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ABSTRACT: In this work, we demonstrate that Linear Discrim-
inant Analysis (LDA) applied to atomic positions in two different
states of a biomolecule produces a good reaction coordinate
between those two states. Atomic coordinates of a macromolecule
are a direct representation of a macromolecular configuration, and
yet, they are not used in enhanced sampling studies due to a lack of
rotational and translational invariance. We resolve this issue using
the technique of our prior work, whereby a molecular
configuration is considered a member of an equivalence class in
size-and-shape space, which is the set of all configurations that can
be translated and rotated to a single point within a reference multivariate Gaussian distribution characterizing a single molecular
state. The reaction coordinates produced by LDA applied to positions are shown to be good reaction coordinates both in terms of
characterizing the transition between two states of a system within a long molecular dynamics (MD) simulation and also ones that
allow us to readily produce free energy estimates along that reaction coordinate using enhanced sampling MD techniques.

1. INTRODUCTION
Many enhanced sampling techniques work by biasing a system
to explore along a low dimensional set of collective variables
(CVs).1 These methods allow us, in principle, to use the
known applied bias to reconstruct the free energy landscape in
that low dimensional space. In practice, the choice of the CVs
is crucial, with an ideal set of CVs allowing the system to
explore all relevant states within available simulation time.1

Recently, extensive effort has been invested in using a variety of
machine learning approaches, from very simple to very
sophisticated, to determine optimal coordinates for sampling
from molecular dynamics (MD) simulation data (refs 2−21
provide a representative but not exhaustive sample).
One commonly encountered challenge is to compute the

free energy path of a transition between two states along a
linear dimension that chemists term a reaction coordinate
(RC). For a macromolecule such as a protein, the two states
could be configurations for which we have known structures
(e.g., the PDB structure of a protein solved with and without a
bound ligand) or processes for which one state is known and
the other state can be at least qualitatively defined (e.g.,
folding/unfolding or binding/unbinding). If a long MD
trajectory containing multiple transitions between these states
is available, then reaction coordinates could be trained based
on the idea that we want to enhance sampling along the
slowest modes in the system.4,10,13,14,22,23 However, having this
data is rare, in which case one can try iterating sampling and
learning reaction coordinates with the goal of maximizing the
number of transitions between the two states in a fixed amount
of simulation time.4,5,11,13,15,24

An alternative approach which has shown some success is to
train reaction coordinates based on short simulations within
the two states and use a method that produces a coordinate
representing the difference between the two sets of data. Linear
dimensionality reduction techniques such as Principal
Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) are the simplest approaches for combining a large set of
variables that describe a system of interest to produce a small
set of CVs that characterize the available data. While PCA,
which produces coordinates that capture the most variance in
the data, has been used to promote exploration in enhanced
sampling simulations, LDA seems to hold more promise as an
RC since it is a supervised approach designed to maximally
separate different labeled classes of data (i.e., reactants and
products). We describe LDA in full detail in the next section.
In one study, Mendels et al.6 produced a modified approach to
LDA termed harmonic LDA (HLDA, because the covariance
matrices in the two different states of interest are combined by
a harmonic average rather than a simple sum) and, in that work
and subsequent ones,7,9 combined it with Metadynamics
(MetaD) to effectively enhance sampling between two states
for several different systems. Later, a neural network was used
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to combine features before training LDA vectors to produce
the reaction coordinate.16

In the prior examples of reaction coordinate design for free
energy sampling of biomolecules that we are aware of, the
input features to the method were internal coordinates, or a
function of internal coordinates, for the molecule(s) of
interest�for example, distances, angles, and dihedrals. Often,
these could be CVs based not on atomic positions directly but
on coarse-grained (CG) representations of the biomolecule,
such as the distance between the centers of masses (COMs) of
two different domains or the distance between the COM of a
ligand and certain atoms in its binding pocket. This is not
surprising, because these often correspond to our physical
intuition about the biomolecular reaction coordinate. More-
over, internal coordinates are invariant to translation and
rotation of the molecule, and thus bias forces applied to these
coordinates do not depend on the position or orientation of
the molecule.
Recently, we presented atomic coordinates as an alternative

set of features to use in the context of clustering biomolecular
data.25 Atomic coordinates of a subset of atoms, or of beads
corresponding to a CG representation of a molecule, offer an
alternative to internal coordinates with the advantage that
there is little choice in selecting the features to use. Using a
protein as an example, we need only make the standard choice
between Cα atoms, backbone, all heavy atoms, and so on.
Moreover, only 3N − 6 atomic coordinates essentially describe
the state of a biomolecular system with N important atoms
(but ignoring contributions of solvent, salt, etc.), whereas use
of internal coordinates often results in an overdetermined set
of features, such as all O(N2) pairs of distances. In ref 25, we
developed a procedure for clustering molecular configurations
into a Gaussian mixture model (GMM) using atomic positions
that overcomes challenges of orientational dependence that
prevented their use earlier, as described below. Because a
Gaussian mixture model in positions is a natural way to coarse-
grain a free energy landscape,25−28 with locally harmonic bins
around metastable states, the resulting clustering is a physically
appealing definition of the “states” a molecule can adopt.
However, our Gaussian mixture model still relies on a very

high (3N − 6) dimensional representation of our molecule.
Given that the output of our clustering algorithm is a set of
states each defined by a multivariate Gaussian distribution,
LDA is a natural approach to produce a low dimensional
representation of our data with large separation between states.
In this work, we first apply LDA to the folded and unfolded
states determined from shapeGMM clustering of a long
unbiased MD trajectory of a fast-folding protein and
demonstrate that it produces a physically reasonable ordering
of states from folded to unfolded. We then show that this
coordinate is a “good” reaction coordinate because the position
of the barrier separating folded and unfolded is very close to
the location where the system is equally likely to proceed to
folded or unfolded (in terms of a committor function to be
defined below). We implement this position LDA coordinate
in the PLUMED sampling library and demonstrate that biased
sampling along this coordinate can accelerate transitions
between the folded and unfolded states and produce a
qualitatively similar free energy surface as compared to the
unbiased trajectory in 3% of the simulation time, without any
additional tuning of the CV. Finally, we train a position LDA
coordinate on an achiral helical system where data is only
available in the left- and right-handed states and show that this

coordinate also allows us to readily sample between the two
states, despite there being no information about the transition
provided during training.

2. THEORY AND METHODS
2.1. Molecules in Size-and-Shape Space. Consistent

with our previous work on structural alignment and
clustering,25 we consider structures from an MD simulation
to be associated with Gaussian distributions in atomic
positions. Structures are represented by N particles (a subset
of atoms) using a vector x of dimensions N × 3 which is a
member of an equivalence class

[ ] = { + }x x R R1 : , SO(3)i i i N i
T

i i
3

(1)

where ξi⃗ is a translation in 3, Ri is a rotation
3 3, and 1N

is the N × 1 vector of ones. [xi] is a point in size-and-shape
space29 which has dimension 3N − 6 and is defined as

=S G/N
N3 3 where = ×G SO(3)3 is the group of all

rigid-body transformations for each frame with elements g =
(ξ,⃗ R).
Within the shapeGMM framework, the probability density

of particle positions is assumed to be a Gaussian mixture
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where N(xi gi,j|μj, Σj) is the jth normalized, multivariate
Gaussian with mean μj, covariance matrix Σj, and weight ϕj
(the weights are normalized such that ∑j=1

K ϕj = 1). gi,j is the
element of G that minimizes the Mahalanobis distance
between xi and μj. Iterative determination of gi,j and μj is
performed in a Maximum Likelihood procedure.25

In the current work, we will consider LDA coordinates
learned using data from only two states. Additionally, we will
only consider “weighted” alignment of particle positions, which
equates to using a Kronecker product covariance (where Σj =
ΣN ⊗ I3, for ΣN the N × N covariance of particle positions) in
defining the Mahalanobis distance between frame and average
structure as described in detail in ref 25.
2.2. Dimensionality Reduction Using Linear Discrim-

inant Analysis on Particle Positions. We propose to use
LDA directly on aligned particle positions as a reaction
coordinate. LDA for two states produces the linear model with
the maximal interaverage variance while minimizing intra-
cluster variance.30 For K different clusters, this is achieved by
first computing the within-cluster scatter matrix

=
=
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and the between-cluster scatter matrix

=
=
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i

K

i i
T

1
(4)

where μi is the average structure of cluster i, and μ is the global
average. The simultaneous minimization of within-cluster
scatter and maximization of between cluster scatter can be
achieved by finding the transformation G that maximizes the
quantity

S SG G G GTr(( ) )T
w

T
b

1 (5)
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This maximization can be achieved through an eigenvalue/
eigenvector decomposition, but such a procedure is only
applicable when Sw is nonsingular. The LDA method was
reformulated in terms of the generalized singular value
decomposition (SVD)31 extending the applicability of the
method to singular Sw matrices such as those encountered
when using particle positions.
In addition to employing the SVD solution to the LDA

approach, care must be taken in how particle positions are
aligned when performing LDA. This is evident when one
considers the scatter matrices in eq 3 and eq 4. The values and
null spaces of these scatter matrices will depend on the specific
alignment procedure chosen. There are three obvious choices
for structural alignment prior to LDA: (1) alignment of each
frame to its respective cluster mean/covariance, (2) alignment
to one cluster or another, and (3) alignment to a global
average. The first choice will lead to scatter matrices with
different null spaces for each cluster making their addition in
eq 3 unsatisfactory. Alignment to a cluster mean will yield
consistent null spaces for each cluster but requires distinct
alignment reference and global average structures. Addition-
ally, aligning to a cluster mean yields to an undesirable
ambiguity (and asymmetry) in the choice of cluster. Alignment
to a single global average overcomes all of these issues and, as
we show in the Supporting Information (Sec. S6), yields a
sampling coordinate that is at least as good as alignment to a
cluster mean for the systems tested here.
The result of an LDA procedure on two labeled states will be

a vector, v, of coefficients that best separate the two states.
These vectors are similar in nature to the eigenvectors from
PCA, a procedure more familiar to the biosimulation field.
2.3. Biasing a Linear Combination of Positions. The

value of the LDA coordinate after this procedure is a dot
product of the vector v with the atomic coordinates x − μ.
When computing this value on the fly within an MD
simulation, we need to consider the value of [x(t)], the
equivalence class of the position at time t, translated and
rotated to a reference {μ, Σ}.
Therefore, to compute the value of the LDA coordinate l, we

first translate x(t) by = = =t x t t( ) ( ) ( )
N i

N
i N i

N
i

1
1

1
1 , the

difference in the geometric mean of the current frame and that
of the reference configuration. Then, we compute R(t), the
rotation matrix which minimizes the Mahalanobis difference
between x(t) − ξ ⃗ and μ, for a given Σ, as described in ref 25.
Finally, we compute

= · ·x v R xl t t( ) ( ( ( ) ( )) ) (6)

By definition, l(μ) = 0.
To apply bias forces to this coordinate, we must be able to

compute ∇l(x(t)). Because of the inclusion of the optimal
rotation process by SVD, it is nontrivial to compute this
analytically, and we instead compute derivatives numerically.
2.4. Enhanced Sampling with OPES-MetaD. Enhanced

sampling simulations on LDA coordinates were performed
using Well-tempered Metadynamics (WT-MetaD) and On the
Fly Probability Enhanced Sampling-Metadynamics (OPES-
MetaD) as implemented in PLUMED.32−35

WT-MetaD works by adding a bias formed from a history
dependent sum of progressively shrinking Gaussian hills.36,37

The bias at time t for CV value Qi is given by the expression

=
<
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where h is the initial hill height, σ sets the width of the
Gaussians, and ΔT is an effective sampling temperature for the
CVs. Rather than setting ΔT, one typically chooses the bias
factor γ = (T + ΔT)/T, which sets the smoothness of the
sampled distribution.36,37 Asymptotically, a free energy surface
(FES) can be estimated from the applied bias by

=F Q V Q t( ) ( , )
1

37,38 or using a reweighting
scheme.37,39

In contrast to the use of sum of Gaussians in traditional
MetaD, OPES-MetaD applies a bias that is based on a kernel
density estimate of the probability distribution over the whole
space, which is iteratively updated.34,35 The bias at time t for
CV value Qi is given by the expression
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i
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Here in the prefactor, T is the temperature, kB is Boltzmann’s
constant, and γ is the bias factor. Pt(Q) is the current estimate
of the probability distribution, and Zt is a normalization factor
that comes from integrating over sampled Q space. Finally,

= ( )exp E
k T 1B

is a regularization constant that ensures the

maximum bias that can be applied is ΔE. For one of our
systems, we found that limiting the maximum bias using
OPES-MetaD helped prevent unphysical exploration along our
LDA coordinate (this is also possible using other approaches
such as Metabasin Metadynamics40). Even with this limitation,
we apply additional wall potentials to prevent exploration well
beyond the LDA values for each of our two states. As in WT-
MetaD, F(Q) can be directly estimated from V(Q) by
F Q V Q( ) ( )

1
or through a reweighting scheme.35

Details of the sampling parameters used for each system are
given in Sec. 5.
2.5. Implementation. Clustering and iterative alignment

of trajectory frames prior to learning LDA vectors is performed
using our shapeGMMTorch package, which is a high
performance version of the methods from ref 25, implemented
with pyTorch41 for accelerated computation on GPUs.
shapeGMMTorch is available from https://github.com/
mccullaghlab/shapeGMMTorch and can easily be installed in
python using the command pip install shape-
GMMTorch. We have also created a wrapper library for the
training of LDA vectors directly from positional data, which is
available from https://github.com/mccullaghlab/pLDA and
which can be easily installed with pip install posLDA
(although this wrapper was not used in the analysis performed
in this paper as it was not yet available). Within posLDA,
vectors are learned using the SVD implementation of the
scikit-learn LinearDiscriminantAnalysis package.42

In order to compute and bias these vectors on the fly within
MD simulations, the optimal alignment and linear combination
procedure has been implemented in the PLUMED open source
library.32,33 All procedures, analysis for every case studied in
this work, and PLUMED code are made available at https://
github.com/hocky-research-group/posLDA_paper_2023, and
the code for computing LDA coordinates and Mahalanobis
distances on positions will be contributed as a module to
PLUMED shortly.
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3. RESULTS AND DISCUSSION
3.1. LDA Is a Good Reaction Coordinate for HP35

Folding. In previous work, we applied our shapeGMM
clustering approach to a 305 μs trajectory of a 35-amino acid
fast-folding folding mutant Villin headpiece domain (HP35),
obtained from the D.E. Shaw Research Group.43 From our
data, we choose to study a six state representation of the data,
whose states produce an interpretable representation of folding
and unfolding, and which is found not to be overfit by a cross-
validation approach. Details of the clustering and cross-
validation are provided in ref 25. The definition of this six
state model, {μi, Σi}K=6, was trained from 25,000 frames out of
∼1.5 million, and then each frame was assigned to a cluster
based on which center was closest in terms of Mahalanobis
distance on positions.
A single folding/unfolding coordinate was constructed by

performing LDA on frames assigned to the folded and
unfolded states. The folded and unfolded states were assigned
based on the RMSD to folded helix 1 and RMSD to folded
helix 2 2D map shown in Figure 1A for this long trajectory
with points colored by the assigned states. From this figure, we
can assign state 0 as the folded state because it is the state with
lowest RMSDs (it also has the largest population) and state 4
as the most unfolded state because it is the state with the
largest RMSDs. LDA is performed on these two states to
produce a single LD vector, denoted l, after an iterative
alignment of the amalgamated two-state trajectory to the
global mean and covariance, as described above. The
magnitudes of the coefficients in this vector are illustrated as
particle displacement vectors in the porcupine plot in Figure
1B. The histogram in Figure 1C shows the l values adopted in
each state. We see from these data that this coordinate
separates state 0 (l ≈ − 3) and state 4 (l ≈ 12). To our
surprise, this single coordinate, which was trained only on data
from state 0 and state 4, separates the other four states as well,
which suggests that it might be sufficient to produce transitions
between folded and unfolded through physically meaningful
configurations.
Figure 2A shows the variation of l versus time for this long

trajectory and exhibits many transitions between the folded (l
≈ −3) and unfolded (l ≈ 12) states (for comparison, ref 44
found that this long trajectory contains 61 folding transitions
with their definition of folding). In order to assess the quality
of this CV, we compute the committor of each frame in the
trajectory c(xt),

2,45,46 which for time t is 1 if the system reaches
a folded state before reaching an unfolded state in the times
following t.
To assess the quality of a reaction coordinate, we can

compute the committor probability for each value of l on a grid
of size δl.

= [ + ]
=

x xP l
M

c l l l l l( )
1

( ) ( ) ( , )t tc i
i t

N

i i
1

frames

(9)

= [ + ]
=

xM l l l l l( ) ( , )ti
t

N

i i
1

frames
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In Figure 2B, we show the approximate FES along l
computed as F(l) = −kBT ln P(l) for the long unbiased
trajectory, colored by the value of Pc(l). The FES shows a
stable well at a value of l = −3 corresponding to the highest
population state, the folded one, and very shallow minima for

each of the other states. The value of Pc varies continuously
from 1 to 0 along this coordinate, reaching a value of 0.5 at l =
1, just outside the folded basin. By this metric, our very simple
coordinate is a good CV for characterizing the transition
between folded and unfolded states, although the lack of a high
barrier separating the two states (due to the system being near
its melting temperature) makes it more ambiguous how close
the point of Pc = 0.5 is to a classic transition state. The
coincidence of Pc = 0.5 with a clear barrier is observed in
Figure S1 where we train using all 6 states, but for this paper,
we chose to focus only on one-dimensional LDA spaces. In
Figure S2, we show the FES projected between the folded
states and all other states, with each possible choice of
alignment.
3.2. LDA Is a Reasonable Sampling Coordinate for

HP35 Folding. To assess the ability to sample along an LDA
coordinate, we perform OPES-MetaD to bias the system to

Figure 1. Folding/unfolding coordinate for HP35. (A) Points from
HP35 trajectory are colored by state assignment and mapped into
natural folding coordinates of the RMSD of residues in helix 1 or helix
3 to that in the folded state (which is a 3 helix bundle). State 0 is the
most folded state, and state 4 is the most unfolded state. Contours
shown are every 0.5 kcal/mol in the range (0,6). (B) Porcupine plot
showing the magnitude of the LDA coefficients trained only on states
0 and 4 from A, overlaid on the starting HP35 structure. (C)
Histogram of LDA coordinate l for each separate state. l evenly
separates all states, with states 0 and 4 at maximum separation.
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explore l (Figure 3). For the MetaD parameters listed in Sec. 5,
we see in Figure 3A that transitions between the folded and
unfolded state are accelerated. This corresponds to an
estimated FES that is in fair agreement with that obtained

from the long unbiased trajectory considering it is obtained in
only 3% of the MD time (Figure 3B). Undersampling of the
large unfolded region (l > 5) is a reflection of the usual
problem of sampling slow orthogonal degrees of freedom.
Despite this, when we look at the FES projected on natural
folding coordinates in Figure S3, we see that our sampling does
a good job capturing the main features of the long unbiased
trajectory, including the presence of intermediates along the x-
and y-axes, and the high energy unfolded state located in the
upper right. As inferred from the 1d FES, the most unfolded
regions are unexplored, and the statistical weight of the central
intermediate basin is incorrect. Shorter replicates of
simulations starting from different initial structures (Figure
S4) show the variance in FES estimates that could arise if one
is not careful to converge sampling. On the whole, our results
are evidence that our simple LDA coordinate is a promising
first step for sampling between two states of a complex
biomolecule.
3.3. Accurate Sampling Using LDA for a Bistable

Helix. The LDA procedure can be applied to determine a
reaction coordinate separating two states even without
sampling the actual transition (analogous to ref 6). To assess
this behavior, we investigate the right- to left-handed helix
transition of (Aib)9, a nine residue peptide formed from the
achiral α-aminoisobutyryl amino acid.47 The helical states of
achiral molecules must by symmetry have equal free energy,
and we previously took advantage of this property in
benchmarking sampling and clustering methods.25,48 The
properties of (Aib)9 have been characterized in simulation
including recently as a tool to benchmark advanced methods
for RC optimization.24,49,50

We performed 20 ns simulations starting from the left- and
right-handed states of (Aib)9 using inputs from ref 24 (see Sec.
5 for details). We did a three state clustering of the combined
MD data (total 40 ns, sampled every ps) and verified that the
two most populated clusters are the left- and right-handed
states. The coordinates of backbone atoms only were used for
the clustering procedure. We then performed an iterative
alignment of the combined data to compute a global (μ, Σ)
and then computed a single LDA vector between those frames
coming from the left- and right-handed states, respectively
from the globally aligned trajectory. Figure 4A shows that this
coordinate separates the training data with l ∼ 50 indicating a
right-handed helix and l ∼ −50 indicating a left-handed helix.
The left-handed helix is the starting point for further runs
(shown in Figure 4B, along with LDA coefficient magnitudes).
Having trained l, we next performed conventional and WT-

MetaD simulations starting from the structure in Figure 4B.

Figure 2. LDA results for the folding/unfolding of HP35 from
unbiased MD. (A) LDA coordinate trained on states 0 and 4 vs time
for the full 305 μs HP35 trajectory shows many transitions between
folded (∼−3) and unfolded (∼12) states. (B) Free energy vs l for this
data, colored by the committor probability in each bin, using 150 bins
for the range −8 to 20. This result does not change when discretizing
into 50 or more bins.

Figure 3. OPES-MetaD sampling on HP35 using the folding/
unfolding LDA coordinate. (A) LDA coordinate vs times for OPES-
MetaD simulation. (B) Comparison of free energy estimated from
unbiased MD and OPES-MetaD.

Figure 4. LDA coordinate for helical inversion of (Aib)9. (A) LDA
coordinate l vs time for training data starting from left- and right-
handed helixes. (B) Porcupine plot showing the magnitude of the
LDA coefficients on the left-handed helical structure.
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Figure 5A shows that MetaD (right) substantially increases the
rate of transition between the left- and right-handed states as
compared to conventional MD (left).

A more chemically motivated way of computing the helicity
of (Aib)9 is the parameter ζ′ = −∑n=3

7 ϕn, the negative sum
over the central backbone ϕ dihedral angles.24 This quantity
takes on values of approximately 5 for right-handed and −5 for
left-handed helices.24 Figure 5B shows qualitatively similar
behavior for ζ′ as l.
Figure 5C shows the FES computed for these two quantities.

The sampled l has a nearly perfectly symmetrical FES, and in
particular the free energy difference between the left- and right-
handed states is negligible. For the FES of the nonbiased ζ′
computed by reweighting, the result is nearly as symmetrical,
and the offset in free energy between the left- and right-handed
size is visible but minuscule. This result appears to be as good
as that obtained in ref 24, which uses a very sophisticated
iterative process and 900 ns of unbiased and biased simulation
data to obtain an optimized sampling coordinate as compared
to our 40 ns of input data; however, their optimized coordinate
appears to perform better in terms of transitions per unit time
generated with their choice of MetaD parameters. As detailed
in Sec. 5, the parameters used in our WT-MetaD simulation
are very gentle; their magnitude was limited by “crashing”,
which typically occurs due to inaccurate numerical integration.
To check this, we demonstrate in Figure S5 that use of a 1 fs
integration time step allows us to use much more aggressive
MetaD parameters, which results in much more frequent
transitions, as well as accelerated convergence enough to justify
the use of a smaller time step (Figure S6). It is possible that
implementation of analytical derivatives for our procedure may

further mitigate this issue if they can be properly derived, and
we will pursue this going forward.

4. CONCLUSIONS AND OUTLOOK
In this work, we demonstrated that LDA on positions
computed from two states of a system produces a good
reaction coordinate, both in terms of state transition kinetics
and our ability to bias that coordinate to assess the FES along
that coordinate. This was true for (Aib)9 even though the RC
was trained only using short simulations starting in each state,
making this a promising approach even when only structures of
end points of a process are available. In contrast to ref 6 where
input features were internal coordinates, we were able to use
standard LDA rather than HLDA in this case and achieve good
performance.
We note that LDA on positions would not apply directly to

problems such as molecular dissociation since the dissociated
states cannot be aligned to a single average structure; however,
we do think this coordinate would work well for apo-holo
transitions of a biomolecule and could easily be combined with
a ligand-distance coordinate to overcome sampling chalenges
e.g. as observed in ref 51. There are, of course, difficulties in
resolving structural states of globular proteins that could make
application of shapeGMM and subsequent LDA challenging.
Namely, structural states of globular proteins can differ in only
a small fraction of the total degrees of freedom. We feel that
the heterogeneous nature of allowed covariance in the
Kronecker form of shapeGMM will allow us to resolve these
states with adequate sampling. Once the clusters are resolved,
the LDA procedure described in the current manuscript will
highlight the coordinates relevant to separate the clusters.
For HP35, multidimensional LDA by construction better

separates all of the states of the molecule and may also provide
an even better reaction coordinate for kinetics (Figure S1). It is
not yet clear if this result is general or specific to the HP35
system. Regardless, the use of multidimensional LDA as an RC
is intriguing, and we are currently investigating the advantages
and limitations of these coordinates. However, this is not an
option when information about multiple states is unavailable a
priori (such as in the case of (Aib)9) which is why we did not
include it here. For cases like that, it would be intriguing to first
sample along the 1-dimensional reaction coordinate, then train
a GMM with a higher number of states, and continue iterating
this approach.
The use of states defined from our GMM clustering

approach presents both an advantage and disadvantage as
illustrated in the case of HP35. Our approach allowed us to
explore the folding/unfolding process and most of the
conformational landscape (Figure S3), but we were not able
to fully sample the FES around the unfolded state. For
sampling a broad and entropy dominated state, combining CV
based sampling on position LDA coordinates with tempering
or temperature accelerated methods should provide more
accurate information in this region as in many past
studies.52−56

In both the case of HP35 and (Aib)9, we were able to
accelerate transitions between two states using MetaD or
OPES-MetaD. In our hands, the biased simulations were
sensitive to sampling protocol in terms of being able to run
microseconds or longer without “crashing”. HP35 was less
sensitive to this issue using OPES-MetaD, while (Aib)9
performed better with standard WT-MetaD. For this reason,
we initially used small bias factors and hill heights/barrier

Figure 5. Metadynamics sampling results along the LDA coordinate
for (Aib)9. (A) LDA coordinate l vs time for 1.5 μs of conventional
MD and WT-MetaD. (B) Helical parameter ζ vs time for the
trajectories in A. (C) FES along l and ζ from WT-MetaD simulations.
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heights, which resulted in fewer transitions and presumably
worse convergence in fixed simulation time. We speculated
that some of this sensitivity may come from our choice of the
global trajectory mean and covariance as the reference state
when computing our LDA vectors; however, subsequent tests
using alignment to left- or right-handed helices for (Aib)9
showed that these alignments were more sensitive to crashing
and had worse convergence performance, supporting our initial
choice of global alignment (Figures S7,S8). A compelling
option is presented in the ATLAS method of ref 28, where bias
is computed along vectors to multiple reference states,
weighted by distance from that reference state, and we are
beginning to assess that approach.

5. SIMULATION DETAILS
All simulations were performed using GROMACS 2019.657

with PLUMED 2.9.0-dev.32,33 GROMACS “mdp” parameter
files and PLUMED input files are available in our paper’s
github repository for complete details.
5.1. HP35 Simulations. A 305 μs all-atom simulation of

Nle/Nle HP35 at T = 360 K from Piana et al.43 was analyzed.
The simulation was performed using the Amber ff99SB*-ILDN
force field and TIP3P water model. In that simulation, protein
configurations were saved every 200 ps, for a total of ∼1.5 M
frames. For our simulations, we solvate and equilibrate a fresh
system using the same force field at 40 mM NaCl.
Minimization and equilibration are performed using a standard
protocol (http://www.mdtutorials.com/gmx/lysozyme/index.
html), at which point NPT simulations are initiated at T = 360
K. mdp files for all steps of this procedure and the topology
files are all available from the paper’s github page (https://
github.com/hocky-research-group/posLDA_paper_2023).
OPES-MetaD simulations are performed with γ = 8, ΔE =

10 kcal/mol, pace of 500 steps, and a multiple time step58

stride of 2. Quadratic walls are applied at l = 5 and l = −15
with a bias coefficient of 125 kcal/mol/Å2.
5.2. (Aib)9 Simulations. Equilibrated inputs for (Aib)9

were provided by the authors of ref 24. In brief, simulations
used the CHARMM36m force field and TIP3P water.59 MD
simulations are performed in NPT with a 2 fs time step at T =
400 K.
WT-MetaD simulations are performed with h = 0.005 kcal/

mol, σ = 0.43, γ = 2, and a multiple time step58 stride of 2.
Quadratic walls are applied at l = 70 and l = −60 with a bias
coefficient of 125 kcal/mol/Å2. σ was chosen as the σl/3 where
σl was the standard deviation in l over the 20 ns simulation
starting from the left helical state used in the training of the
CV.
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