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ABSTRACT: In drug discovery research, the selection of promising binding sites
and understanding the binding mode of compounds are crucial fundamental
studies. The current understanding of the proteins-ligand binding model extends
beyond the simple lock and key model to include the induced-fit model, which
alters the conformation to match the shape of the ligand, and the pre-existing
equilibrium model, selectively binding structures with high binding affinity from a
diverse ensemble of proteins. Although methods for detecting target protein
binding sites and virtual screening techniques using docking simulation are well-
established, with numerous studies reported, they only consider a very limited
number of structures in the diverse ensemble of proteins, as these methods are
applied to a single structure. Molecular dynamics (MD) simulation is a method for
predicting protein dynamics and can detect potential ensembles of protein binding sites and hidden sites unobservable in a single-
point structure. In this study, to demonstrate the utility of virtual screening with protein dynamics, MD simulations were performed
on Trypanosoma cruzi spermidine synthase to obtain an ensemble of dominant binding sites with a high probability of existence. The
structure of the binding site obtained through MD simulation revealed pockets in addition to the active site that was present in the
initial structure. Using the obtained binding site structures, virtual screening of 4.8 million compounds by docking simulation, in vitro
assays, and X-ray analysis was conducted, successfully identifying two hit compounds.

1. INTRODUCTION
Drug discovery is generally expensive and time-consuming,
requiring approximately $2.6 billion and 12−14 years for a
drug to reach the market.1,2 Computational methods offer a
way to reduce these barriers to drug discovery, development,
and design. Drug design processes are divided into two types.
Ligand-based drug design (LBDD) is based on activity values
(such as half-maximal inhibitory concentration, IC50), and
known compound properties involved in drug binding.
Representative methods in LBDD include quantitative
structure-activity relationship (QSAR)3−5 and machine learn-
ing.6−8 Alternatively, structure-based drug design (SBDD)
bases the design process on a target protein structure. In
SBDD, the discovery of the target protein binding site is a
fundamental starting point.9,10 Typically, the protein binding
site is identified by X-ray analysis and the drug is designed or
optimized based on information from that analysis. Human
immunodeficiency virus 1 (HIV-1) protease inhibitors were
developed using SBDD.11−13 Thus, binding site information,
such as shape and physical properties, is crucial for drug
development and optimization.

In general, three protein-ligand binding models are known:
lock and key, induced-fit, and pre-existing equilibrium
models.14 The lock-and-key model, first proposed by Emil
Fischer in 1894, is the simplest binding model, in which the
ligand fits perfectly into the keyhole of the protein. In contrast,
the induced-fit model was proposed by Koshland,15 in which
the protein pocket changes to match the shape of the ligand.
Ligands induce a conformational change at the target site that
activates or inactivates the protein by binding to the target site.
The pre-existing equilibrium model includes ligand-bound
pocket shapes in the ensemble of apo form.16 Ligand changes
equilibrium to a bound state by selectively binding to the
ligand-bound pocket shapes. Drugs that bind to proteins, such
as enzymes, are roughly divided into two types: competitive
inhibitors and noncompetitive inhibitors. Competitive inhib-
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itors bind to active sites at which the protein catalyzes a
reaction, whereas noncompetitive inhibitors bind to nonactive
sites, such as allosteric sites. Noncompetitive inhibitors that
bind to allosteric sites have several advantages compared with
competitive inhibitors that bind to active sites, including low
side effects and high affinities.17 Thus, the determination of
new binding sites such as allosteric sites, is important in drug
development studies. However, although all proteins are
potentially allosteric,18 few cases of allosteric inhibitors have
been reported.19 Therefore, protein-ligand binding models and
inhibition modes are diverse, and clarifying these mechanisms
at the molecular level is important in inhibitor discovery and
structure optimization.
To detect binding sites for drug design, computational

methods to identify binding sites, such as POCKET,20

LIGSITE,21 CAST,22 PASS,23 SURFNET,24 Q-SiteFinder25

and MetaPocket 2.0,26 have been reported. These methods
estimate the protein binding site from the three-dimensional
geometry of the protein, and no ligand is required. Moreover,
several studies have adopted machine learning methods, such
as the support vector machine (SVM) method, for predicting
allosteric sites.27−29 In combination with these binding site
detection methods, virtual screening methods, such as protein-
ligand docking simulations,30 have been applied to develop
new drugs.31−33 DOCK,34−36 AutoDock,37,38 AutoDock
Vina,39 GOLD,40 and Glide41,42 are typical docking simulation
software, and there have been many reports of screening with
these docking simulations, including protein-ligand complex-
derived pharmacophores.43−60

Typically, traditional computational methods, such as
binding site identification and protein-ligand docking simu-
lations, do not consider protein flexibility because the
calculations are for a single point. Thus, these methods
provide limited screening as these methods as they rely on lock
and key models that treat the system as a rigid body. It is
essential to consider the dynamic features of proteins in order
to perform virtual screening that yields a greater variety of
compounds.
MD simulations account for protein flexibility using

Newtonian principles. This method can predict protein-ligand
induced-fit and ensembles of pre-existing equilibrium models
by predicting the dynamics of proteins. Moreover, Ma et al.
reported a computational method for predicting allosteric sites
from residue-residue interaction patterns.61 In that study,
conformational ensembles of a target protein generated by MD
simulations for site prediction were applied. Thus, MD
simulations can be used for identifying new binding modes
and pockets that traditional computational methods cannot.
In this study, to demonstrate the effectiveness of virtual

screening for protein flexibility, we performed virtual screening
using docking simulation and MD simulations for the binding
s i te of Trypanosoma cruz i spermidine synthase
(TcSpdSyn)62−67 that cannot be detected by single-point
methods. We then performed in vitro assays to determine the
inhibition activities of compounds identified by the docking
simulations and conducted subsequent X-ray crystallographic
studies of the active compounds. Finally, we carried out
fragment molecular orbital (FMO) calculations to analyze
important interactions between TcSpdSyn and the active
compounds.

2. MATERIALS AND METHODS
2.1. Computational Methods. The structure of

TcSpdSyn (PDB ID: 3BWC), as the docking target, was
obtained from the Protein Data Bank. The hydrogen
assignment to the protein, water removal, and conformation
optimization of the complex were accomplished in Maestro
using the OPLS2005 force field.68 And carboxyl group of S-
adenosylmethionine (SAM) which is included in the structure
was deleted to correct SAM to Decarboxylated S-adenosylme-
thionine (dcSAM) as a cofactor. The MD simulation system
was prepared using Desmond ver. 3.5 with the default settings.
The temperature and pressure of the system were set to 300 K
and 1 atm, respectively. The time step and structure sampling
interval were set to 2 fs and 1 ps, respectively. We performed
the simulation five times under the NPT ensemble for 20 ns.
Next, we merged all trajectories from the MD simulation and
performed structure clustering based on the amino acid
residues at active site, which are shown in the Table S1, using
average linkage in AMBER.69 After clustering, site volume and
druggability of the active center were evaluated by SiteMap.70

Docking simulations were performed at the active site of the
prepared structure in the absence of the natural substrate
putrescine. For the docking simulation, a 20 × 20 × 20 Å3 grid
box was generated, thereby maintaining the TcSpdSyn active
site. dcSAM, as a cofactor, was not deleted. We used Glide in
standard precision (SP) mode41,42 for our docking simulations
of approximately 4,800,000 drug-like compounds in the
Namiki Sho-ji Co., Ltd., library and the Astellas Pharma Inc.
in-house compound library that satisfy Lipinski’s rule of five.71

All calculations were performed on an HP Proliant SL390s G7
server with an Intel Xeon X5670 2.93 GHz core and five nodes
on the TSUBAME2.5 supercomputer at the Tokyo Institute of
Technology. The X-ray crystallography structures of TcSpdSyn
with compounds 1 and 2 were hydrogenated in Maestro using
the OPLS2005 force field. FMO calculation input files were
generated using FMOutil Version 2.1, and calculations were
performed for the TcSpdSyn complexes with 1 and 2 using
GAMESS72 at the MP2/6-31G level. Interaction energy
analysis was performed using the analytical tool Facio,73

which is based on pair interaction energy decomposition
analysis, as proposed by Fedorov and Kitaura.74

2.2. In Vitro Assay. The protocol for the TcSpdSyn
inhibition assay has been described previously.75 The assay was
performed using an enzyme-coupled assay incorporating
spermidine/spermine N(1) -acetyltransferase 1 (SSAT1). 7-
Diethylamino-3-(4’-maleimidylphenyl) -4-methylcoumarin
(cat. D-346, Thermo Fisher Scientific) was used to measure
coenzyme A produced from the SSAT1 reaction. Briefly, a
reaction mixture of 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES) buffer (50 mM, pH 7.5) containing
ethylenediaminetetraacetic acid (EDTA, 10 μM), 0.01%
Tween 20, TcSpdSyn (14.7 nM), dcSAM (50 μM), putrescine
(50 μM), acetyl coenzyme A (15 μM), and SSAT1 (0.83 nM)
in the presence or absence of 1 or 2 was incubated at room
temperature for 30 min. The concentrations of putrescine and
dcSAM were determined using their Km values (data not
shown). The fluorescence signals were detected using a
Paradigm plate reader (Molecular Devices) with excitation at
405 nm and emission at 530 nm. IC50 values were calculated
from dose-response curves in which each of eight data points
represents the average of four measurements (Figure S2).
Compound 2 was used as the hydrochloride salt. These
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compounds were dissolved in dimethyl sulfoxide (DMSO), the
final concentration of which in the assays was as high as 1.3%.
2.3. X-ray Crystallography Analysis. The protocol for X-

ray crystallography has been described previously.75 Briefly, co-
crystals of TcSpdSyn complexed with dcSAM and compound 1
were obtained using the sitting-drop vapor diffusion method.
Prior to crystallization, TcSpdSyn (15 mg/mL) was mixed
with dcSAM and compound 1 at final concentrations of 2 and
5 mM, respectively. A reservoir solution consisting of bis-Tris
(100 mM, pH 5.5-6.5), ammonium sulfate (200 mM), and 10-
15% (w/v) PEG4000 was prepared. The precipitated crystals
were transferred into a mother liquor containing 20% (v/v)
glycerol as a cryoprotectant, which was then flash frozen in
liquid nitrogen. X-ray diffraction data were collected at the
Photon Factory (Tsukuba, Japan) AR-NE3A beamline using a
robotic sample changer and an automated data collection
system.76,77 The structure was resolved by molecular
replacement using Phaser.78 The apo-structure of TcSpdSyn
(PDB ID: 3BWB) was used as a reference model. After
structural refinement using REFMAC,79 dcSAM and com-
pound 1 were clearly observed in the electron density maps

and fitted to the maps using AFITT (OpenEye Scientific). The
final structures were deposited in the Protein Data Bank (PDB
IDs: 5Y4P and 5Y4Q).

3. RESULTS
3.1. Discovering of Hidden Binding Site by Molecular

Dynamics. To predict TcSpdSyn binding sites, we performed
MD simulations and structure clustering for virtual screening.
Figure S1 shows the root-mean-square deviations (RMSD) of
TcSpdSyn α-carbon atoms, side chains, and heavy atoms
during a 20 ns MD simulation. Next, we conducted structure
clustering to extract representative structures from the
trajectory. Figure 1 shows the active site of TcSpdSyn in the
X-ray structure and clustering structures.
The active site volume of the X-ray structure was 193 Å3.

However, the active site volumes of the clustering structures
were 496 Å3. In clustering structure 1 (Figure 1B), a new
cavity, which was not identified in the X-ray structure, was
discovered around Glu22. We also evaluated these binding
sites by the D-score of SiteMap (Schrod̈inger inc.) The D-
scores indicating the druggability of the clustering structures

Figure 1. TcSpdSyn target site in the X-ray and clustering structures. (A) X-ray structure (volume: 193 Å3, D-score: 0.56), (B) clustering structure
1 (volume: 496 Å3, D-score: 1.12, population: 0.178).

Figure 2. Comparison of docking poses of the top five compounds with high docking scores at each binding site. (A) docking pose of the X-ray
structure, (B) docking pose of the clustering structure. The stick model shows Glu22 and dcSAM, and the line model shows docking results.
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were higher than that of the X-ray structure (X-ray D-score:
0.56, clustering structure 1 D-score: 1.12). Target sites with D-
scores higher than 0.98 are highly druggable.70,80 These results
suggest that the target site of TcSpdSyn is flexible and has a
structure with higher druggability potential. It is possible that
compounds not found when using the X-ray structure could be
evaluated by using the predicted structure. We suggested that
molecules that inhibit structural change can bind to the new
site. We defined the new site as a hidden binding site and then
performed docking simulations for the hidden binding sites in
the clustering structures. We also performed docking
simulations for the active site in the X-ray structure to
compare docking simulation results between hidden binding
sites and the active site in the X-ray structure.
3.2. In Silico Screening by Docking Simulation. To

obtain drug candidates from our combined library of 4,800,000
drug-like compounds, we conducted docking simulations for
the TcSpdSyn hidden binding site, as predicted by MD
simulations and the active site in the X-ray structure, using
Glide in the SP mode. Figure 2 shows the docking poses of the
top five compounds with high docking scores at each binding
site.
The docking results of the X-ray structure show that these

compounds bind to the TcSpdSyn active center, which is
adjacent to dcSAM. In contrast, the docking poses in the
clustering structures cover a wide range of hidden binding
sites. Figure 3 shows the diversity of the top 10,000

compounds with high docking scores in each docking result.
In the X-ray structure (Figure 3A), many compounds lacking a
heterocycle or chiral center are favored. In contrast, more
compounds containing a heterocycle and/or chiral center are
favored with clustering structure 1 (Figure 3B). Figures 3C,D
also show docking score histograms for the top 10,000
compounds. Histograms of X-ray structures have the most
results above −6.0, whereas histograms of clustering structures
have the most compounds between −7.5 and −7.0. Overall,
our docking simulations identified a variety of compounds after
performing MD simulations and structure clustering.
3.3. In Vitro Assay and X-ray Crystallography

Analysis. We ran docking simulations targeted to the ”virtual”
hidden binding site found in the MD simulations. Next, we
selected 191 compounds in order of highest docking score for
the hidden binding site and performed in vitro enzyme assay to
validate their IC50 concentration values. The results showed
that two compounds exhibited inhibitory activity (Table 1).
To examine the binding sites used by these two active

compounds, we conducted X-ray crystallographic analyses to
observe the structures of the TcSpdSyn complex with the two
top-ranked compounds (compounds 1 and 2) in the hidden
binding pocket (Figure 4), as predicted by the MD
simulations.
These data show that compound 1 interacts with Glu22 and

Asp77 through hydrogen bonding (Figure 4A). Compound 2
interacts with Glu22 and Asp77, similar to 1, and the lone pair

Figure 3. Diversity of docking results and score histograms for the top 10,000 compounds. (A) chiral center and hetero cycle number of X-ray
structure docking results, (B) chiral center and hetero cycle number of clustering structure 1 docking results, (C) docking score histogram of X-ray
structure docking results, (D) docking score histogram of clustering structure 1 docking results.
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of the quinoline nitrogen atom in 2 is proximal to the
carboxylate group of Glu22. Thus, these results suggest that
Glu22 is in a neutral state when interacting with the lone pair
of quinoline. Next, we conducted an interaction energy analysis
for each X-ray structure using FMO calculations. Figure 5A
shows the results of the interaction energy analysis of the
TcSpdSyn-1 complex.
Compound 1 interacts with Glu22 and Asp77 (interaction

energy values: −25.93 and −17.56 kcal/mol, respectively)
through two hydrogen bonds. Therefore, these interactions
would appear to be important for binding to the site. Some
other interactions were also found: Trp61, Ile71, Thr244, and
Tyr245 interacted with compound 1 with interaction energies
of −4.45, −6.51, −4.83, and −7.36 kcal/mol, respectively.
Figure 5B shows the results of the interaction energy analysis

of the TcSpdSyn-2 complex. Compound 2 interacted with
Glu22 and Asp77 (interaction energy values: −20.08 and
−30.05 kcal/mol, respectively) through two hydrogen bonds
in the same manner as 1. In particular, Asp77 interacted with
compound 2 in a neutral state. Moreover, some weak
interactions, such as with Ile71 Tyr245 and Ile247, were
confirmed, with interaction energy values of −7.16, −6.96, and
−5.71 kcal/mol, respectively. Figure 5C shows the results of

the interaction energy analysis of the TcSpdSyn-cis-4-
methylcyclohexanamine (4MCHA) complex (PDB ID:
2PT9).81 4MCHA has been reported as a known inhibitor
and binds to the TcSpdSyn active site.81 This inhibitor
interacted with Asp171 (interaction energy: −14.29 kcal/mol).
Furthermore, 4MCHA also interacted with dcSAM, which is a
cofactor of SpdSyn. These results suggested that compound 1
and 2 show interaction patterns different from 4MCHA. Figure
6 shows the amino acid sequence of the binding sites defined
by LIGSITEcsc.82

Upon examination of the X-ray structure of TcSpdSyn with
compound 1 at the binding site, the amino acid sequence
overlap with the clustering structure was 72.2%. Glu22, which
interacts with 1, is a feature of the sequence of the clustering
structure binding site. Therefore, the MD simulations
predicted the new binding site of TcSpdSyn and the amino
acid residues that contribute a significant interaction at the
binding site.

4. DISCUSSION
We employed a molecular simulation approach, conducting
MD simulations to predict novel TcSpdSyn binding sites.
These simulations revealed a new binding site shape not
apparent in the X-ray structure. The MD simulations-predicted
binding site exhibits a higher D-score and a larger volume
compared to the X-ray structure. This binding site emerges due
to structural changes in the protein. one of the potential
ensembles TcSpdSyn can adopt when in equilibrium in an
aqueous solution. Such a protein structure cannot be
discovered by observing a single limited state like a crystal
structure.
To identify seed compounds for potential TcSpdSyn

inhibitors, we performed docking simulations using the
TcSpdSyn X-ray structure and clustering structures. These
simulations identified active compounds from approximately
4.8 million drug-like compounds. Based on the X-ray structure,
drug candidates without a heterocycle and chiral center were
considered. Conversely, drug candidates containing a hetero-
cycle and/or chiral center were considered for clustering
structure 1, as predicted by the MD simulations. Combining

Table 1. Summary of TcSpdSyn Inhibition by Compounds 1
and 2a

aPDB IDs for the co-crystallized enzyme-inhibitor complexes, IC50
values, and the molecular structures of the inhibitors are shown.

Figure 4. Binding site of each compound confirmed by X-ray analysis. (A) TcSpdSyn with compound 1 (PDB ID: 5Y4P), (B) TcSpdSyn with
compound 2 (PDB ID: 5Y4Q).
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docking and MD simulations enables the evaluation of a
diverse range of compounds. The histogram of docking scores
reveals that clustering structure 1 exhibits higher affinity than
the docking results from the X-ray structure. Generally,
docking scores are influenced by factors such as the number
of hydrogen bonds and protein interaction surfaces. Con-
sequently, clustering structure 1, with its larger site volume, is
advantageous in docking simulations, as hydrogen bonding and

interacting surfaces are more easily attainable than in the
binding site of the X-ray structure.
To assess their IC50 values, drug candidates from the

docking results were screened in TcSpdSyn inhibition assays.
As a result, TcSpdSyn IC50 values for two compounds were
determined, with compounds 1 and 2 inhibiting TcSpdSyn at
IC50 values of 82.27 and 43.41 μM, respectively. To verify the
binding mode, we determined the X-ray structure of the

Figure 5. Interaction energy analysis of each X-ray structure. (A) interaction energy of compound 1, (B) interaction energy of compound 2. (C)
interaction energy of cis-4-methylcyclohexanamine (4MCHA, PDB ID: 2PT9). The y-axis represents the interaction energy (kcal/mol) between
the ligand and each amino acid residue, and the x-axis represents the amino acid residue number.
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TcSpdSyn-ligand complexes. The crystal structures showed
that compounds 1 and 2 bind to the hidden binding site, as
predicted by the simulations, and interact with Glu22 and
Asp77 through hydrogen bonds. These hydrogen bonds are
absent in the TcSpdSyn active site structure where putrescine
is bound. Comparing the structures of compounds 1 and 2,
both are para-substituted anisoles with nitrogen-rich hetero-
cycle para-substituents. However, the X-ray structures display
opposite orientations for compounds 1 and 2 at the new site.
Compound 1 interacts with Glu22 through the hydroxy group
at the meta-position of anisoles, while compound 2 interacts
with Glu22 via a secondary amine at para-substituent.
Consequently, the two compounds exhibit different poses
despite sharing a common structure. Figure 7 compares the
binding poses of the docking results and X-ray structures. The
pose of the docking result is situated near Glu22, while the X-
ray structure is also proximate to Trp61 and Glu77, achieving
interaction. We have also confirmed that the compounds can
approach Trp61 and Glu77 from 50 ns as the results of the
pose-refinement MD simulations from the docking poses
(Figure S3). Several previous studies have also performed the
validity of the pose-refinement MD simulations from the
docking poses, with the potential to bind to the target protein
to reproduce the induced fit.83,84

This likely represents a conformational change and an
induced fit when TcSpdSyn accommodates the compound.
Such changes could be predicted by performing MD

simulations on protein-candidate complex structure models
obtained through docking simulations. However, during virtual
screening, it is impractical to perform MD simulations for all
candidate compound docking poses. Thus, the optimal strategy
is to select a few candidate compounds with the highest
docking scores and apply MD simulations to predict the effects
of these compounds on the protein structure. The target site
for virtual screening, when combined with MD simulation, is
situated adjacent to the active site. Known inhibitors binding
to the TcSpdSyn active site, such as 4MCHA, have been
reported. We also have reported inhibitors binding to the
TcSpdSyn active site of.85

In conclusion, our study demonstrates the potential of
combining molecular dynamics (MD) simulations with
docking simulations to identify novel binding sites and design
new active compounds. By using this integrated approach, we
successfully predicted a previously undiscovered binding site
on Trypanosoma cruzi spermidine synthase (TcSpdSyn) and
identified two active compounds with inhibitory activity. The
determination of two co-crystal structures with these active
compounds further confirmed the concept of the strategy. The
virtual screening method considering protein dynamics allows
for the exploration of various design strategies, enhancing the
drug discovery process. Our findings highlight the value of
employing a combination of MD and docking simulations for
computational drug discovery, especially for challenging targets
such as TcSpdSyn.

Figure 6. Amino acid residue sequence of the binding sites. X-ray: sequence of the TcSpdSyn-1 complex (PDB ID: 5Y4P), MD: sequence of the
clustering structure identified from the MD simulations. The residues were determined using yellow at the binding site. A binding site is defined as
the residues within 10 Å of an atom defined by LIGSITEcsc.

Figure 7. Comparison of compound conformations in docking and X-ray structures. Blue and green represent docking results and X-ray structures,
respectively. (A) comparison of compound 1, (B) comparison of compound 2.
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