Table 3.
Performance metrics of the machine learning models
| Models | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC |
|---|---|---|---|---|---|---|
| CART | 0.7870 | 0.8181 | 0.7845 | 0.2322 | 0.9819 | 0.8839 |
| LightGBM | 0.7799 | 0.8237 | 0.7764 | 0.2269 | 0.9822 | 0.8808 |
| RF | 0.7663 | 0.8217 | 0.7619 | 0.2156 | 0.9817 | 0.8730 |
| XGBoost | 0.8314 | 0.8180 | 0.8324 | 0.2800 | 0.9829 | 0.9122 |
| MLP | 0.8008 | 0.7803 | 0.8025 | 0.2394 | 0.9787 | 0.8754 |
| TabNet | 0.8068 | 0.7728 | 0.8095 | 0.2443 | 0.9781 | 0.8759 |
| LR | 0.9260 | 0.07522 | 0.9938 | 0.4918 | 0.93097 | 0.8161 |
PPV positive predictive value, NPV negative predictive value, AUC area under the receiver operating characteristic curve