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ABSTRACT: We develop and test new machine learning strategies
for accelerating molecular crystal structure ranking and crystal
property prediction using tools from geometric deep learning on
molecular graphs. Leveraging developments in graph-based learning
and the availability of large molecular crystal data sets, we train
models for density prediction and stability ranking which are
accurate, fast to evaluate, and applicable to molecules of widely
varying size and composition. Our density prediction model,
MolXtalNet-D, achieves state-of-the-art performance, with lower
than 2% mean absolute error on a large and diverse test data set. Our
crystal ranking tool, MolXtalNet-S, correctly discriminates exper-
imental samples from synthetically generated fakes and is further
validated through analysis of the submissions to the Cambridge
Structural Database Blind Tests 5 and 6. Our new tools are computationally cheap and flexible enough to be deployed within an
existing crystal structure prediction pipeline both to reduce the search space and score/filter crystal structure candidates.

1. INTRODUCTION
The properties of molecular crystals, including physical and
bioactive features, depend sensitively on the details of the
crystal structure.1 In order to ensure safety and efficacy of
drugs or engineer the desired properties into functional organic
materials, such as organic semiconductors, it is necessary to
identify the stable polymorphs into which a given molecule
may crystallize before deployment. Due to the large number of
plausible ways for atoms and molecules to pack together, it is
not straightforward, in general, to predict crystal structures
from only single-molecule information.
Crystal structure prediction (CSP) generally must tackle two

problems: (i) searching for likely structures using random or
grid sampling, Markov chain Monte Carlo (MCMC)2 or
genetic algorithms (GA),3−8 and (ii) scoring or ranking found
structures from energetics obtained via empirical force fields or
quantum chemistry (QC). Force field potentials may be fast to
evaluate, but they are generally lacking in either accuracy and/
or general applicability. QC calculations have higher accuracy
and general applicability but are rather costly to run for large
numbers of proposed structures. The search needs to explore
many degrees of freedom: the number of molecules in the
asymmetric unit, Z’, the position, orientation, and conforma-
tion of the molecule, the size and shape of the unit cell, and the
space group. The high dimension of the search space,
combined with the cost of accurate ranking calculations
renders CSP an expensive proposition, with one group in the
recent Cambridge Structural Database Blind Test 69 expending
30 million CPU hours on a single molecular target.10 There is a
clear opening for accurate methods supporting this search that

are applicable to a variety of systems, inexpensive to employ,
and, consequently, help reduce the overall computational cost
of a CSP.
Standard approaches to the ranking problem fall into two

broad categories: Energy-based approaches compute the total
energy of a structure as a function of the atomic coordinates
employing, for example, general purpose force fields such as
the GAFF,11 purpose fit molecule-specific force fields,12 or ab
initio tools such as density functional theory (DFT). Purely
structure-based approaches (also called “topological” or
“geometric”), on the other hand, generate a score directly
from the atomic coordinates but without requiring an energy
evaluation. Our approach follows this second path, obviating
the need for an energy evaluation and using the power of
modern statistical techniques to enable potentially high
accuracy at low cost.
Protocols of geometric analysis can be understood based on

increasing orders of structural correlation functions. At the
lowest level is the 1-body spatial correlation, yielding the
average density. If a sample is obviously outside the range of
nonporous molecular crystal densities (packing coefficient cpack
roughly 0.55 < cpack < 0.85), it is rejected as implausible.
Stepping up one level to pairwise correlations, samples are
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rejected if any pair of atoms is significantly closer than the sum
of their respective van der Waals radii. In a set of random
crystal packings, adherence to both of the above conditions is
rare. Since these conditions are computationally inexpensive to
check, they make a highly efficient coarse-grained filter in
molecular crystal search. Although these notions are generally
accepted in the field of molecular crystals, they are nevertheless
important as a foundation for our discussion of higher order
approaches and a preview of what can be done with purely
structural information.
Several structure-based methods have been developed going

back to at least 1998.13−17 The common themes are (i) the
exploitation of the large and growing availability of
experimental molecular crystal structures, most importantly
those available in the Cambridge Structural Database (CSD),18

and (ii) the modeling of important intermolecular distances,
usually via some pairwise or two-body correlation function
such as the spatial distribution, radial distribution, or
fingerprinting. These approaches leverage the observation
that intermolecular distances are similar between atoms in
similar environments. Concretely, one can extract the
distribution of pairwise interatomic distances from exper-
imental structures and then score proposed structures or
predict their likelihood according to this distribution.
The two key limitations common in prior structural

approaches are (i) the problem of explicitly enumerating all
the pairs of atom types (elements, functional groups,
fragments, or environments) over which to model and (ii)
the use of low-order structural correlations, generally limited to
pairwise distances.
The first issue arises due to the combinatorial explosion of

atom-pair combinations, together with the concomitant
decrease in available training examples as one considers
more and more specific atom types. In the simplest case, all
atoms are considered to be the same type, yielding a single all-
to-all correlation function. This does not accurately represent
real materials as, for example, C−C and C−O distances have
significantly different distributions. Going further, each
element could be assigned a separate atom type, resulting in

+(N N )1
2 z

2
za a
unique radial distribution functions, with Nzda

being the number of elements considered. This still can be
improved as, for example, methyl and aromatic carbons have
different distributions of interatomic distances. One can
continue in this manner, using more nuanced atom type
definitions, while ballooning the number of distinct atom pairs.
Ultimately, it is impossible to fully capture the smooth and
continuous variation in local atomic environments by such a
discrete system.
On the second issue, consideration of strictly low-order

correlations results in a model that cannot capture important
physical features such as bond angles, directional bonding, and
many-body correlations in general. Similar to the increasing
complexity of atom types, this could be addressed by explicitly
modeling higher order correlations such as bond and dihedral
angles (3- and 4-body), but this considerably increases model
complexity and, due to the curse of dimensionality, sparsifies
the space of training data.
Building a simple empirical model over high order

correlations with highly specific atom types is technically
possible but, due to data sparsity, unlikely to result in a robust
and general model. Modern deep learning approaches on the
other hand provide the tools to address these weaknesses,

capturing atomic environments in a continuous representation
and learning high-order correlations, while generalizing well to
unseen data. In particular, we deploy advances from the fields
of geometric deep learning and learning on graphs using deep
graph neural networks (DGNNs).
The purpose of a graph neural network is to learn some

function of a graph in the space of its nodes (vertices), which
are connected by edges according to some structural logic. As
an example, in a sentence, each word could be assigned as a
node, and edges could be assigned as all-to-all semantic
connections between them. In the simplest molecular graphs,
atoms are embedded as nodes and covalent bonds between
atoms as edges.
We follow in the lineage of DGNN models such as SchNet

and PhysNet,19,20 encoding each atom in a molecule or
molecular crystal as a node in a graph, assigning directional
edges between atoms if they are within a cutoff range, rc, and
featurizing these edges with a spatial embedding function, as
discussed in Section 2. Nodes repeatedly pass messages
between each other in synchronized steps called graph
convolutions. These messages carry information from node
to node, conditioned on their edge embeddings, which
incorporate information on the relative 3D positions of
atoms. In this way, atoms aggregate information about their
local atomic environments, including the specifics of the
molecular geometry.
After a series of message passing steps, the model aggregates

information from all the nodes to a single vector representing
the whole graph. A feedforward neural network can then learn
a desired function based on the graph readout. If supplied with
sufficiently rich features, sufficiently large DGNNs can learn
arbitrarily complex functions in the space of 3D point clouds
up to the geometric limitations of the chosen architecture.21−24

By construction, our models are invariant to permutations in
atom ordering and global translations, rotations, and
inversions; they are, therefore, suitable for learning scalar
functions on molecular graphs. There is a growing literature of
so-called equivariant DGNNs25−28 for learning vector
functions such as forces on molecular graphs, but we see no
immediate need for this extra capability for our applications.
DGNNs have been effectively used in the past for a wide

variety of learning tasks on molecules and atomic crystals
including property prediction, stability evaluation, structure
generation, and more (see ref 23 for a very recent review). In
this work, we demonstrate how geometric deep learning
techniques may be extended to molecular crystals by modeling
two crucially important crystal properties. Based on the
previous discussion, we develop a new molecular crystal
DGNN model for crystal ranking, MolXtalNet-S, which inputs
the proposed atomistically detailed unit cell structure and
returns a stability score. We also undertake a more traditional
molecular bulk property prediction, training a separate DGNN
model, MolXtalNet-D, to predict the density of a given
molecular crystal, given only the molecule conformation. Prior
works have also used machine learning methods to predict the
density of a crystal based on molecule information.29−31 In
these approaches, models were provided only whole-molecule
features, such as the presence of certain fragments and the
molecule surface area, as opposed to learning a geometric
representation directly from atom positions.
Our two models for density prediction and stability scoring

could greatly accelerate molecular CSP by radically reducing
the parameter search space via a constraint on the range of
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likely densities and by providing a tool for ranking proposed
crystal structures. Both models are computationally inex-
pensive to evaluate and generally applicable to a wide range of
systems, including large and small molecules with light and
heavy atoms. In its current version, the crystal scoring model,
MolXtalNet-S, accepts crystals in any space group with one
molecule in the asymmetric unit, Z′ = 1.
This paper is organized as follows. In Section 2, we

introduce the DGNN models we employ for molecular crystal
modeling. In Section 3, we explain in detail how we construct
the data set. In Sections 4 and 5, we show how our DGNNs
perform on density prediction and crystal scoring tasks,
respectively, evaluating samples from the CSD and from the
CSD Blind Tests 5 and 6. We conclude in Section 6.

2. MODELS AND METHODS
2.1. Molecule Graph Model. Our graph models follow

the general framework of SchNet19 and related models,
wherein atoms are encoded as nodes with directed edges
featurized by some embedding function determined by the
local geometry. We have made several customizations, mostly
to improve expressiveness and flexibility of the model, which
we will elucidate here (see Figure 1).
The inputs to the model are the set of each atom’s feature

vectors, {a}, each with length 8, the set of atom coordinates,
{R}, and a feature vector for molecule-scale features, m, with
length 16 (see full feature lists in Appendix A). Molecule
features are concatenated to all atoms, producing {v}, which
gives each node initial global context. Atomic numbers (the
first dimension in v) are then replaced by a vector embedding,
which is reconcatenated back to the node feature vector and
subsequently fed through a fully connected layer and activation

= => fEMB( ) , (FC( ))i i i
j

i i
0 0

(1)

with □∥□ as the vector concatenation. A fully connected
linear layer is defined as

= · +x W x bFC( ) (2)

with x being an input vector, andW and b, respectively, being a
learnable weight matrix and bias vector; the activation
function, σ(x), is taken as the leaky ReLU throughout. Except
for W, all boldface variables are one-dimensional vectors.
There are several approaches to edge embedding, wherein

geometric information is introduced to the model. We tested
the hierarchy of embedding functions from SchNet, to
DimeNet, and SphereNet, incorporating increasingly higher-
order structural correlations in the edge embeddings.19,20,32−34

Ultimately, the most consistent and stable model included 2-
body (radial) embeddings only, using the Bessel basis
formulation from DimeNet32 with 32 basis functions, omitting
explicit angular information. For both tasks, we use a model
with four graph convolution layers and four fully connected
layers. The feature depth throughout (vectors f,g,h) is 256,
except within the message passing step where it bottlenecks to
128. Layer normalization, N(x), and dropout, D(x), of 0.1 are
used both in the graph convolutions and the output multilayer
perceptron (MLP).
In the “graph convolution” or “message passing” stage, the

model combines geometric information on the molecule with
the features provided in the nodes. The node information is
first bottlenecked from 256 dimensions to the message size of
128 by the node-to-message FC layer, FCn→m, and the radial
embedding eij between the source node indexed by j and target

Figure 1. Schematic of our MolXtalNet graph neural network architecture. ngc is the number of graph convolution layers in the model.
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node indexed by i has its dimension boosted from 32 to 128 in
the same manner by the edge-to-message FC layer, FCe→m

=F fN(FC ( ))i
t

n m i
t

(3)

=E eFC ( )ij
t

e m ij (4)

with Fit and Eijt being the resulting 128-dimensional vectors
representing nodes and edges, respectively. These are
subsequently used to construct messages in the tth graph
convolution

= ++f f F F EGCONV( , , )t
i
t

i
t

j r
i
t

j
t

ij
1

c (5)

=F F E F F ENGCONV( , , ) FC ( ( (FC ( ))))t
i
t

j
t

ij i
t

j
t

ij2 1

(6)

with FC1 and FC2 being two FC layers with input:output
dimensions of 384:128 and 128:256, respectively, and j being
the index for message sources running over the nodes within rc,
the convolution radius about node i, throughout taken as 6 Å.
After ngc graph convolutions, we aggregate all nodes of the

graph to a single 256-dimensional feature vector. Following
recent work on problems of expressivity of global aggrega-
tion,35,36 we employ a combination of global aggregators, max,
sum, mean, and self-attention (SA), in parallel, concatenating
the results and passing through a fully connected layer

{ } =f f fSA softmax(FC ( (FC ( ))) (FC ( ))k i i
i

nodes

2 1 3

(7)

= { } { } { } { }g f f f fFC(MAX SUM MEAN SA )k k k k (8)

with the aggregation operations running over the feature depth
index k.
The resulting feature vector, g, encodes what the model has

learned from the molecule or molecular crystal graph. We

recombine this vector with the original molecule-level features
and pass the result through an MLP with ngc + 1 layers
returning the final output

= =h g m y hFC( ), MLP( )0 0 (9)

= + =+h h h y hD NFC ( ( (FC ( ( )))), FC( )t t t n1
2 1

Gc

(10)

where y is either the 1-dimensional regression output for bulk
density estimation in MolXtalNet-D or the 2-dimensional
output representing the probability a given molecular crystal is
“real” or “fake” in MolXtalNet-S.

2.2. Molecular Crystal Graph Model. There is an open
question of how to encode the symmetry properties, and
periodicity of molecular crystals most efficiently in a GNN,
which, to our knowledge, has not been previously addressed. In
the study of atomic crystals, there are methods for crystal graph
construction,37−40 which compactly represent the full periodic
structure by a subset of atoms with self-connections
representing interactions between periodic images. One
could consider doing the same for molecular crystals; however,
the interatomic distances between periodic images in
molecular crystals are often rather long compared to typical
graph convolution ranges (rc ≈ 5−10 Å), and extending this
range introduces potential issues, as the convolution window
includes more and more atoms, proportional to rc3.
We, therefore, develop a molecular crystal graph convolution

(MCGC) taking inspiration from padding techniques in image
processing (see the diagram in Figure 2). We first identify and
separately label each atom within a N × N × N (in practice,
generally 3 × 3 × 3) supercell as follows: 0 for atoms in the
molecule within a chosen asymmetric unit, which we call the
“canonical conformer”, 1 for atoms within rmax + rc from the
canonical conformer centroid, with rmax as the maximum
distance between the centroid and any atom in the molecule,
and 2 for atoms outside this range. The crystal graph is then
constructed of nodes labeled 0 or 1, with 2s discarded.

Figure 2. Panels a)-c) show views along the reciprocal axes of the CSD structure NICOAM03. The gray molecule is the canonical conformer, and
blue represents all the symmetry images that could potentially participate in graph convolution. Messages pass to and within the canonical
conformer, and after the node update, the nodes’ feature vectors are copied to the symmetry images. Panel d) shows the Kamada Kawai
visualization of the directed graph. Green nodes correspond to atoms of the canonical conformer, while red nodes correspond to atoms of the
symmetry-related images of the canonical conformer. Green and red edges correspond to intra- and intermolecular graph connections, respectively.
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Directional edges are allowed between all atoms labeled 0, and
from the outside-in, from atoms labeled 1 → 0. In physical
terms, intramolecular messages are allowed as in a standard
molecular DGNN, and intermolecular messages are allowed
only toward the canonical conformer from its symmetry
images. Periodicity is enforced by overwriting the feature
nodes of all atoms in the canonical conformer to their
symmetry images in the rest of the 3 × 3 × 3 supercell after
each node update. This exploits the periodicity of the system
to achieve the same result as if we had performed a
convolution on an infinitely large molecular crystal graph.
Through repeated graph convolutions in this manner, we can
aggregate structural and chemical information in the usual way
for DGNNs out to a range of approximately rc × ngc, where ngc
is the number of graph convolution layers in the model. It is
good practice to ensure that the supercell size at least
encapsulates all atoms which could be labeled ‘1’ according to
the above procedure.
Allowing for intermolecular outside-in messages only in the

final layer of the crystal DGNN and leaving all prior layers as
intramolecular only results in a small but consistent improve-
ment in the test set loss. In this setup, the final node vector is
computed as the output of the graph convolution, omitting the
residual, and the source index, j, runs over only nodes outside
the canonical conformer

=f F F EGCONV( , , )i
n

j r
i
n

j
n

ij
t1 1

gc

c

gc gc

(11)

The idea behind this choice is that the model will learn first
a detailed representation of the molecular environment. As all
of our training and evaluation data comprise realistic
molecules, the intramolecular information is of limited utility
for crystal ranking, except as a context for intermolecular
correlations. By separating intramolecular from intermolecular
interactions in a hierarchy of structural correlations, we help
the model to focus on the intermolecular factors which
determine crystal validity. Of course, this is an architectural
choice which may vary depending on the problem under study.

2.3. Crystal Generation. In addition to positive examples
of “real” experimental crystal structures from the CSD, we
require negative examples to train a discriminator model. To
this end, we developed a molecular crystal parametrization
scheme and two generative approaches for synthesizing “fake”
molecular crystals. Both approaches work in the space of 12
molecular crystal parameters, C, defined below (see, also,
Appendix B). The first approach samples crystal parameters
from a multivariate Gaussian distribution fit to the CSD
statistics (Gaussian generator). The second approach works by
adding a small amount of Gaussian noise to the crystal
parameters of existing CSD structures and rebuilding the unit
cell (distorted crystal generator). The Gaussian generator
produces generally low-quality samples that fail to respect
atomic vdW radii, albeit with reasonable density. The quality of
samples from the distorted crystal generator depends on the
magnitude of the applied distortion.
The parameters, (a,b,c) and (α,β,γ), are the standard crystal

cell parameters corresponding to the lengths and internal
angles of the unit cell vectors. To analyze and generate
molecular crystals in a consistent and repeatable manner, we
define an additional six parameters to fix the position and
orientation of the molecules in the unit cell. For a crystal with
Z′ = 1 and Z molecules in the unit cell, there are Z possible

choices for the parametrization. We assign the molecule with
the center of geometry closest to the origin in fractional
coordinates as the “canonical conformer”. This choice allows
consistently repeatable crystal generation and editing, although
a different parametrization of the canonical asymmetric unit
may be more useful in different circumstances. The fractional
coordinates (x̅,y̅,z)̅ designate the center of geometry of the
canonical conformer, and (ϕ,ψ,θ) are the angles that
characterize the orientation of the canonical conformer from
a standardized initial orientation. The standardized initial
orientation is defined by aligning the principal inertial axes of
the molecule with the Cartesian axes. In general, this
assignment is ambiguous since the direction of the principal
inertial axes is arbitrary. To address this, we employ a slightly
modified definition of the principal inertial axes that
consistently returns vectors with the same relative directions
for a given molecule. A vector is drawn from the centroid to
the most distant atom, and the principal inertial vectors’
directions are chosen such that they have a positive overlap
with it. If the overlap of some principal vector is nearly or
exactly zero, as in a 2D geometry, the vectors’ directions are set
via the right-hand rule. If the resulting principal inertial axes
are left-handed, the initial position aligns them instead with
(x,y,-z), which respects the molecular symmetry.
Since we consider molecular conformers to be rigid bodies

in this work and crystals to be perfectly ordered, these 12
parameters, C, plus the choice of space group, completely
specify the crystal structure. We accordingly built a fast,
differentiable, and parallel PyTorch tool both for extracting
such parameters from existing crystals and for generating
explicit atomistic supercells given these parameters plus the
molecular conformation. Details of the cell builder are
provided in Appendix B.
The Gaussian generator uses the covariance statistics from

the CSD-derived training data set to fit a 12-dimensional
multivariate Gaussian model, with the cell vector lengths
substituted with a reduced set (a,b,c) → (a′,b′,c′), such that,
e.g.,

=
·

a a
V Zmol

1/3 1/3
(12)

and so forth. This makes the sampling invariant to the number
of molecules in the unit cell, Z, and the molecular volume,
greatly improving the average density of proposed crystals.
To enrich the training data with more plausible fakes, we

implemented the distorted crystal generator, which applies a
tunable amount of distortion to an existing crystal structure.
Starting from an experimental crystal structure, we determine
the crystal parameters, C, and standardize them according to
the data set statistics, =C c c

std
( )

C
2 . We then add 12-

dimensional Gaussian noise, scaled by a linear factor
= + ×C C cstd dis std dis,

12 , destandardize the parameters, and
reconstruct the unit cell in our usual way. For large values of
the distortion factor, cdis ≈ 1, the samples are essentially
random, and for very small distortions, cdis ≈ 0.001, the
samples are too similar to the experimental structures and not
useful as negative examples.

3. DATA PROCESSING
Our data processing pipeline constructs training and evaluation
data sets from either the CSD or directly from collections of
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.cif files. Crystal structures pass through three filtering and
featurization steps in preparation for model training, with the
relevant filters listed in Tables 1 and 2. The first processing

step is the assignment of a unique identifier and the collection
of crystal features, such as the space group, cell parameters, and
the coordinates for a single conformer and a complete unit cell
using the CSD Python API. As this work is a proof of concept
for our approach, we limit ourselves to crystals with one
molecule in the asymmetric unit, Z′ = 1. Much of what follows
would function straightforwardly for Z′ ≠ 1. At the first level,
the filtration catches various straightforward errors, as shown in
Table 1.
The second processing step is analysis and featurization of

the molecular conformer itself. Many atom- and molecule-scale
features which will be used as training inputs are computed
here, mostly using the RDKit Python package,41 including
atom electronegativity, molecular volume, molecular inertial
moments, etc., see Appendix A for details. Two important
filters are applied here; first, as RDKit is the main featurization
engine, the molecules must be recognized as valid structures by
the package. There are several possible reasons why RDKit
may reject a molecule, including errors in kekulization or issues
with the number of covalent bonds per atom.
The second filter applied at this step is the deletion of all

hydrogen atoms. Given that hydrogens fill important chemical
and structural roles, it is not ideal to exclude them from the
training data. However, inconsistency in whether or not
hydrogen positions are included in the CSD, uncertainty about
the precision of these positions, and the inability to reliably
place implicit hydrogens make it difficult to include them in a
consistent way. We do however include hydrogen bond donor/
acceptor labels in our atom-wise featurization and the number
of hydrogen bond donors and acceptors per molecule in
molecule-wise featurization. Even without explicit hydrogens,

our results are rather good, and the model can, in principle,
infer the occupied volume and directional hydrogen bonding
given the context of surrounding atoms. It is difficult, therefore,
to estimate the performance difference we would observe
including precisely placed hydrogens.
The prior two steps are rather slow, generally taking hours to

execute on a single CPU for the full CSD and are therefore
done before training. Using the above filters, we yield 313,000
featurized structures from an initial set of 1.21M samples. The
third and final step is done at runtime and allows us to quickly
pare down the data set into the relevant subset for a particular
model run. We will give more details on these choices when
discussing results. For all training runs, the data set is split
80:20 into training and test data sets, and we repeat most
experiments over multiple data sets and model seeds to ensure
robustness.
Our training data set is built in this way, starting from the

CSD. We also construct evaluation data sets using all the
publicly available submissions to the CSD Blind Tests 5 and
610 which pass the above filters (approximately 26k and 6k
structures, respectively). Naturally, this excludes submissions
for multicomponent structures such as Target XIX. We pull the
Blind Test target structures directly from the CSD and exclude
them from our training sets.
The data set generated via the above procedure contains

160k samples. The data set is, like the CSD itself, dominated
by space groups P21/c, P212121, P−1, and C2/c, but this is not
a major issue here, as neither of our methods depend on the
particular crystal symmetries, only on the arrangement of
molecules in space.

4. DENSITY PREDICTION
We use the crystal density prediction model, MolXtalNet-D,
described in Section 2 to infer information about the crystal
formed by a given molecule using only single-conformer data.
This is an appealing approach since prior knowledge about the
crystal can dramatically narrow the search space. MolXtalNet-
D is able to successfully model the packing coefficient, and
thereby the density, of molecular crystals. Despite extensive
testing, we have not yet reliably modeled any additional
properties relating specifically to crystal symmetry (crystal
system, space group, etc.), but future work will address this
problem.
For the given results, we minimized the crystal packing

coefficient prediction error using the smoothed L1 loss,
defined as l(x,y) = |x − y| − 0.5 for |x − y| > 1 and l(x,y) = (x −
y)2/2 for |x − y| < 1. This loss function improves on the
standard L1 loss with smoothly converging gradients about
zero, while also avoiding the very large losses and
accompanying gradients that sometimes destabilize training
with the L2 loss. We prioritize stability here but generally
observe comparable performance between the two losses when
models converge. The training data set was generated
according to the settings in Table 2, except that molecules
extracted from crystal entries with nonstandard crystal settings
were allowed, resulting in 198,000 samples. The data set was
split 80:20 into training and test data sets. Training is
remarkably robust to changes in the model architecture,
model/data sets seeds, batch sizes, and learning rates, with
most runs producing very similar metrics. We always attempt
to overfit the model and save the checkpoint with the lowest
test loss for evaluation. Training details of the presented runs
are given in the Supporting Information.

Table 1. Crystal Processing Filters

filter condition

entry is empty not allowed
entry missing atoms not allowed
Z′ 1
wrong number of molecules/components in entry not allowed
structure is polymeric not allowed
entry is missing 3D structure not allowed
unit cell generation fails not allowed

Table 2. Filters Applied at Runtime

filter condition

Blind Test 5 and 6 targets not allowed
molecule is organic allowed
molecule is organometallic allowed
molecule max # atoms 100
molecule max atomic number 100
Z value Z = Wyckoff multiplicity
Z value 0 < Z ≤ 18
crystal packing coefficient, cpack 0.55 < cpack < 0.85
crystal has disorder not allowed
nonstandard space group settings not allowed
multiple polymorphs per entry not allowed
missing R-factor in entry allowed
exactly overlapping atoms not allowed
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We chose to model the crystal packing coefficient
= ·cpack

V Z
V
mol

cell
instead of the cell volume or density because

these are trivial functions of cpack: = ·Vcell
V Z
c
mol

pack
, = ·ccell

m
V pack

mol

mol
.

Presenting these in lieu of the packing coefficient can obscure
the real performance of the model.
Figure 3 and Table 3 summarize our results on packing

coefficient modeling. Note the apparent improvement going

from the packing coefficient to the raw density, despite
identical underlying physical information.
Prior works3,29,30 have already undertaken the modeling of

crystal density/unit cell volume from molecular information,
with results of generally comparable accuracy. These studies
were, however, conducted and validated using much smaller
data sets or data sets with only a few types of molecules.
Furthermore, the models incorporated only molecule-level
features hand-selected by the researchers, that is, they are given
a molecule representation rather than learning one directly
from the geometry, as in a DGNN.
In Figure 4, we show the Pearson correlations between per-

sample losses and a list of molecule and crystal-level features
with nontrivial incidence and correlations, including elemental
composition and functional group incidence. We mostly

observe weak correlations between the prediction performance
and such features, supporting the evidence from Figure 3 that
the model is able to generalize well to a wide variety of

Figure 3. Prediction traces and error distributions from the test data set (37k samples) of the packing coefficient (unitless, left) and density (g/cm3,
right). Black diagonal lines correspond to a perfect fit, R = 1, slope = 1, predictions = targets.

Table 3. Summary of Regression Fit

metric cpack density

MAE 1.74% 1.74%
MAE σ 0.0191 0.0191
regression R 0.853 0.992
regression slope 0.727 0.986

Figure 4. Pearson correlations of losses with sample features, omitting
those with absolute values less than 0.05, or features with less than 5%
incidence in the test data set.
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molecules. There is a very weak positive correlation (∼0.1)
between error and several factors related to molecule size,
including the magnitude of principal moments, number of
atoms, and number of rings. There is a stronger negative
correlation with the packing coefficient itself, indicating that
the model has superior performance on denser crystals. This
again corroborates Figure 3, where we see a longer tail of errors
for more diffuse crystals.
While we omitted a thorough hyperparameter search, the

models demonstrate remarkable robustness across several
dimensions. Notably, after cutting the atom and molecule
input features down to only the coordinates, atomic number,
and molecular volume, accuracy falls by less than 5%. This is
quite promising for practical deployment of such a model in an
actual search, since, depending on user preferences, a detailed
featurization can be much more expensive than evaluating the
DGNN itself. The results are similarly insensitive to changes in
the number of graph convolution layers and to increases in the
dimension of the model. This consistently high performance
recalls the question, along the lines discussed in ref 29, of
whether we are perhaps approaching the fundamental limit of
accuracy for this type of modeling with the available data sets.
Our density estimation model is fast, accurate, and general,

and could be used to support a CSP pipeline by radically
tightening the range of likely densities over which to search.
Notable absences in our modeling are temperature and
pressure, which obviously have an influence on packing
density. We discuss in detail the reason for their omission in
Appendix A, primarily focusing on inconsistency in the data
set. The high accuracy and particularly the low error variance
of our model suggest that their overall effect is significantly less
important than the molecular structures themselves.
A further option is conditioning the density prediction on a

particular choice of the space group to answer the question
“what is the predicted density of molecule f in space group
P212121?”. While technically straightforward, the lack of
available data for many space groups may limit the general-
ization performance of such a model.

5. CRYSTAL SCORING
For the scoring and ranking of proposed molecular crystals, we
use MolXtalNet-S, incorporating the molecular crystal graph
convolution discussed in Section 2. We further use the data set
generated via the conditions in Table 2, resulting in a training
data set with ∼130k samples and a test set with ∼30k samples.
An extra validation set of ∼32k samples is constructed with the
same filters using the submissions from Blind Tests 5 and 6.
Training is undertaken in equal sized batches of “real” and

“fake” 3 × 3 × 3 supercells, with real samples taken from the
CSD and fake samples generated by one of our two crystal
generators, Gaussian or distorted crystal, between which we
alternate with 50% probability. Training runs until overfit or
test loss saturation, and we select the checkpoint with the best
test loss for evaluation. More details of training methods are
given in the Supporting Information.
MolXtalNet-S outputs two raw values indicating the

probability that a given crystal is a real experimental sample
or a fake synthesized by our generators. These are normalized
by the softmax function

=P y
e

e
( )i

y

j
y

i

j

and a loss is computed via the cross-entropy function. The
softmax function returns a value between 0 and 1, which is
difficult to visualize since, for a well-trained discriminator,
almost all values are clustered very close to 0 or 1. To aid in
visual discernment, we stretch out the values near 0 and 1 with
a function on top of the softmax output, returning a more
readable score

= [ · ]yS P y( ) tan ( ( ) 0.5)0 1 (13)

= · +yS S y S y( ) sign( ( )) log (1 abs( ( ))0 1 10 0 1 (14)

This function saturates to 64-bit numerical precision near ±16,
with a softmax value of 0.5, indicating a 50−50 chance of a
sample being real or fake, sitting at 0.

Figure 5. Distribution of model and vdW scores for the CSD test data set (Real) and fake test sets (Distorted and Gaussian) in a) and b),
respectively, with the vdW scores clipped to a maximum near 14 in b). c) shows the 2D distribution for both real and fake test sets. Vertical dotted
lines are the distribution means.
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A simple method to evaluate crystal quality is to check for
overlap in intermolecular vdW radii, as described in the
Introduction. We undertake such an analysis as a check against
our model outputs, with the overall per-crystal score computed
as
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elog
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with rn being the intermolecular atom pair distances within a 6
Å range, rnvdW being the sum of van der Waals radii in between
atoms in pair n, supplied via RDKit, and r0 being a scaling
factor here set to 1 Å. This score saturates to + ∞ if all
intermolecular ranges are equal or longer than the vdW radii.
We therefore apply a clip near 14 to assist visualization.
In Figure 5, we show typical results on the test data sets of

real and fake samples for a well-trained MolXtalNet-S, with the
crystal distortion both in training and evaluation set to cdis =

0.1. The distributions presented in panel a) indicate that the
model decisively rejects almost all of the “fake” samples
generated by the Gaussian model. The distorted crystals are
rated higher than the Gaussian ones on average, as the applied
distortion cdis is only moderately strong. Since these samples
are generated from ostensibly high-quality originals, those that
are only subtly distorted should be near but not on the
experimental optima. Such samples should teach the model
better discernment than the Gaussian samples, whose
molecular orientations are practically random and, therefore,
almost never respect vdW radii. Another notable trend is the
positive correlation between the vdW score and the model
score at intermediate values of the vdW score, which shows
that the model penalizes crystals depending on their degree of
vdW overlap. At vdW scores above ≈5, where atoms largely
respect vdW radii, this correlation disappears, as the vdW score
loses resolving power. The model on the other hand retains

Figure 6. Pearson correlations of discriminator scores with various sample features, omitting those with absolute values less than 0.05, or features
with less than 5% incidence in the test data set. All functional groups within the RDKit Fragments module were tested.

Figure 7. Blind Test submission scores distributions and means (dashed lines) as well as targets (solid lines). All targets and test data in panel a),
combined distributions of test data and all submissions in panels b) and c), with the scores in c) normalized by the molecule size. Red dashed lines
in b) and c) correspond to the 1%, 5%, and 10% quantiles of the CSD test distribution.
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discrimination capability even within samples that respect vdW
volumes.
In Figure 6, we scan over molecule and crystal features

within the test set of real CSD crystals to see what may be
favored by MolXtalNet-S. Besides phenyl rings, the model has
only weak preferences for specific chemical elements or
functional groups, a highly desirable trait in a general-purpose
model. This conclusion is supported by a more detailed
breakdown in the Supporting Information.
MolXtalNet-S does have a clear preference for flatter and

especially larger molecules. There are significant correlations
between the model score and the number of atoms per
molecule, molecular volume, principal moments, and mass,
which are all mutually correlated and related to overall size.
This makes comparison between crystals composed of different
molecules based on the model score more difficult unless one
explicitly standardizes by the molecule size. We hypothesize
that this preference arises from the nature of the model
training. The DGNN functions by exchanging information in
the neighborhood of each atom and reading out this
information via global aggregation. Since both real and fake
training samples are composed of rigid molecules in realistic
conformations, intramolecular correlations will be largely
satisfied by every atom in every sample. Put simply, all
intramolecular interactions will be rated as “good”, with
realistic bond lengths and angles, with only intermolecular
interactions having the possibility of being “good” or “bad”. In
larger molecules, there are proportionately fewer atoms
exposed to intermolecular vs intramolecular interactions within
the convolution cutoff radius, rc. Therefore, there are
proportionately more atoms that automatically read as
“good” under the model, even in a genuinely low-quality
sample.
This size favoritism exists within the distribution of real

crystals which are already highly scored and well separated
from the fake examples, and therefore, this effect will only be
relevant between structures which are already reasonable.
In Figure 7, we show the distributions of scores for the Z′ =

1 Blind Test submissions from Blind Tests 5 and 6. Chemical
diagrams for the relevant targets are given in Appendix D. The
experimental targets are not always at the top of the
distribution of their respective submissions, indicating that
the model has limited discrimination capacity at the very-high-
end. However, large fractions (77% on average) of all
submissions are scored below their respective targets, high-
lighting that even among a batch of crystals with reasonable
densities and respect for vdW radii, the experimental structure
is favored by the model. This, combined with the low cost of
evaluation, makes MolXtalNet-S an attractive support tool to
energy evaluations in a structure search.
The distribution of scores for Blind Test submissions

diverges notably from the CSD samples, and this separation
can be widened by overfitting the model on the training data.
This, however, comes at the cost of seepage of CSD crystals
into the low-quality regime, which we avoid for now to
maintain maximum model robustness, and because it is not
necessarily clear to what degree they should diverge.
Excluding submissions below the 5% quantile of the CSD

test distribution would efficiently filter a large proportion of
proposed crystals, 48% in this case. This is, however, partly
illusory, driven by the different relative means of the
distributions for each target, due to the model’s preference
for larger molecules. Normalizing the scores by the number of

atoms per molecule tightens the spacing between the
submissions and CSD test distributions and reduces variance
between the BT targets, while also reducing the fraction of
submissions below the 5% CSD test quantile to 27%, which is
still substantial.
A graph model could, therefore, be used as a filter, similarly

to a vdW check, at only a slightly greater cost. The major
difference is in the physical nuance: a vdW check is a quite
crude tool that cannot distinguish between crystals, such as the
Blind Test submissions that already respect atomic vdW radii.
MolXtalNet-S, on the other hand, maintains remarkable
resolving power even between samples that are already of
generally good quality, constituting the work of many
researchers and millions of processor hours, even effectively
filtering roughly one-fourth of them at the 5% quantile
threshold. Beyond the search for the “most stable”
experimental structure, a DGNN model could certainly be
used in the search for the stable polymorphs of a given
molecular crystal, in the prescreening, search, and even
refinement stages, where its speed and generality would be
an asset.
MolXtalNet-S loses some discrimination sensitivity once it is

within the bulk of the CSD scores distribution. It is not clear
whether this is a limitation of the model or training protocol,
whether we require even more sophisticated “fakes” to
discriminate against, or whether there is a quality issue within
the experimental data. In principal, a deep GNN should be able
to learn very complex functions of molecular geometry,42

although details of adequate training are far from trivial, and
the field is evolving rapidly even now.23

For Blind Test 6, groups were allowed to submit multiple
rankings, potentially with different methodologies. This
difference in methodology is particularly pronounced in the
response of the models to the Brandenburg submissions for
targets XXII, XXIII, and XXVI, as shown in Figure 8. The
starting structures were taken from the Price submission and
reoptimized/reranked at two levels of theory. The second
submission in red, with the higher level of theory, was scored
significantly higher by the model. The fact that the model
discriminates between submissions optimized at different levels
of theory is encouraging as, assuming that the higher level of
theory gives better agreement with experiment, we see this
correctly captured by the model. Scores vs. rankings for all the
Z′ = 1 submissions to Blind Test 6 are shown in the
Supporting Information.
These results show the potential of DGNNs as part of a CSP

pipeline. If this tool had been used in the Blind Test 5 and 6
submissions, it would have filtered out a meaningful fraction of
the submitted structures, depending on applied tolerances. The
group-specific analyses suggest additional practical uses for this
type of discriminator model. The first such use is a check on
CSP methods in general. For example, when testing a new
force field, one could score some of its optimized structures via
the DGNN. If the distribution of scores is far from that for
experimental structures, this is a clue that the force field is
misfit and perhaps setting potential minima incorrectly. A
second use for such models is directly as part of a search tool,
supplementing or replacing energy evaluations which are
currently used. For example, in a straightforward Markov chain
Monte Carlo search, we search for the global optimum of some
score function, generally the potential energy, by a chain of
discrete jumps in the space of crystal parameters, C. There is
no reason why the potential energy could not be replaced with
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a stability score from a DGNN, and indeed, we have done
initial tests in this direction. These models are inexpensive to
run on a modern GPU, with throughput naively on the order
of hundreds of thousands of structures per hour.

6. CONCLUSIONS
In this contribution, we introduced and applied geometric
deep learning methods to the study of molecular crystals. Such
methods combine speed, quality, and wide applicability,
making them powerful tools for the acceleration of molecular
crystal structure prediction. Currently, state-of-the-art CSP
methods can be extremely expensive, expending several
months and millions of CPU hours on single crystals. Our
approach is therefore timely, offering inexpensive yet powerful
tools for the support and acceleration of CSP pipelines.
Further, both MolXtalNet-D and MolXtalNet-S demonstrate
remarkable equanimity and generalization performance to
practically all common functional groups and atom types in the
CSD.
The analyses in Sections 4 and 5 demonstrate the general

capabilities of DGNNs for molecular crystal property
prediction from single molecules and crystal configurations.
MolXtalNet-D predicts the packing density of bulk molecular
crystals from only single conformer information and achieves
state-of-the-art performance with minimal tuning. The new
molecular crystal periodic convolution allows us also to model
molecular crystal graphs, and we trained MolXtalNet-S, an
efficient model for scoring molecular crystals. As the most
expensive step in a DGNN forward pass is generally the
construction of the initial radial graph, our trained models are
only marginally more expensive than simple volume exclusion
methods, such as the vdW radius check, while incorporating a
significantly more physical nuance and retaining discrimination
sensitivity even between already reasonable crystal samples. As
discussed in Section 5, performance appears limited by the
quality of available training data, and there remains significant
room for algorithmic improvement and application of
additional computational power.
Data processing, training, and analysis scripts are all available

in our GitHub repository. The training data can be sourced via
the CSD Python API, which is for now a necessary package in
our processing pipeline. Beyond density prediction and sample
ranking, our code provides necessary tools for general
molecular crystal learning tasks, which we plan to leverage in
later studies. Particularly useful is our unit cell builder. Written
and optimized in PyTorch, this module is fast, parallel,

differentiable, and therefore suitable for within-loop crystal
generation and backpropagation tasks. The state-of-the art of
GNN architecture is currently evolving very quickly and may
soon enable further performance gains. Extensions of our
approach to Z′ ≠ 1 structures and disordered crystals are both
possible with relatively straightforward modifications to the
existing algorithm. A key next step will be the development of
more advanced generative models for molecular crystal
configurations, both to accelerate CSP by extremely rapid
sampling of high-quality initial candidate structures, and as a
proof of concept for condensed phase molecular materials
generation.

■ APPENDIX A: MOLECULE GRAPH FEATURIZATION
A list of atom and molecule-wise features included in our
modeling is provided below. In general, features which are
floating point or integers are standardized before training,
whereas Booleans are left as-is.
Atom-wise
• Atomic number
• Mass
• Atom is H-bond acceptor
• Atom is H-bond donor
• Valence
• vdW radius
• Atom is on a ring
• Electronegativity
Molecule-wise
• Volume
• Mass
• # Atoms
• Molecule is chiral
• # Rings
• # H-bond donors
• # H-bond acceptors
• # Rotatable bonds
• Planarity
• Polarity
• Asphericity
• Eccentricity
• Radius of gyration
• Principal moments 1−3
A notable absence in our features list is the experimental

temperature and pressure from the CSD. While less than ideal,
it does not appear at this time that there is a straightforward

Figure 8. Model score distributions for particular CSD Blind Test 6 submissions. Blue bars are the first submission, and red bars are the second
submission. The black dashed line is the non-normalized 5% quantile score for the CSD test data set.
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and consistent way to include them. A large fraction of CSD
entries lacks one or both of these data points, which in any case
are generally underspecified. That is, it is not clear at all in
general how one should connect the recorded crystal
temperature and pressure with the actual crystallization and
measurement process. Therefore, despite their clear relevance
to the properties of crystals, we omit them from our analysis
for now and accept the necessary loss of precision of the final
models.

■ APPENDIX B: FAST AND DIFFERENTIABLE
SUPERCELL BUILDER

Likely the most important piece of our pipeline for future
work, the cell builder allows us to propose and build cells in a
fast and differentiable way, so that one can train directly on
crystal generation tasks.
The first stage is the optional "cleaning" of incoming cell

parameters, C, defined in Section 2. This may be necessary if
the parameters are being generated by some automated
protocol, as in our case, which may not adhere to all physical
limitations such as positive fractional positions, reasonable
angles, and requirements of the crystal system. We therefore
“clean” the parameters in the following ways: (a,b,c) are
enforced to be positive via the softplus function, (α,β,γ) are
enforced to be between 0 and π via a hardtanh function,
likewise the molecule orientation parameters (ϕ,ψ,θ) between
0 and 2π, and the molecule centroid position (x̅,y̅,z)̅ is fixed
between 0 and 0.5 in fractional coordinates by another
hardtanh. Further, the cell lengths and angles are fixed
according to the preselected crystal system of the sample,
e.g., a cubic crystal will have cell lengths forced to be equal and
angles to be

2
.

Next, a single molecule is placed in the unit cell with the
shape defined by (a,b,c,α,β,γ), at the position and orientation
(x̅,y̅,z,̅ϕ,ψ,θ), as described in Section 2. The general Wyckoff
symmetry is used to pattern the unit cell up to Z molecules,
and finally, the unit cell is patterned out to the N × N × N
(usually 3 × 3 × 3) supercell for discriminator scoring and
training.
While not strictly necessary for this study, which could have

been undertaken via a prebuilt data set, this tool is fast and
parallel, allowing for straightforward online usage inside a
training or evaluation loop. Further, it is written and tested in
PyTorch, and gradients may pass between a model which
generates the cell parameters to a loss function applied on the
resulting crystal, opening the door for the training of generative
models for molecular crystals.

■ APPENDIX C: PROCEDURE FOR POLYMORPH
FILTERING

Polymorphs of the same molecule are identified by scanning
CSD identifiers for duplicate prefixes (leading six letters of the
identifier). CSD identifiers are formatted as “XXXXXX##”,
with polymorphs, if any, each assigned a number with a shared
prefix. To select a single representative polymorph, we select
the structure with the best R-factor, which shares the same
space group as the oldest submitted structure, the idea being
that the first-discovered structure is likely to be the most stable.
Polymorph filtering in this way is useful to avoid bleed-over
between training and test data sets, although in practice our
models generalize rather well without overfitting, hence it
tends to make little empirical difference.

■ APPENDIX D: CHEMICAL STRUCTURES OF SINGLE
COMPONENT BLIND TEST 5 AND 6 TARGETS

The chemical diagrams for the Blind Test 5 and 6 structures
used in the model evaluation are shown in Figure 9.
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(25) Schütt, K. T.; Unke, O. T.; Gastegger, M. Equivariant Message
Passing for the Prediction of Tensorial Properties and Molecular
Spectra. Proceedings of the 38th International Conference on Machine
Learning, PMLR 139; 2021.
(26) Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff,
K.; Riley, P. Tensor Field Networks: Rotation- and Translation-
Equivariant Neural Networks for 3D Point Clouds. 2018.
(27) Cohen, T. S.; Welling, M. Group Equivariant Convolutional
Networks. Int. Conf. Mach. Learn. 2016, 6, 4375−4386.
(28) Miller, B. K.; Geiger, M.; Smidt, T. E.; Noé, F. Relevance of
Rotationally Equivariant Convolutions for Predicting Molecular
Properties. 2020, arXiv:2008.08461, arXiv; pp 1−12. http://arxiv.
org/abs/2008.08461 (accessed 2023-03-30).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00031
J. Chem. Theory Comput. 2023, 19, 4743−4756

4755

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Kilgour"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6557-3297
https://orcid.org/0000-0001-6557-3297
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jutta+Rogal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6268-380X
https://orcid.org/0000-0002-6268-380X
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00031?ref=pdf
https://doi.org/10.1002/ange.201703028
https://doi.org/10.1103/PhysRevLett.82.3003
https://doi.org/10.1103/PhysRevLett.82.3003
https://doi.org/10.1063/1.5014038
https://doi.org/10.1063/1.5014038
https://doi.org/10.1063/1.5014038
https://doi.org/10.1021/acs.jctc.7b01152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1021/acs.jctc.2c00401?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1146/annurev-physchem-040215-112047
https://doi.org/10.1146/annurev-physchem-040215-112047
https://doi.org/10.1080/10587250108023734
https://doi.org/10.1080/10587250108023734
https://doi.org/10.1007/s008940050130
https://doi.org/10.1007/s008940050130
https://doi.org/10.1023/A:1007934413448
https://doi.org/10.1023/A:1007934413448
https://doi.org/10.1107/S0108767301004810
https://doi.org/10.1107/S0108767301004810
https://doi.org/10.1107/S0108768107030996
https://doi.org/10.1107/S0108768107030996
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jctc.9b00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://arxiv.org/abs/2202.13060
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1088/2632-2153/aca1f8
https://doi.org/10.1088/2632-2153/aca1f8
http://arxiv.org/abs/2008.08461
http://arxiv.org/abs/2008.08461
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(29) Bier, I.; Marom, N. Machine Learned Model for Solid Form
Volume Estimation Based on Packing-Accessible Surface and
Molecular Topological Fragments. J. Phys. Chem. A 2020, 124 (49),
10330−10345.
(30) Afzal, M. A. F.; Sonpal, A.; Haghighatlari, M.; Schultz, A. J.;
Hachmann, J. A Deep Neural Network Model for Packing Density
Predictions and Its Application in the Study of 1.5 Million Organic
Molecules. Chem. Sci. 2019, 10 (36), 8374−8383.
(31) Bier, I.; O’Connor, D.; Hsieh, Y. T.; Wen, W.; Hiszpanski, A.
M.; Han, T. Y. J.; Marom, N. Crystal Structure Prediction of Energetic
Materials and a Twisted Arene with Genarris and GAtor.
CrystEngComm 2021, 23 (35), 6023−6038.
(32) Gasteiger, J.; Groß, J.; Günnemann, S. Directional Message
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