
islets [34]. In contrast to SEGs, disallowed genes refer to those

UEGs that are specifically repressed only in a few cell types
and with likely functional consequences [34,35]. For example,
the inactivation of LDHA and SLC16A1 plays a critical role

in the maturation of beta cells and the secretion of insulin.
The aberrant activation of LDHA or SLC16A1 has been
observed to cause diabetes-like phenotype or exercise-

induced hyperinsulinism (EIHI). Following the success of
LDHA and SLC16A1, a number of putative disallowed genes
have been reported [35–37]. Although the repression stability
of some putative disallowed genes has been extensively vali-

dated [37], they have not been validated from the perspective
of UEGs, i.e., the uniqueness of the repression. We think this
is partly due to the lack of a reliable UEG list and correspond-

ing global expression patterns. The identification and valida-
tion of disallowed genes can be viewed as a special
application of outlier analysis [38,39]. Our study provides a

resource to evaluate the uniqueness of repression for putative
disallowed genes. As shown in Figure 6, the classic disallowed
genes LDHA and SLC16A1 exhibited strong constitutive

expression patterns across a large collection of transcriptomes.
Even the HK1 gene, which is specifically repressed in beta cells
and liver cells and does not fulfill the strictest definition of dis-
allowance [35], also showed a strong constitutive expression

pattern. However, some putative disallowed genes exhibited
a significantly restricted expression pattern, such as ITIH5,
CXCL2, and HSD11B1. For example, the HSD11B1 gene

showed a relatively restricted expression pattern in the adrenal
gland (expressed in 22.58% samples) and bone marrow
(expressed in 33.70% samples). Besides, although the genes

IGFBP4, MAF, PDGFRA, and ARHGDIB had a ubiquitous
expression pattern, their relative expression levels showed sig-
nificant differences across biological conditions. In addition,

these observations were replicated in the DEE2 dataset
(Figure S10). These results suggest that, unlike the classic dis-
allowed genes, the repression of these genes may not be unique
to the islet beta cells, and the function of their repression may

need more detailed investigation.

Discussion

The goal of our work is to identify and characterize the core
genes in the human transcriptome, a long-standing problem

in functional genomics. Earlier studies of UEGs relied heavily
on the tissue-stratification strategy and were limited in sample
size, which resulted in low consistency across studies and fail-
ure of capturing global expression patterns, and thus limited

the potential use of UEG information. As by definition, UEGs
should be present across a majority of, if not all, phenotypic
and physiological conditions of an organism, and the laborious

and error-prone annotation/curation process may be overcome
by the use of a diverse and extensive collection of transcrip-
tomes. In this study, we proposed a global expression speci-

ficity metric that used the proportion of samples in which a
gene was expressed across a large collection of diverse tran-
scriptomes to represent its global expression specificity. Com-
parisons with results based on tissue-specific expression

patterns showed that the global expression specificity was



Figure 6 Evaluation of the global expression patterns of putative disallowed genes in islet beta cells

A. The global expression specificity and variability among reported disallowed genes. B. The global dynamic ranges of expression levels

among reported disallowed genes.

Gu J et al / The Ubiquitously Expressed Genes in Humans 171
highly concordant with tissue-specific results (Figures S7 and

S8) and was also robust to uneven distribution of samples
across tissue types in the repositories (Figure S2).

Leveraging diverse transcriptome profiles, we can establish

the global distribution of relative expression values (Figure 3C)
for each human gene, and this information can be used to fur-
ther validate and characterize human UEGs. We examined the
relationships between global expression specificity and global

distribution attributes of relative expression values. We
observed that the UEGs with higher expression levels usually
had relatively lower variability in percentile rank within the

transcriptome. However, a number of studies found that even
for those most commonly used internal reference genes, there
was often considerable expression variability across biological

conditions [40–43]. About 55.98% of UEGs, especially those
highly expressed UEGs, exhibited a narrow distribution of rel-
ative expression values, which are correlated with low expres-

sion variability (0–0.2) (Table S7). This suggests that most
UEGs maintain relatively constant percentile rank within tran-
scriptomes across divergent biological conditions and can
serve as good candidates for internal references in most cases.

On the other hand, lowly expressed UEGs exhibited relatively
higher variability, partly because the percentile ranks of lowly
expressed genes were more likely affected by other genes and

the size of transcriptomes. In fact, the variability of the
observed expression values of a gene was positively correlated
with its expression magnitudes (Figure S11).

To better characterize the overall expression patterns for all
human genes, we clustered them into clusters, where genes in
the same cluster had similar expression levels, expression vari-
ability, and expression specificity (Figure 5). With the help of

these gene clusters, we identified 19 UEG clusters containing
5671 genes (i.e., LoVarUEGs) with low variability in expres-
sion levels. We then checked their dynamic ranges of raw

TPM values in both the recount2 and DEE2 datasets and con-
firmed their ubiquitous and stable expression patterns (Fig-
ure S6; Tables S8 and S9). After removing outliers (about
3.19%), 5490 genes had relatively stable TPM values across

human transcriptomes and can be used as internal reference
genes for expression measurement (Table S4). Compared with
previously reported HK genes with stable expression [5], these

genes had comparable stability of expression in both the
recount2 and DEE2 datasets (Figures S11 and S12). Neverthe-
less, the LoVarUEGs showed significantly better coverage for
lowly expressed genes (Figure 7). As an advantage over previ-

ous studies, our study stratified stably expressed UEGs by
their overall expression patterns so that they can be easily
selected and used as internal references for various down-

stream applications [44]. For example, in this work, we used
the lowly expressed UEG clusters to evaluate and determine
the optimal expression detection threshold. Interestingly, when

we mapped the expression stability of the single cells [45] onto
our gene clusters, we observed that the sparsity (fraction of
zeros) of single-cell profiles highly correlated with the global

expression specificity and the expression magnitudes at bulk
level (Figure S13). The stably expressed UEG clusters with
higher expression levels showed lower single-cell sparsity and
vice versa. This implies that these stably expressed UEG clus-

ters might be a good model to study potential connections in
gene expression between bulk and single-cell levels, which
may be useful for cell-type deconvolution [46] and adjusting

potential dropout bias [47]. Moreover, these gene clusters pro-
vide local context information for transcriptome profiles that
can further improve the outlier analysis approaches [18,38].

As a validation of our results, we applied our analysis
framework to a more recent RNA-seq dataset, DEE2 [13].
As shown in Figure S14, the global expression specificity
metric was highly reproducible between these two datasets

(PCC = 0.937). Only 5.7% of genes had global expression
specificity differences greater than 0.2, and some differences
may be caused by different profiling pipelines or gene annota-

tions. In addition, the global distribution attributes for each
gene were also highly consistent (Figures S15 and S16).
Finally, a total of 86.2% of UEGs generated from these two



Figure 7 Comparison of LoVarUEGs with the previously reported HK genes with stable expression

A. Venn diagram showing the overlap between LoVarUEGs and the previously reported HK gene with stable expression (2013 HK [5]).

B. Number of genes in the 19 UEG clusters in LoVarUEGs as well as in 2013 HK [5]. X-axis indicates the gene clusters ordered by median

expression levels, from left (lowly expressed) to the right (highly expressed). The details of the 19 UEG clusters in the LoVarUEGs set are

listed in Table S4. LoVarUEGs indicates a set of UEGs which have stable expression across human transcriptomes analyzed in this study.
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repositories overlapped (Figure S17). Comparisons with previ-
ous UEG and SEG studies (Table 1) showed that (1) early
microarray-based UEG studies significantly underestimated
the number of human UEGs; (2) over 95% of previously

reported UEGs were validated in our study (/ � 0.8); (3)
2804 novel UEGs were identified in this stuty, 73.57% of
which were also found in the separate dataset DEE2 (Fig-

ure S17); (4) there was a significant overlap between UEGs
and SEGs. About 37%�43% of previously reported SEGs
had a strict specific expression pattern (/ � 0.4), but about

21%�28% of these reported SEGs exhibited a ubiquitous
expression pattern (/ � 0.8). It implies that some genes may
be both ubiquitously and tissue-enriched expressed. For exam-
ple, the lipid transport gene APOE, which is a major risk gene

for Alzheimer’s disease [48], showed high expression variability
(0.74) while being widely expressed (/ = 0.87), and this gene
has been labeled as both a UEG or SEG by several studies

[3,7,8]. The ALAS1 gene, which is a widely used internal refer-
ence gene, was classified as a tissue-specific gene in two recent
SEG studies [3,4]. In addition, we found that even using the

same analysis method [3], there was only 38.6% overlap of
the identified SEGs between GTEx and BodyMap datasets
(Figure S18). Collectively, these observations suggest that a

comprehensive study for human SEGs is still required.
Generally, UEGs should be expressed in all living cells of

an organism. However, a specific subset of UEGs, called disal-
lowed genes [34], are selectively repressed in some specific cell

types and with likely functional consequences. LDHA and
SLC16A1 are the most well-studied disallowed genes in the
pancreatic islet beta cells [49]. The repression of LDHA is

thought to be crucial for the maturation of beta cells and the
secretion of insulin. The beta cells in diabetes models show loss
of repression and up-regulated expression of LDHA. The

repression of SLC16A1 prevents the inappropriate stimulation
of insulin release during physical exercise, and correspond-
ingly, aberrant activating SLC16A1 results in EIHI [50,51].

The identification of disallowed genes in beta cells has raised
the interesting question of whether there are other disallowed
genes in beta cells or other cell types [49,52]. Our study pro-
vides a comprehensive UEG resource that could be used to

evaluate the uniqueness of repression for the identification
and validation of disallowed genes. To demonstrate, we
evaluated 16 putative disallowed genes in beta cells [35,37]
and found that seven of them (Figure 6, Figure S10), including
HSD11B1, ITIH5, CXCL12, IGFBP4, PDGFRA, MAF, and
ARHGDIB, exhibited relatively more varied expression pat-

terns. Although our observation is limited to expression level
through the UEG perspective, it may offer a new angle for
these genes in beta cells. Moreover, a recent single-cell study

revealed that even for the most common UEGs, such as
GAPDH and ACTB, they showed a clear repression pattern
in some cells [45]. This implies that repression of gene expres-

sion at the single-cell level is likely a common regulatory mech-
anism, and more disallowed genes might exist in specific cell
types.

In summary, we have presented a novel data-driven frame-

work that uses a large collection of transcriptomes to system-
atically characterize UEGs. As a major improvement over
previous studies, we provide the global expression patterns

for human genes that can be used to further validate and char-
acterize UEGs. We have also explored some potential func-
tional implications of UEGs in biomedical research and

offered an interesting example to demonstrate the usefulness
of this resource in the evaluation of disallowed genes.

Materials and methods

Preprocessing and phenotypic annotation for transcriptome

profiles

We downloaded 49,649 human transcriptome profiles at the

gene level from the recount2 repository [14,15]. As the original
profiles used Ensembl gene ID, we converted Ensembl ID into
Entrez ID by the Ensembl BioMart tool (Table S10). If

multiple transcripts matched a single Entrez ID, we used the
maximum value of these transcripts to represent the expression
level of this gene. The gene-level expression matrix was further
normalized by TPM and RPKM [53]. In the following analy-

ses, we found that the TPM threshold had better detection sen-
sitivity, so that the main results were analyzed by TPM-
normalized data and the RPKM-based results were only used

for comparison. Because of potential quality issues for
transcriptome profiles derived from disparate experiments,
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we filtered low-quality transcriptome profiles by the following
criterion. If the expression measurement of any of three lowly
expressed internal reference genes (GUSB, HPRT1, and

HMBS) in a transcriptome is zero, this transcriptome was con-
sidered to be low quality and excluded from further analyses
(Figure S19). After removal, a total of 39,863 (80.3%) tran-

scriptome profiles remained for further analyses. The DEE2
dataset [13] provided the quality control information for each
profile, with a total of 61,020 high-quality DEE2 transcrip-

tome profiles, which were labeled as ‘PASS’ and were used
for further analysis. We used the same preprocessing method
to convert the original profiles into TPM- and RPKM-
normalized matrices.

To check the phenotypic composition of these transcrip-
tomes, each transcriptome was labeled with a series of biomed-
ical ontology terms by an automatic semantic annotation

database MetaSRA [16], and the sample type was also pre-
dicted by MetaSRA. Moreover, we manually annotated 6501
(16.31%) reference transcriptomes with 101 tissue types and

visualized these reference transcriptomes and unclassified tran-
scriptomes by the onlinePCA package in R (https://cran.r-pro-
ject.org/package=onlinePCA). The manually annotated

information of these transcriptomes is listed in Table S3. The
overrepresented samples were identified by the PCA ordina-
tion density plot with manually determined cutoffs (Figure S1).

Traditional tissue-based expression specificity and global expres-

sion specificity

Traditionally, UEG studies use a tissue stratification strategy

to determine the tissue specificity of gene expression in order
to identify UEGs. This strategy is useful with a limited number
of tissue groups and sample size. In this study, we used the pro-

portion of tissues expressing each gene to represent the tradi-
tional tissue specificity of expression [17]. The manually
curated subset was used to calculate tissue specificity for a

gene:

Tissue specificity ¼ Number of tissues expressing this gene

Number of total tissues

ð1Þ
We used TPM � 0.1 as the expression detection threshold

for each sample. Since there are multiple samples belonging
to each tissue group, we used 80% as a cutoff to determine
whether this tissue expressed this gene.

However, when one considers a broader spectrum of bio-

logical conditions, appropriate grouping samples is non-
trivial. It is known that transcriptomes are highly variable
across individuals and biological conditions. Therefore, the

traditional tissue stratification strategy has hindered the gener-
alization of human UEG studies to a larger scale. As UEGs
should be broadly expressed in all tissue/cell types of an organ-

ism, we proposed to use a global expression specificity defini-
tion based on the proportion of a gene present among
diverse transcriptomes (Figure 1). This definition does not

require defining discrete tissue/cell type groups and is suitable
for dealing with a large collection of transcriptomes. Global
exprssion specificity (/) for a gene is defined as:

/ ¼ Number of transcriptomes expressing this gene

Number of total transcritpomes
ð2Þ
The value of global expression specificity / ranges between
1 (for UEGs) and close to 0 (for SEGs).

Expression detection thresholds

With the definition of global expression specificity, the key
problem is the appropriate selection of an expression detection

threshold to call whether a gene is expressed. We note that
there are different methods to define a detection threshold to
call a gene expressed [17]. With those lowly expressed UEG

clusters, we compared four detection thresholds, with
TPM � 0.1 (which was used in the GTEx project),
TPM � 1.0, RPKM � 0.3 [8,54,55], and RPKM �1.0 [56–

58]. When using the threshold of TPM � 0.1, the median
detection rates of lowly expressed cluster #4 genes in the
recount2 and DEE2 datasets were 0.83 and 0.89, respectively.
However, the detection rates with the threshold of RPKM �
0.3 in the recount2 and DEE2 datasets were only 0.65 and
0.58, respectively (Figures S6 and S20; Table S4). We also
observed that the detection sensitivity of the RPKM � 0.3

was close to that of TPM � 1.0. The distribution curves
of transcriptome size obtained by RPKM � 0.3 and
TPM � 1.0 showed a significant overlap (Figure 3B). Alto-

gether, among these commonly used detection thresholds, the
detection threshold of TPM � 0.1, which was used in the
GTEx project, was most sensitive for lowly expressed genes
and was more appropriate as the expression detection thresh-

old in this study.

Gene functional annotation and pathway enrichment

The functional gene sets were downloaded from their original
publications, and all gene IDs were converted to Entrez IDs by
Ensembl BioMart (Table S10). The gene functional enrichment

analyses were conducted by DAVID tool [59].

Quantile normalization and batch effects

To reduce the batch effect and yield a better estimation of glo-
bal expression patterns, we used a sample-wise quantile trans-
formation to TPM- or RPKM-normalized expression values
for each transcriptome profile [18].

Qj xð Þ ¼
i2m:0<xi�xjj j
i2m:0<xif gj j ; if xj > 0

0; if xj ¼ 0

(
ð3Þ

The quantile normalization returns a normalized expression
value 0 � Qj xð Þ � 1.

After transformation, expression values were replaced by
their percentile ranks for each profile. Quantile normalization
can eliminate most of the biological and technical variances in
expression measurements and result in a semi-quantitative rep-

resentation for expression levels. We examined the relatedness
patterns of quantile-normalized profiles by PCA. As shown in
Figure S21, the normalized quantile profiles were highly diver-

gent and reasonably repopulated the entire transcriptome
space. We then calculated the within-study differences,
within-tissue-group differences, and total differences

(Figure S22), and observed that the profiles from the same pro-
jects showed relatively higher similarity, but the quantile-
normalized data significantly reduced the number of outliers.

It implies that the quantile normalization method can remove

https://cran.r-project.org/package=onlinePCA
https://cran.r-project.org/package=onlinePCA
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most, but not necessarily all, of the variance attributed to
batch. These results suggest that our analysis pipeline may pro-
vide a fairly unbiased characterization of gene expression

distributions.

Global expression distributions of relative expression values

The sample distribution attributes, including the 5% percentile
(Q5) to the 95% percentile (Q95), the IQR, and the distribu-
tion skewness, of relative expression values, were calculated

using R. The series of percentile ranks of relative expression
values for each gene (Q5 to Q95), i.e., the dynamic range, rep-
resent the global expression pattern for each gene. In this

study, we used the IQR of distribution to represent the expres-
sion variability for each gene. Skewness refers to the asymme-
try in expression levels. Negative skewness indicates that most
of the data points (genes) are towards the high expression end.

Skewness ¼ n

ðn� 1Þ � ðn� 2Þ �
X�

x� x
�

s

�3

ð4Þ

where x is the relative expression value, x
�
is the sample mean, s

is the sample standard deviation, and n is the number of
samples.

Percentile clustering on dynamic ranges of gene expression level

Our goal is to reduce the dimension of the global expression
matrix and cluster genes based on their global expression pat-
terns, where members of the same cluster share similar expres-

sion levels, expression variability, and expression specificity
(Figure 5). This problem can be formulated as clustering genes
by their shapes of distributions. The main difficulty here is the

representation of distribution shapes. In this study, we adopted
a simple strategy called percentile clustering [22], which uses a
series of percentiles of the relative expression values, i.e., the
dynamic rangematrix, to represent the shape of the distribution,

and then uses this percentile matrix to cluster genes. With this
strategy, we clustered human genes using an affinity propaga-
tion clustering method (APCluster with negDistMat similarity

matrices) [60], with the dynamic range matrix. APCluster can
infer the number of clusters automatically and provide a repre-
sentative gene as the local center for each cluster. Our sensitivity

analysis showed that the affinity propagation clustering method
yielded a better within-cluster homogeneity than the K-means
method (Figure S23). Figure 5 illustrates the clustering results,

and Table S11 lists the gene clusters.
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